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Abstract—This paper introduces feedback control meth-
ods for distributed manipulation systems that move objects
via rolling and slipping point contacts. Due to the intermit-
tent nature of these mechanical contacts, the governing me-
chanics of these systems are inherently nonsmooth. We first
present a methodology to model these nonsmooth mechani-
cal effects in a manner that is tractable for nonsmooth con-
trol analysis. Using these models, we show that when consid-
erations of these nonsmooth effects are taken into account, a
class of traditional open loop distributed manipulation con-
trol methods cannot stabilize objects near an equilibrium.
However, stability can be achieved through the use of feed-
back, and we present nonsmooth feedback laws with guar-
anteed stability properties. We then describe an experimen-
tal modular distributed manipulation test-bed upon which
one can implement a variety of control schemes. Experi-
ments with this test-bed confirm the validity of our control
algorithms. Multimedia extensions include videos of these
experiments.

I. INTRODUCTION
Distributed manipulators usually consist of an array of
similar or identical actuators combined together with a
control strategy to create net movement of an object or
objects. The goal of many distributed manipulation sys-
tems is to allow precise positioning of planar objects from
all possible starting configurations. Such “smart convey-
ors” can be used for separating and precisely positioning
parts for the purpose of assembly. Distributed manipula-
tor actuation methods range from air jets [4], [29], [30]
and rotating wheels [20], [18], [23] at the macroscale to
MEMS and flexible cilia [32], [7] at the microscale.
This paper focuses on the design of distributed ma-
nipulation control algorithms for the class of distributed
manipulators that create object motion through the use of
rolling and slipping mechanical contacts. In such cases,
friction forces and the intermittent nature of frictional
contact play an important role in the overall system dy-
namics, leading to non-smooth dynamical system behav-
ior. A key point of this paper is that the nonsmooth prop-
erties of these distributed manipulation systems are non-
negligible, but are nevertheless tractable and amenable to

non-smooth analysis and non-smooth control methods.
In order to properly analyze these non-smooth effects
on system behavior, we first introduce in Section II a
Power Dissipation Method (PDM) to construct tractable
equations of motion for distributed manipulators with in-
termittent frictional contact. This method formalizes and
extends the work of Alexander and Maddocks [1]. The
resulting equations take the form of a non-smooth mul-
tiple model dynamical system (Definition II.2). We next
show in Section III that when these non-smooth mechani-
cal effects are taken into account, the programmable force
field (PFF) approach to distribution manipulation control
is in fact unstable in the object’s orientation near the vicin-
ity of equilibrium points. We then show that non-smooth
control techniques can be used to stabilize the moving ob-
ject near an equilibrium (Section IV). Moreover, the pro-
grammable force field approach can be blended with our
feedback algorithm to provide a globally stable feedback
control scheme that efficiently uses sensing and feed-
back where it is most effective (Section VI). In present-
ing our analysis, we differentiate between underactuated
and fully actuated distributed manipulators. A separate
smooth feedback control algorithm is presented in Section
V when full actuation is available. To test our theories, we
constructed a modular experimental distributed manipu-
lator test-bed. This system, which is described in Section
VII, can emulate a reasonably large class of distributed
manipulators that generate motion through rolling and
sliding frictional contacts. Experimental results that con-
firm the validity and effectiveness of our algorithms are
presented in Section VIII. The multimedia extensions to
this paper present a video of each experiment described
in Section VIII.

A. Relation to Prior Work

Methods to design distributed manipulation control
systems have been proposed in several other works, in-
cluding [8], [11], [13], [20]. Particularly relevant to this
paper is the work of Luntz et al. [20], where a “mod-
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ular distributed manipulator system” (MDMS) is intro-
duced. The MDMS consists of a planar array of indepen-
dently driven wheels that are located at fixed orientations.
These wheels manipulate objects placed on top of the ar-
ray through the influence of mechanical contact between
the moving object and the wheel rims. The authors of
[20] design and analyze control laws for the purpose of
point stabilization of the transported object. Although the
work in [20] does consider the fact that the total number
of actuators is finite, it compensates for this fact largely
through inherent compliance in the system (via backdriv-
able motors and other mechanisms). They then show to
what degree the programmable vector field approach (de-
scribed shortly) can be applied to a discrete array of ac-
tuators. In the cases where the programmable vector field
does not provide good enough results they then use feed-
back to compensate for the discreteness effects. The ap-
proach we give here more directly addresses the issue of
breaking kinematic contact constraints due to the system
being kinematically “overconstrained”. This allows us to
directly incorporate the effects of sliding frictional con-
tact into our control strategy. Moreover, the experiment
we describe later in Section VII has the advantage of hav-
ing independently driven, independently oriented wheels.
As we will see in Section V this allows us to have control
laws which are globally smooth.
Aside from the work found in [20], the most com-
mon approach to control of a distributed manipulator is
based on the notion of programmable force fields (PFF)
Böhringer et al. [5], [8]. In this methodology, one makes
the possibly unrealistic assumption that the array’s con-
trol capability can be idealized as a continuous distribu-
tion of forces across the array surface. In this abstraction,
the manipulated object moves under the influence of these
surface forces. The distributed forces can be integrated
over the body’s surface to obtain the object’s dynamical
response. This process is as follows: assume the part O
can be described by a support characteristic functionω(p)
where ω(p) is 1 everywhere on the object surface and 0
otherwise. Here p denotes planar Cartesian coordinates
in the object’s fixed frame. Moreover, let the part be sub-
ject to a force field f(x, y) : 2 → 2 . Lastly, place the
reference frame of O at the object’s center of mass, i.e.,∫

2 ω(p)dp = 0. When the object lies at configuration
q = (x, y, θ) the net force and torque on the object are

F =
∫

2
ω(p)f(Aθp + t)dp

M =
∫

2
ω(p)Aθp × f(Aθp + t)dp

with t = (x, y)T and A the 2x2 rotation matrix of angle
θ. The condition for equilibrium is F = M = 0.
The control design problem reduces to the selection
of a continuous force field distribution that will trans-

port the object to a prescribed configuration, and then
stabilize it at that configuration. The most basic con-
trol law is the “elliptic” field, which generally takes the
form F = {−αx,−βy}, where α and β are coefficients
to be chosen by the control designer. Under the contin-
uous force idealization, these open loop control laws can
stabilize an object to one of several stable equilibria de-
pending on the shape and distribution of mass of the ob-
ject. Recent work has introduced more general fields that
can stabilize more general classes of objects. See, for in-
stance, Böhringer et al. [6], [8], [9] and Kavraki and Sud-
sang [31].
To use these controls on an actual array, where the ma-
nipulation forces will be realistically generated at discrete
points, one must adapt the continuous approximation to
the given discrete geometry. To assure the performance of
the algorithm on the actual system, the contact mechanics
should be taken into account at this stage, though this has
not often been done in prior work.
The PFF approach has been experimentally shown to
work in MEMS-fabricated actuator arrays, where the ar-
ray elements are “small” and “close” together relative to
the size of the object being manipulated [5], [3]. This ap-
proach is additionally well suited to distributed air jets,
where the aerodynamics effectively “smooth out” the re-
sulting forces on the object. In these cases the strong as-
sumptions underlying the PFF approach are physically re-
alistic. Moreover, it has the advantage of being open loop,
and therefore requires no sensing. However, in cases
where only a small number of actuators are in contact
with the manipulated object (i.e., the continuous actuation
approximation is poor) or the coefficient of friction µ is
very high, the continuous approximation has been shown
experimentally not to work as well [19]. In these cases,
the continuous approximation does not adequately incor-
porate the physics of the actual array and the object/array
interface.
These experimental observations led us to explicitly in-
corporate frictional and discontinuous contact effects into
the analysis and control of distributed manipulation (and
the related case of overconstrained wheeled vehicles [22]
and overconstrainedmechanical systems in general [28]).
We show that under very simple and general assumptions
on the friction model, the PFF approach generically leads
to unstable systems when implemented on actual dis-
tributed manipulation arrays that have frictional contact
(see Section III-B). The instability arises in the object’s
orientation at the equilibrium configuration. We present
a nonsmooth control in Section IV law that locally stabi-
lizes this instability in a provably correct way. We also
show that one can combine the programmable force field
approach and the previously mentioned local control law
to obtain a globally exponentially controllable distributed
manipulation control system (Section VI). These results
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are all proved using the formalism of nonsmooth analysis.
In this paper we present and unify our previouswork on
non-smooth dynamical models for describing such sys-
tems [22], and non-smooth control laws [23], [26] that
provably stabilize these systems. The present paper is
based on the conference paper [25], but includes stronger
stability results than the ones found there as well as addi-
tional experimentation.

II. THE POWER DISSIPATION METHOD

Many actual or proposed distributed manipulator im-
plementations rely upon physical contact between the ma-
nipulated object and the driving elements. Examples in-
clude driving wheels, fingers, cilia, or flaps. To explic-
itly investigate, incorporate, and control the complex fric-
tional contact phenomena inherent in such systems, one
needs to develop general modeling schemes that can cap-
ture these phenomena so that the subsequent control de-
sign process can take these effects into account. One
could resort to a general Lagrangian modeling approach
that accounts for the contact effects through Lagrange
multipliers. Instead, we present a modeling scheme that
captures the salient physical features of intermittent fric-
tional contact in a class of equations that are amenable to
non-smooth control analysis.
To realize this goal, we use a “power dissipation
method” (PDM) to model the governing dynamics of a
distributed manipulation system involving a finite num-
ber of frictional contacts. This method is adapted from
the work of Alexander and Maddocks [1] on kinematic
wheeled vehicles. Our contribution has been to formal-
ize the method and better understand its properties. One
can show that this method generically produces unique
models [22] that are relatively easy to compute, and to
which one can apply non-smooth control system analy-
sis methods. Since the method is a quasi-static modeling
method, it produces first-order governing equations, in-
stead of second order equations that are associated with
Lagrange’s equations. However, in other work (see [28])
we have shown that these equations of motion are nons-
mooth kinematic reductions of the complete Lagrangian
dynamical models. That is, there is a formal relationship
between the equations generated by the PDM analysis and
those generated by Lagrangian analysis.
We assume that the moving body and actuator elements
that contact the object can be modeled as rigid bodies
making point contacts that are governed by the Coulomb
friction law at each contact point1. Let x denote the con-
figuration of the array/object system, consisting of the ob-
ject’s planar location, and the variables that describe the
state of each actuator element. Under these assumptions,

1Line contacts can be modeled as a set of equivalent point contacts.

the relative motion of each point contact between the ob-
ject and an actuator array element can be written in the
form ω(x)ẋ. If ω(x)ẋ = 0, the contact is not slipping
(and the constraint is satisfied), while if ω(x)ẋ $= 0, then
ω(x)ẋ describes the slipping velocity at the contact.
In general, the moving object will be in contact with
the actuator array at many points. From kinematic con-
siderations, one or more of the contact points must be in a
slipping state, thereby dissipating energy. The power dis-
sipation function measures the object’s total energy dissi-
pation due to contact slippage.

Definition II.1. The Dissipation Functional for an n-
contact state is defined to be

D =
n∑

i=1

αi | ω(x)ẋ | (1)

where αi = µiNi, with µi and Ni being the Coulomb
friction coefficient and normal force at the ith contact,
which are assumed known2.

Since there will generally not exist a motion where all
of the contacts can be simultaneously slipless, we are lead
to the following concept for finding the governing mo-
tions.

Power Dissipation Principle: With ẋ suffi-
ciently small so that quasi-static analysis is
appropriate, an object’s motion at any given
instant is the one that minimizes D.

Assuming that the motion of the actuator array’s variables
are known, the power dissipation method postulates that
the object’s motion at each instant is the one that instanta-
neously minimizes power dissipation due to contact slip-
page. This method is adapted from the work of Alexander
and Maddocks [1] on wheeled vehicles. For a greater dis-
cussion of the formal characteristics of the PDM, and a
discussion of the relationship between the PDM and La-
grangian approaches for such a system, see [21], [28],
[22].
When one applies the PDM method to an overcon-
strained multi-contact distributed manipulation system,
the resulting equations take the following form [23].

Definition II.2. A system is a multiple model driftless
affine system (MMDA) if it can be expressed in the form

ẋ = fσ1(x)u1 + fσ2(x)u2 + · · · + fσn(x)un (2)

where for any x and t, fσi(x) ∈ {gαi(x)|αi ∈ Ii}, with
Ii an index set, fi measurable in (x, t), and the vector
fields gi are analytic in (x, t) for all i.

2If the exact distribution of normal forces is not known, typically an
additional step of analysis can yield the distribution or a reasonable ap-
proximation of the normal force distribution. However, this approxima-
tion is often hindered by nonuniquness and indeterminism.
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An MMDA is a driftless affine nonlinear control sys-
tem where each control vector field may “switch” back
and forth between different elements of a finite set. In
our case, this switching corresponds to the switching be-
tween different contact states between the object and the
array surface elements (i.e., different sets of slipping con-
tacts) due to variations in contact geometry, surface fric-
tion properties, and normal loading. In [22] it was shown
that the PDM generically leads to MMDA systems as in
Definition II.2. For analysis of control theoretic issues in
MMDA systems, see [24], [27], [21]

A. Equations of Motion
This section applies the power dissipation method to
an example of an array of driven wheels that manipulate
a planar object. This systems models our experimental
apparatus (Fig. 6 in Section VIII). Assign a fixed refer-
ence frame in the plane of the moving object. The ith

wheel rim contacts the moving object at the point (xi, yi)
in the fixed frame. The angle between the tangent to the
wheel rim at the point of contact and the x-axis of the
fixed frame is denoted by θi.

Definition II.3. When the tangent to the motion of the
contact point has a constant orientation, this contact is
said to be underactuated. When the orientation of the
tangent can be controlled at will, we say that the contact
is fully actuated. In the first case, each contact represents
a single control input, while the fully actuated case repre-
sents two independent control inputs.

Assume that the ith wheel has radius R and spins at
speed 1

Rui. Then the linear velocity of the point of con-
tact along the tangent to the wheel is ui. Let SO(2) de-
note the group of all planar rotations and SE(2) denote
the group of all planar displacements. Let q be the con-
figuration of the object in SE(2). Let gi ∈ SE(2) is
the homogeneous representation of the ith actuator node’s
configuration relative to a fixed reference frame.

gi =



 R(θi)
(

xi

yi

)

0 1



 ∈ SE(2) (3)

The relative velocity of each contact point between the
wheel andmoving object can be expressed asΩ(gi)(q̇, ui)
where:

Ωi(gi) =







AdT
g−1

i




1
0
0








T

−1



AdT
g−1

i




0
1
0








T

0




(4)

=
[

cos θi sin θi xi sin θi − yi cos θi −1
− sin θi cos θi xi cos θi + yi sin θi 0

]
(5)

where Ad(·) is the adjoint transformation which trans-
forms velocities from one coordinate frame to another,
and R(·) ∈ SO(2). (Note that the terms in the first col-
umn are three dimensional row vectors.) I.e., this equa-
tion represents the constraint associated with the ith actu-
ator when the contact does not slip.
We allow for the realistic possibility that friction at the
contact point is not uniform in all directions of the contact
plane. An example of such a smooth distribution of the
coefficient of friction is shown in Fig. 1 (see [15], [16] for
a discussion of such friction models).

µRµS

Fig. 1. A wheel with the vector-dependent friction with two friction
induced metrics.

While somematerials do have friction of this type, such
anisotropic friction models are more generally useful as
a means to approximately model compliance effects and
wheel tread effects in our rigid body modeling frame-
work. For instance, if the driving wheel is an extremely
thin disk, then one would expect µR (the friction coeffi-
cient along the “rim” direction) to be less than µS (the
friction coefficient along the “side” direction). However,
the treads on a tank ensure that µR is greater than µS .
Note that the minimum of the dissipation function will be
nonunique in the case of a isotropic (i.e., µS = µR) distri-
bution of friction. Note also that in this case, the same in-
determinacy arises in the Lagrangian mechanics analysis.
The form of µ is important, as it will induce a metric on
the velocities of the system. Hence, an elliptical distribu-
tion (as seen in white in Fig. 1) will induce a weightedH2

norm, whereas an absolute value distribution (as seen in
gray in Fig. 1) will induce a weighted H1 norm. We will
choose the latter primarily because it is a reasonably good
approximation of systems with hysteresis effects due to
friction and is easy to work with. However, we should
note that that the µ distribution affects the value of D in
different coordinate systems, so any effort to make D co-
ordinate independent must explicitly take the distribution
of µ into account.
We now apply the PDM to this problem. For simplic-
ity, let us introduce for each actuating wheel a reference
frame whose origin is fixed at the point of contact, and
whose x-axis, denoted xi

R, points along the tangent to the
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wheel rim. The y-axis is chosen by the right hand rule,
and is denoted by yi

S. For a set of n actuators, the dissi-
pation functional takes the form:

D(q̇) =
n∑

i=1

|µi
SN iωi

S(q)q̇| + |µi
RN iωi

R(q)q̇| (6)

where ωi
S(q) is the component of the ith actuator’s fric-

tional constraint along the side-slip direction yi
S , and

ωi
R(q) denoted the component of this constraint on the
rolling direction, xi

R. The governing equations can then
be found by minimizing D in Eq. (6). To establish neces-
sary conditions for the minimum of D, we would like to
take the differential of D. But differentiation is impossi-
ble in a classical sense because D is only Lipschitz con-
tinuous. Therefore, we take the nonsmooth differential
(in the sense of Clarke [10]). To simplify the calculation
of this non-smooth derivative, note that D takes the form

D(q̇) =
2n∑

i=1

g(Fi(q, q̇))

where g(y) = |y| and Fi(q, q̇) = µi
XN i

Xωi
X(q)q̇ for

X = S or R. Note that g is Lipschitz and the func-
tions {Fi} are differentiable and linear in q̇. Therefore
(dropping the X subscript) DFi(q, q̇) = µiN iωi(q), as
expected. Moreover, the Clarke Generalized Differential
(CGD) of g(y) = |y| is

∂g

∂ẏ
=






1 if y > 0
−1 if y < 0
λ : |λ| ≤ 1 if y = 0.

(7)

The CGD obeys the chain rule [10], implying that the
CGD of D is:

∂Di

∂q̇
=






µiN iωi(q) if µiN iωi(q)q̇ > 0
−µiN iωi(q) if µiN iωi(q)q̇ < 0
λµiN iωi(q) : |λ| ≤ 1 if µiN iωi(q)q̇ = 0

.

(8)
We focused on the Coulomb friction model in this
derivation. If instead we replace µiNi with a generic
configuration-dependent function hi(q) we can model
other types of frictional contact, and obtain an analo-
gous result. We should also comment that in the case
of Coulomb friction the minimization of D is equivalent
to finite search over a discrete set of velocities (see [28],
[22]).
If one makes the additional assumption that the coeffi-
cient of friction is the same at all contacts, µ(x, y) = µ,
then the distribution of the normal forces determines the
nature of the dissipation, since the coefficient of friction
factors linearly from the dissipation function in this case.
This implies that the contact states that dissipate the most
energy are those associated with the potential constraints

having the largest normal forces Ni. Based on these ob-
servations, if the location of the center of mass determines
the distribution of normal forces, and if µ(x, y) is uni-
form, then the contacts closest to the center of mass do
not slip. The non-slip constraints of these contacts define
the object’s motion. Hence, knowledge of the center of
mass’s location determines the first two actively satisfied
constraints. The third actively satisfied constraint is de-
termined by the friction model.
Let ai = (xi, yi), the location of the ith actuator and let

qx,y = (x, y) of the (x, y, θ) configuration of the object.
If the coefficient of friction for sideways slip, µS , is less
than the coefficient of friction in the rolling direction, µR,
and if the nearest actuator to the center of mass is indexed
by i and the second nearest is indexed by j, the equations
of motion must satisfy the following conditions.

q̇ ∈




v

∣∣∣∣∣∣

‖ai − qx,y‖ ≤ ‖ak − qx,y‖ ∀k $= i
‖aj − qx,y‖ ≤ ‖ak − qx,y‖ ∀k $= i, j
(ωi

R(q),ωi
S(q),ωj

R(q))v = 0






(9)
These conditions can be interpreted as follows. The first
condition implies that the ith actuator is closest to the cen-
ter of mass of the object. The second condition implies
that the jth actuator is the second closest actuator to the
center of mass. Then, we know that the velocity must sat-
isfy the three constraints (i.e., (ωi

R(q),ωi
S(q),ωj

R(q))v =
0 where (ωi

R(q),ωi
S(q),ωj

R(q)) is a matrix consisting of
the three constraint one forms). One can show by solving
for the annihilator of this matrix that these conditions in
turn imply that the equations governing the object’s mo-
tions are:




ẋ
ẏ
θ̇



 =





ui[sj((xi−xj)ci+yisi)+cicjyj ]−ujyi

(xj−xi)sj+(yi−yj)cj
ujxi−ui[cicjxi+si(xjsj+(yi−yj)cj)]

(xj−xi)sj+(yi−yj)cj
uj−ui cos(θi−θj)

(xi−xj)sj+(yj−yi)cj




(10)

where ci = cos(θi), si = sin(θi), uj is the speed of the
ith contact, and it should be recalled that (xi, yi) is the
location of the ith point contact and θi is its orientation in
the plane. It should be noted that here the index notation
should be thought of as mapping (i, j) pairs to equations
of motion in some neighborhood (not necessarily small)
around the ith and jth actuator. The transition between
the equations of motion determined by actuators i and j to
equations of motion determined by actuators k and l will
in general be determined by the location of center of mass.
The state space is consequently divided into different sets
of equations of motion whose boundary geometries are
dependent upon the center of mass location (an example
of this division can be seen in Fig. 3). This model can be
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expressed as the MMDA system



ẋ
ẏ
θ̇



 = f1u1 + f2u2 (11)

where

f1 ∈





−yi

(xj−xi)sj+(yi−yj)cj
xi

(xj−xi)sj+(yi−yj)cj
1

(xi−xj)sj+(yj−yi)cj



 (12)

f2 ∈





sj((xi−xj)ci+yisi)+cicjyj

(xj−xi)sj+(yi−yj)cj
−cicjxi−si(xjsj−(yi−yj)cj)

(xj−xi)sj+(yi−yj)cj
− cos(θi−θj)

(xi−xj)sj+(yj−yi)cj



 (13)

Note that in Eq. (12) the indices i and j still refer to
the closest and second closest actuators. Hence, f1 and
f2 will experience discontinuous changes as the values of
i and j change. Moreover, as the system trajectory q(t)
crosses a boundary between one region where the equa-
tions of motion are determined by actuators i and j to
a region where the equations of motion are determined
by actuators k and l, f1 and f2 must be multivalued on
the boundary (hence the use of the inclusion ∈ symbol).
In cases where a boundary is attractive (all trajectories
near it converge to it in finite time), the differential inclu-
sion formalism is necessary in order to obtain existence
of solutions. This is because on such an attractive bound-
ary solutions cannot escape, and are moreover no longer
unique.

Fig. 2. A discontinuous vector field for which the x and y axes are
attractive.

To clarify some of these ideas, consider Fig. 2. Here
we see a system that has four possible dynamic states
(one for each quadrant). Each quadrant has a constant
vector field (as Eq. (10) does when the controls are held
constant). Note, however, that every trajectory converges
to the origin despite the piecewise constant nature of the
dynamics. This example additionally illustrates the need

for set-valued analysis–both the x-axis and y-axis are at-
tractive, leading to nonunique trajectories for most initial
conditions. This is due to the fact that most trajectories
hit one of the axes before they get to the origin, and at
that point they join all the other trajectories on that axis
as they go to the origin.

Remark II.1. The programmable force field (PFF)
method effectively assumes that there are an infinite num-
ber of actuators, that all of the actuators slip all the time,
and that the physics of contact between the array surface
and the object is not important. Hence, the PFF method is
more appropriate to the analysis and design of gross mo-
tions where accuracy is less important and simplicity of
the design problem is appealing. The PDM assumes that
there are generally a finite number of contact points, and
incorporates a Coulomb friction (or possibly other) con-
tact model into the analysis. However, the PDM can only
be well justified for quasi-static systems where the ob-
jects move slowly enough that the contact reaction forces
dominate the moments of inertia. For distributed manip-
ulation, this will generally be true when the object is near
an equilibrium point. Therefore, the PDM is more ap-
propriate to the analysis and control of local, quasi-static
motions near the equilibrium. These contrasting features
inspire the merging of these two techniques in Section VI.

III. INSTABILITY OF THE PROGRAMMABLE FORCE
FIELD METHOD

This section analyzes the stability of the programmable
force field technique under the inclusion of the contact
models described above. To analyze the stability of these
non-smooth multi-model systems, we first introduce a
non-smooth extension to the standard Lyapunov stability
method.

A. Stability Theorems for Differential Inclusions
The system in Eq. (11) is a differential inclusion of the
type found in [12]. That is, due to the switching of the
control vector fields in Eq. (2), the governing equations
take the form ẋ ∈ F (t, x), where F (t, x) is a (set-valued)
multi-function. Our analysis requires the following the-
orem from [12] (partially extended in [26]), which is the
generalization of time varying Lyapunov theory to differ-
ential inclusions. We remind the reader that the upper and
lower derivatives for a function V (t, x) ∈ C1 are defined
by:

V̇ ∗ = sup
y∈F (t,x)

(Vt + ∇V y) V̇∗ = inf
y∈F (t,x)

(Vt + ∇V y)

(14)

Theorem III.1 ([12]). Let, in a closed domain D(t0 ≤
t < ∞, |x| ≤ ε0), the differential inclusion ẋ ∈
F (t, x) satisfy the basic conditions of existence and 0 ∈
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F (t, 0). In this domain, let there exist functions V (t, x) ∈
C1, V0(x) ∈ C for which

V (t, 0) = 0, V (t, x) ≥ V0(x) > 0, (0 < |x| < ε0)

Then:
1) If V̇ ∗ ≤ 0 in D, the solution x(t) = 0 of the inclusion
ẋ ∈ F (t, x) is stable.
2) If, moreover, there exist functions V0(x), V1(x) ∈ C,
W (x) ∈ C (for |x| ≤ ε0) and

0 < V0(x) ≤ V (t, x) ≤ V1(x), V̇ ∗ ≤ −W (x) < 0,

(0 < |x| < ε0), V1(0) = 0

then the solution x(t) = 0 is asymptotically stable.
3) Moreover, if there exist k1, k2, k3, c > 0 such that

V0(x) ≥ k1‖x‖c

V1(x) ≤ k2‖x‖c

W (x) ≥ k3‖x‖c

then the solution x(t) = 0 is exponentially stable.

A simple consequence of this theorem is the following
corollary.

Corollary III.2. If a single Lyapunov function can be
used to show that all models of a multiple model system
are (stable, asymptotically stable, exponentially stable),
then the resulting multiple model system is also (stable,
asymptotically stable, exponentially stable).

B. Instability of 2-Dimensional Arrays Controlled by the
PFF
This section shows that distributed manipulators of the
type described in the previous section are not asymptot-
ically stabilizable when controlled using the open loop
programmable force field method, but are asymptotically
stabilizable using feedback. We only give the proof for ar-
rays manipulating objects in 2 , but this proof can be ex-
tended to any smooth two dimensional manifold by iden-
tifying its charts with 2 .

Theorem III.3. Consider a 2-dimensional planar array
consisting of a finite number of actuators placed on a reg-
ular grid. Let the contacts be indexed by i, j ∈ I , and let
their physics be modeled as in Section II. Assume that
the motions of the actuator contacts are governed by an
elliptic vector velocity field Ψ(x, y) : 2 → 4 (where

4 is the tangent bundle of 2 ) defined by Ψ(x, y) =
(x, y,−αx,−βy) for α,β > 0. Then, in some neigh-
borhood of the origin (the desired equilibrium point) the
first order governing equations given by the PDM are
not asymptotically stable under the influence of the pro-
grammable force field (PFF). Moreover, if µS < µR, then
such a system is exponentially stabilizable through the use
of feedback.

Proof. To see that the PFF-controlled system is not
asymptotically stable, it is sufficient to realize that Adg−1

in Eq. (4) does not depend on θ whenever the controls are
constant. Consequently, the θ dynamics has no actual de-
pendence on θ (i.e., the equations governing the objects
orientation take the form θ̇ = C(·), where the function
C(·) is independent of θ). Additionally, this implies that
the system equations are invariant with respect to initial
condition in θ. Thus, object motion in the θ direction is
not asymptotically stable. (This is actually true of any
static field ψ for the same reason. Hence, no open loop
programmable force field can stabilize the orientation un-
der the assumptions of the PDM.)
To see that the system is stabilizable, assume that the
governing equations are determined at time t almost al-
ways by two constraints at the actuator i with coordinates
(xi, yi) and input ui, and one constraint at the actuator j
with coordinates (xj , yj) and input uj . Moreover assume
that µS < µR, thereby ensuring a “rolling” constraint is
satisfied rather than a “side-slipping” constraint. Choose
a Lyapunov function whose vanishing point is the desired
equilibrium: V (x, y, θ) = 1

2‖q‖
2 = 1

2 (x2 + y2 + θ2). In
every region that is not a boundary between models, one
can solve the equation

V̇ =
∂V

∂q
q̇ = −k‖q‖2 (15)

for ui and uj . We do so by plugging q̇ = [ẋ, ẏ, θ̇]T from
Eq. (11) into Eq. (15) and solving for ui and uj . Then

ui =
unum

i

uden
i

(16)

where

unum
i = uj (θ − y xi + x yi)+

k
(
θ2 + x2 + y2

)
(s(θj) (xi − xj) + c(θj) (−yi + yj))

and

uden
i = s(θj) (x c(θi) (xi − xj) + s(θi) (θ − y xj + x yi))

+ c(θj) (y s(θi) (−yi + yj) + c(θi) (θ − y xi + x yj))

where uj can be chosen arbitrarily in the expression for
unum

i . Therefore, every model in the multiple model sys-
tem satisfies the equality in Eq. (15), thus meeting the cri-
terion of Corollary III.2. Therefore, because each model
is individually exponentially stable, the origin is exponen-
tially stable for the multiple model system as well. More-
over, the bounding exponent is just the minimum of the
individualmodels. Note that we never mentioned the con-
dition µS < µR. This is because the condition is implicit
in the equations of motion from Eq. (11) which allow us
to solve for ui in Eq. (16).
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This is a stronger result than the one previously pre-
sented by the authors in [25] in that it no longer has any
weakly stabilizable modes (modes where only a subset
of the trajectories are stabilized), as is validated in the
experimental results in Section VIII. Something to note
about this result is that the stabilizing control switches
discretely as the contact state switches. This means that
the control system must know the current contact state. In
our current approach we estimate the contact state using
the underlying physics (and corresponding assumptions
about uniformity of friction and normal forces). However,
outside of a carefully built system such assumptions may
not be valid, implying the need for online contact state
estimation. Fortunately, supervisory control provides a
natural framework for both the estimation and control of
such a problem. See [2], [17] for an overview of super-
visory control and [21] for the application of supervisory
control to this problem. We should also comment that
the µS < µR assumption only has an obvious physical
interpretation for wheel-like contacts, and that the case
µS > µR may be stabilizable, but not in as straight for-
ward a fashion.

Remark III.1. The model (11) has the following charac-
teristic. Theorem III.3 implies it is always possible to sta-
bilize the object’s center to the desired equilibrium point
(which is assumed here to be the origin) while also sta-
bilizing its orientation. However, it is not necessarily al-
ways possible to stabilize the object to points within an
arbitrarily small neighborhood of the origin. This will
depend on the specific configuration of the actuators. In
the next section we will present an example where it
is only possible to stabilize to points on the manifolds
x = ±y. However, these limitations are acceptable, as
we seek to stabilize the object to the origin. Moreover,
when using the array to transport the object over large
distances, these stabilizable manifolds would form a con-
nected graph G ⊂ 2 . It is unclear if a change in geom-
etry (such as a non-uniform contact distribution) would
allow one to stabilize to more points in a neighborhood of
the origin.

IV. AN EXAMPLE OF NONSMOOTH FEEDBACK
ALGORITHMS FOR LOCAL STABILIZATION AT THE

ORIGIN
The last section showed that when contact mechanics
are taken into account, the PFF method cannot stabilize
the orientation of a body that is guided by an array with
a finite number of frictional contacts. However, Theo-
rem III.3 showed that such systems are stabilizable, and
hinted at a general Lyapunov approach for designing sta-
bilizing controllers. This section shows, for the specific
array geometry of Fig. 3, how to apply the nonsmooth
feedback found in the proof of Theorem III.3 to the sta-
bilization of an object. Experimental validation of this

algorithm can be found in Section VIII. While this al-
gorithm is specific to this array geometry, the basic ap-
proach can be similarly applied to many other situations.
The approach is based on designing control laws for each
model in the governing multiple model system. Then, a
supervisory controller switches between control law de-
pending upon the current system state. The control laws
and switching scheme are chosen to guarantee stability
by using the methods described in Sections III and VI.
This methodology allows the control design to be rela-
tively simple, even for complex systems.

2
π

4
π

4
3π

2
3π 4

7π
4
5π

I

IIIII

IV

V

VI VII

VIII

π 0

Fig. 3. Geometric description of nonsmooth feedback algorithm

The geometry of our problem is shown in Fig. 3. This
system typifies a portion of a distributed manipulator sys-
tem near a desired equilibrium point that is located at
the origin. There are four wheel actuators, located at
(±1,±1), driving a planar object. In this section, we
consider the underactuated case where the tangents to the
wheel rims all point toward the origin, and their orienta-
tions are fixed (Section V considers a different approach
that is made possible in the case of full actuation).
Let the control inputs be denoted by u1, . . . , u4. An
analysis of this system using the PDM method shows that
the plane in the vicinity of the equilibrium can be divided
into 16 distinct regions. In the eight open regions, labeled
I − VIII, one unique contact state holds. The other 8
boundary regions, labeled 0 − 2π in increments of π

4 de-
note the boundaries between different contact states. In
our modeling scheme, the dynamics are multi-valued on
these boundaries. In each one of the regions I − VIII
a control law is calculated from the Lyapunov function
k(x2 + y2 + θ2) by solving V̇ = −V for ui, where k is
a constant to be chosen3. The eight control laws for each
quadrant can be found in Table I, and are labeled by their

3The value of k will influence the rate of convergence to the origin
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their region of applicability. Note that for regions I-VIII,
u3 = u1 and u4 = u2.
In previous work ([23], [26]) additional control laws
were designed and deployed on the region boundaries.
However, the constructive nature of the proof of Theo-
rem III.3 makes this additional control laws unnecessary.
Abstractly, we must know the location of the switching
boundaries between the various regions to apply these
methods. For situations where the object’s mass distribu-
tion is well characterized, and the coefficients of friction
reasonably well known, this is a reasonable assumption.
However, when knowledge of such parameters is uncer-
tain, the boundary geometries can then become uncertain,
and the control law performance may degrade. Although
we do not present it here, a related approach which uses
scale independent hysteresis switching (based on work by
[2], [17]) solves this problem [21].

RegionControl Law Not Slipping

I u1
−u4 (θ+x−y)+k (θ2+x2+y2)

x+y

u2 kθ
1S 1R 4R

II u1
u2 (θ+x−y)+k (θ2+x2+y2)

x+y

u2 −kθ
1S 1R 2R

III
u1 kθ

u2
u1 (θ+x+y)−k (θ2+x2+y2)

x−y

1R 2R 2S

IV
u1 −kθ

u2 −u3 (θ+x+y)+k (θ2+x2+y2)
x−y

2R 2S 3R

V u1
u2 (θ−x+y)−k (θ2+x2+y2)

x+y

u2 kθ
2R 3R 3S

VI u1 −u4 (θ−x+y)+k (θ2+x2+y2)
x+y

u2 −kθ
3R 3S 4R

VII
u1 kθ

u2
u3 (−θ+x+y)+k (θ2+x2+y2)

x−y

3R 4R 4S

VIII
u1 −kθ

u2
u1 (θ−x−y)+k (θ2+x2+y2)

x−y

4R 4S 1R

TABLE I
LIST OF REGIONS, CONTROL LAWS, AND ACTIVE CONSTRAINTS.
THE REGIONS ARE DENOTED AS I-VIII AS IN FIG. 3. THE WHEELS
ARE LABELED ACCORDING TO THEIR QUADRANT (I.E., WHEEL 1 IS
IN QUADRANT 1,). ACTIVE (I.E., NONSLIPPING) CONSTRAINTS IN
THE ROLLING DIRECTION ARE LABELED WITH R, WHILE ACTIVE
CONSTRAINTS IN THE SIDEWAYS DIRECTIONS ARE LABELED WITH

S (I.E., 1R INDICATED THAT WHEEL 1 DOES NOT SLIP IN ITS ROLL
DIRECTION. ).

Table I shows the control law for each octant as well
as indicating which wheels are predicted to be slipping.

In each case, the closest wheel to the center of mass must
satisfy both the rolling and sideways slip constraint, and
the second closest wheel must satisfy either the rolling or
the slip constraint. In the case that µR > µS , this will
always be the rolling constraint. Hence in region I the
satisfied constraints are wheel 1 not slipping in either di-
rection (1R 1S) and wheel 4 not slipping in the rolling
direction (4R). These three constraints then uniquely de-
termine the kinematic equations of motion.

V. SMOOTH FEEDBACK FOR FULLY ACTUATED
SYSTEMS

This section describes a stabilizing smooth feedback
controller for the special case of fully actuated distributed
manipulators. Note that this method provides global sta-
bility and exponential convergence to the desired equilib-
rium. Fig. 4, depicts an array of actuators (this models

A 11 A 21 A 31

A 22A 12

A 13 A 23 A 33

WA 13
g

WBg
W

B

Fig. 4. Rigid body velocities

exactly a nine actuator experiment presented in Section
VIII). LetW denote a fixed reference frame, letB denote
a frame rigidly attached to the moving object, and let Aij

denote an “actuator frame” whose origin is fixed at the
point of contact (xi, yj) between the actuator and the ob-
ject. The framesAij have a fixed orientation with respect
toW . Let the rigid body transformation fromW to B be
denoted by gWB and the rigid body transformation from
W to Aij be denoted by gWAij . Recall from Eq. (3) that
the gab are defined by

gab =



 R(θ)
[

xab

yab

]

0 1





whereR(θ) ∈ SO(2) describes the relative orientation of
frame b with respect to frame a, and xab and yab are the
translations going from frame a to frame b. The relative
velocity Vbody = (ẋbody, ẏbody, θ̇body) of a point above
actuator Aij on the body is:

AdgW Aij
q̇ (17)
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where in SE(2) the Adjoint operator Adg is defined by

Adg =



 R(θ)
(

yab

−xab

)

0 1



 .

We adopt the following control Lyapunov approach to
the control design. Suppose we are given a Lyapunov
function on SE(2), denoted by V (·), and define target
dynamics of the form:

q̇ = −∂V (q)
∂q

. (18)

In the idealized situation where the contacts exactly track
their commands, this system is trivially exponentially sta-
ble (we analyze the robustness of this approach below to
disturbances and inaccuracies in the contact control). The
velocity q̇ is mapped to the actuators in order to obtain a
feedback law.
For concreteness, we choose the Lyapunov function:

V (x, y, θ) = k1x2+k2y2+k3θ2 for ki > 0.4 Transform-
ing the velocity into the actuator frame yields AdgW Aij

·
(−∂V (q)

∂q ). If the frames at the actuators are parallel to the
world frame, then substituting in for ∂V (q)

∂q yields that the
actuator velocities at the contact should be




k3yi(θ − θd) − k1(x − xd)
−k3xi(θ − θd) − k2(y − yd)

−k3θ





where xd, yd, θd are the desired values and x, y, θ are the
state feedback values. Assuming as we did previously that
the ith actuator is a wheel of radiusR with input 1

Rui, we
can transform these contact velocities into desired wheel
velocities and wheel orientations for this particular exam-
ple by simply calculating the magnitude and direction of
the contact velocity for each actuator:

θij = tan−1

(
−k3xi(θ − θd) − k2(y − yd)
k3yi(θ − θd) − k1(x − xd)

)
(19)

vij =

√
(−k3xi(θ − θd) − k2(y − yd))2

+(k3yi(θ − θd) − k1(x − xd))2

(20)
where θij is the orientation of the (i, j) actuator and vij is
the wheel velocity of that actuator. So, given all the actu-
ator locations, one computes Eqs. (19) and (20) for each
actuator, and the feedback law is complete. Note that this
algorithm scales nicely with the number of actuators, and
hence it would be suitable for implementation on real de-
vices such as MEMS arrays. However, the full actuation
requirement may not be reasonable on the MEMS scale.

4The constants ki set the rate of convergence to the desired equilib-
rium.

Naively, the system controlled by this feedback law
will be stable because of Eq. (18) and the idealization that
the actuators follow the desired velocities. However, in
practice there will be small perturbations to the actuator
orientations and velocities due to disturbances and mod-
eling errors. These small errors can cause unpredictable
switching between the contact states. We would like to
ensure that the scheme remains stable and robust when
these errors are taken into account.
Now we consider the robustness of this feedback law
with respect to the multiple model system that arises when
the actuators are not all perfectly aligned with the desired
motion. This captures the possibility that the actuators do
not exactly follow their commanded motion. In this case,
some contact slip will occur. Let the controls obtained
above be termed the desired reference controls uk

d, and let
the actually realized controls be denoted by uk. The dif-
ference between the behavior of the idealized system and
the actual system is governed by the following theorem.

Theorem V.1. There exists a δ > 0 and T > 0 such that
if |uk(t) − uk

d(t)| < δ ∀ k and ∀t > T , the solutions
to the MMDA system given by the PDM are exponentially
stable using the controls from Equations (19) and (20).

Proof: First, we know that for the choice of controls uk
d

we have

V̇ =
∂V

∂q
q̇ < 0.

Let B(q̇, ε) ⊂ TqQ denote a ball of radius ε centered at q̇.
Therefore, for an q̇ε ∈ B(q̇, ε),

V̇ =
∂V

∂q
q̇ε < 0 ∀ q̇ε ∈ B(q̇, ε).

(This is a simple consequence of the continuity of the ex-
pression V̇ along a continuous path between q̇ and any
other element of TqQ.)
A sufficient condition for stability of a multiple model
system is that all of the individual models not only be in-
dividually stable, but additionally all the models have a
commonly valid Lyapunov function (see [26]). We will
use this fact to show that for sufficiently small δ all the
multiple models will be inB(q̇, ε), thereby ensuring over-
all stability of the nonsmooth system.
For a given set of inputs uk there is a corresponding
set of kinematic constraints ωi(q). Moreover, the PDM
implies that the subset of these constraints that satisfy
ωi(q)q̇ = 0 will define the governing equations. When
uk = uk

d, we get precisely the desired dynamics. Because
these kinematic constraints ωi(q) depend continuously on
the inputs, for any choice of ε′ limiting howmuch we will
allow the ωi(q) to vary (and hence how much q̇ can vary),
we can always choose a δ such that |uk(t) − uk

d(t)| < δ
accordingly. Therefore, we can always choose δ small
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enough such that q̇ ∈ B(q̇d, ε). This completes the proof.

This theorem implies that even if the actuators start out
in a kinematically incompatible state, as long as they con-
verge to within some δ of the desired actuator state, the
system will keep its stability properties. Feedback con-
trol of the drivingmechanism states can easily accomplish
this requirement. We should also note that this can easily
be extended to exponential stability in a similar fashion.
Experimental results in Section VIII illustrate that this
method works well. However, in the case where one does
not have full actuation, one must ask if this control law
has any analogs. In general the answer is no–there are
generally no smooth control laws for systems that are not
fully actuated. Hence, the nonsmooth control laws from
Section IV are potentially the only way to stabilize dis-
tributed systems of the type described here.

VI. A GLOBALLY STABLE FEEDBACK ALGORITHM
The last section presented an algorithm for the spe-
cialized case of full actuation that fortuitously had the
property of global stability. This section blends the PFF
method [31], [8] with the local feedback law of Section
IV to create a globally stable feedback algorithm that will
work for underactuated systems. In this approach, a pro-
grammable force field is used to govern the gross motions
of the object far away from the equilibrium point, and a
local stabilizing feedback law from Section IV is used in
the vicinity of the equilibrium configuration. The intu-
ition behind this result is that even though the PFF is un-
stable in orientation, in order to move a package from one
point a in the plane to an equilibrium point b, the package
can be allowed to spin freely along its path to b, and one
can wait to control the package’s orientation after it has
come sufficiently close to b. Consider Fig. 5. If a is in the
upper right-hand corner, then Theorem III.3 implies that
an object starting at a will eventually arrive in the feed-
back regionM (in the middle of Fig. 5) under the pro-
grammable force field method— since translational mo-
tions (but not rotational motions) are stable even when
discrete frictional contacts are taken into account. From a
practical point of view this means that as long as one has
no performance goals for the orientation θ outside ofM,
one does not need feedback outside ofM. Since sensing
and feedback is often expensive to implement, this ap-
proach efficiently uses sensing and feedback where it is
most effective.

A. A LaSalle Result
To prove stability of the combined control system while
taking into account the multiple model aspect of the gov-
erning equations, an extension of Lasalle’s theorem is re-
quired. The basic difference between the classical version

b

a

Feedback
Region

Programmable Vector Field

M

Fig. 5. A LASALLE invariance theorem

of the LaSalle invariance theorem and the one found here
is that here we must consider systems governed by differ-
ential inclusions. In such systems, the idea of a “flow”
does not include uniqueness. That is, rather than having
a result for the unique flow φ(t), it must be valid for any
flow φ(t), satisfying φ̇ ∈ F (t, x), which is in general a
set of possible trajectories.

Theorem VI.1. LetM be the “feedback region,” a com-
pact simply connected subset of 2 . Let V (x) be a
Lyapunov function on M and let F (x, t) be a convex
set-valued map. Let φt(x0) denote a flow that satisfies
ẋ ∈ F (x, t), starting from x0. LetM be a positively in-
variant compact set under all flows φt(p) satisfying the
differential inclusion ẋ ∈ F (x, t) (M is positively invari-
ant if V̇ ∗(x) ≤ 0 for all x ∈ M, where V̇ ∗ is defined in
Eq. (14)). Let

E = {x ∈ M | 0 ∈ V̇ (x)}
N = {

⋃
φ(t, x0) | x0 ∈ E and φ(t) ∈ E ∀t > 0}

Then, for all x ∈ M, φ(t, x) → N as t → ∞.

That is, E is the set on which the time derivative of the
Lyapunov function is zero, and N is the union of all tra-
jectories that start in E and remain in E for all t > 0.

Proof. This proof is roughly patterned on the proof of
LaSalle’s Invariance Theorem found in [33]. First recall
that an ω-limit point of a differential inclusion (or differ-
ential equation) and a point p ∈ n is defined as a point
q ∈ n where for all solutions φt(p) to the differential
inclusion ẋ ∈ F (x, t) ∃ t1, . . . , ti with i ↑ ∞ such that
φ(ti) → q as i ↑ ∞. The ω-limit set is the collection of
such points, and is denoted ω(p). Note that this definition
does not in any sense require solutions to be unique.
It must be shown that V̇ = 0 on ω(p) (∀p ∈ M), or
equivalently that V is constant onω(p). Assume q is anω-
limit point of the differential inclusion, then set V (q) =
cq. First we will need the following fact about ω-limit
sets.
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Lemma VI.2. ω(p) is invariant under the flow
of F .

Proof. Let q ∈ ω(p) and qs = φs(q). We
first must consider if the map φs(·) exists for
all s. First, note that sinceM is compact and
F is compact and convex, we have existence of
φs(·) for s ∈ (0,∞) (this is a natural exten-
sion of the classical result for ODEs - see [12,
pages 77-86]). Now we show that it is true for
s ∈ (−∞, 0). Using the fact that the limit of any
uniformly convergent sequence of solutions to
a compact, convex differential inclusion is also
a solution (see Lemma 1 in [12, page 76]), we
can choose a sequence {ti} with ti → ∞ as
i ↑ ∞ such that φti(p) → q as i ↑ ∞ (this is
by definition of ω(p)). Then using the fact that
φs(φti) = φs+ti(almost everywhere) as one
takes the limit i ↑ ∞, we get that φs(q) exists
for s ∈ (−∞, 0). Again, note that this argument
does not require solutions to be unique, and that
in general φs will be multivalued.
Given the existence of the map φs(·) for all s,
we can choose a sequence t1, . . . , ti with i ↑ ∞
such that φti → q as t → ∞. Then the map
φti+s(p) = φs(φti(p)) converges to qs as i ↑
∞. This implies that qs ∈ ω(p) and ω(p) is
therefore invariant.

Lemma VI.2 implies that cq = inf{V (φt(x))|t ≥ 0} be-
cause V̇ ∗ ≤ 0 everywhere inM. Thus, V (φt(q)) = cq

(because q ∈ ω(p)), so 0 ∈ V̇ ∗ on ω(p). Therefore
ω(p) ⊂ E. Again, because of the above fact that ω(p)
is invariant, ω(p) ⊂ N , where N is the union of trajecto-
ries that start and remain in E. This leads us to the fact
that φt(x) → N as t → ∞, the desired result.

To apply these results to distributed manipulation, one
must only show that a distributed manipulator will satisfy
the requirements and assumptions of Theorem VI.1. This
will lead to the following Corollary of TheoremVI.1. As-
sume the distributed manipulation system can be repre-
sented by an array of actuators aij whose contacts are
located at coordinates (xi, yj). Further assume that the
PDM model solution depends only on the center of mass
(equivalently, that the coefficient of friction is uniform).
For us,M will be the feedback region of the distributed
manipulator, that is, the area in which one has some sort
of state feedback available.

Corollary VI.3. Given a discrete planar array geometry,
an elliptic vector velocity field Ψ(x, y) : 2 → 4 out-
side ofM = Bε×S1 for some ε > 0, and a locally stabi-
lizing feedback law (such as the one in Theorem III.3) the
solution to the governing equations given by the PDM is
globally stable.

Proof. Assume that the desired equilibrium point is al-
ways inM. This implies that sinceM ⊂ SE(2), then
M = Bε × S1 where Bε is the ε-ball in 2 , and M
is therefore compact. Therefore the first part of Theo-
rem VI.1 is supplied. It is reasonably straightforward to
show thatM is positively invariant using an elliptic vec-
tor field. Moreover, for a choice of V = ‖q‖2, E consists
solely of the origin. This implies that the origin is stable.
In fact, asymptotically stable, becauseM is reached in fi-
nite time, and once insideM the origin is asymptotically
stable by Theorem III.3.

The following corollary indicates that the induced in-
stability of the programmable force field approach can be
correctedwith a local feedback law, and that moreover the
performance can be made exponential.

Corollary VI.4. Given a discrete planar array geometry,
an elliptic vector velocity field Ψ(x, y) : 2 → 4 out-
side ofM = Bε × S1 for some ε > 0, and an exponen-
tially stable local control law, then the resulting system
(11) is exponentially stabilizable.

Proof. First, note that Theorem III.3 already showed lo-
cal exponential stability. It will be shown that exponential
stability can be maintained outside ofM. Corollary III.3
shows that the origin is globally stable. All we need to
show is that there is an exponential k3‖q‖e−st which pro-
vides an upper bound on V̇ ∗. From Section III-B we
know that outsideM the x and y coordinates can be ex-
ponentially stabilized, but the θ coordinate is only neu-
trally stable. Therefore, the maximum value of ‖x, y, θ‖
is d(∂M, 0) + π2, where d(·, 0) is the maximum dis-
tance from the origin to the boundary of a set. Setting
k3 = d(∂M, 0) + π2 it is clear that outside ofM the
solutions converge exponentially toM, and insideM we
have already shown that the origin is exponentially stable.
Therefore the origin is globally exponentially stable.

VII. AN EXPERIMENTAL DISTRIBUTED
MANIPULATION SYSTEM

In order to test our algorithms, as well as those of other
researchers, we developed a modular experimental dis-
tributed manipulator test-bed. For more details, see [21].
A schematic of the system architecture and a photograph
of the system can be seen in Fig. 6. This system has some
similarities to other experimental devices (notably [20],
[19]). However, it incorporates visual feedback and is
more highly articulated by virtue of being able to exert
forces in arbitrary directions in the plane even with con-
tact dynamics. Without considering contact dynamics (by
using low friction interfaces) this experiment and the ex-
periment in [20], [19]) have nearly identical effects. Our
modular design is based on a cell concept. Each cell con-
tains two actuators. One actuator drives a wheel that con-
tacts the moving object, while the other actuator orients
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the wheel axis, (see Fig. 7). Note that the orienting axis
of each cell can be fixed so that our system can simulate
underactuated systems. The driving wheel has a four-inch
radius, and is made of soft foam rubber to accentuate the
friction reaction force. These wheels satisfy the preferred
friction distribution rule described in Section II.

Fig. 6. The FADM System. Left: schematic of system architecture.
Right: photograph of the system.

These cells can be easily repositioned into different
configurations in the supporting modular table structure
so as to simulate different types of systems. As seen
in Fig. 6, the Fully Actuated Distributed Manipulation
(FADM) system is deployed with a total of nine cells.
More cells can be added as needed.
Both actuators of each cell consist of Pittman brushless
12V motors, which are connected to JR-Kerr Pic-Servo-
3PH motor controller boards. All 18 motor boards are
connected through a daisy chain configuration to a cen-
tral computer through one of its serial ports. The position
of the manipulated object is obtained and tracked visu-
ally. A Sony XC-73 monochrome CCD camera with a
Cosmicar C60607 6 mm lens is used for the vision sys-
tem. Images are captured by an Imagenation PXC-200
framegrabber card. For visual position acquisition and
tracking, a right triangle is affixed to the moving object.

Fig. 7. Photograph of cell. The actuated motions are marked in blue.

Feature tracking software (written in C) developed at Cal-
tech’s Computational Vision Laboratory (see [14]) is used
to find and track this triangle. Because of the communi-
cation delays required to send control signals to all mo-
tor controller boards in the daisy chain system, at present
only six to seven iterations of the feedback algorithm can
be realized per second.

VIII. EXPERIMENTAL RESULTS
Here we summarize experimental results that illustrate
the theory reviewed in the previous sections. The goal of
each experiment is to stabilize an object from a random
initial condition to the final configuration (xf , yf , θf ) =
(0 m, 0 m, 0 rad). Each experiment implements a differ-
ent algorithm that was reviewed above. For these exper-
iments, the manipulated object is a piece of clear plex-
iglass. The object’s transparency allows us to view the
actuator movements during manipulation while still en-
suring reasonable amounts of friction. To enable visual
localization and tracking, a white piece of paper with a
black triangle is affixed to the object (see the movie snap-
shots in Figs. 9,11,13,15. These snapshots also include
outlines of the “goal” triangle position as well as outlines
of the plexiglass. We should note that these experiments
are just example outcomes, and that after many trials the
only failures we observed were associated with the vision
system losing track of the object. Movies of these exper-
iments can be found in Extensions 1-4. The following
paragraphs summarize each experiment and its result.

A. A Programmable Force Field Experiment
To verify the instability of the PFF method in object
orientation, this experiment uses a 9 cell arrangement
to implement an open loop elliptic vector velocity field
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Fig. 8. Open Loop control

Fig. 9. Open Loop movie snapshots

designed so that the long axis of the plexiglass would
be aligned with the desired orientation. The x, y, and
θ coordinates of the object’s actual trajectory is shown
in Fig. 8. This experiment used an initial state of ap-
proximately (x0, y0, θ0) = (0.25 m,−0.35 m,−1.5 rad),
and the final position was approximately (xf , yf , θf ) =
(0.01m, 0.01m,−1.5 rad). Notice that the moving object
did not come anywhere close to realizing the desired final
orientation, and in fact was little reoriented despite the
fact that we were commanding a reorientation of approx-
imately π

2 radians. Nevertheless, the PFF method came
close to successfully stabilize the x and y translational co-
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Fig. 10. Under-actuated feedback control

ordinates of the object’s location. In order to achieve this
(x, y) stabilization we had most of the wheels slipping at
various times. This causes significant stress on both the
object being manipulated and the actuators themselves.
The methods we present in the previous sections assume
that if the actuators are moving at sufficiently slow veloc-
ities some, but not necessarily all, actuators are always in
contact with the moving body. This requires less energy
for a given motion and moreover induces smaller forces
on the object and actuators. We should also make clear
that this experiment in no way proves that other open loop
methods may not be successful, but is intended for pur-
poses of comparison to the results that follow. See Exten-
sion 1 for a movie of this experiment.

B. Local Nonsmooth Feedback for Underactuated Sys-
tems
This experiment duplicates the geometry of Fig. 3 and
implements the algorithm of Section IV. The goal is to



PREPRINT. MURPHEY AND BURDICK. ACCEPTED FOR PUBLICATION IN THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 15

Fig. 11. Under-actuated movie snapshots

stabilize the supported object to the origin under the strict
underactuated conditions that the wheel orientations are
fixed. The object’s actual trajectory is shown in Fig. 10.
This experiment used an initial state of approximately
(x0, y0, θ0) = (−0.9 m, .1 m, 1.5 rad), and the final posi-
tion was approximately (xf , yf , θf ) = (0.01 m,
0.01 m, 0.05 rad) (the angle cannot currently be resolved
any further at this point because of camera pixelization
error). Notice how smoothly the θ variable is driven to
the desired value of 0. This is somewhat surprising con-
sidering that the θ variable is precisely the unstable mode
in the open loop case (see [23]). Conversely, notice the
gyrations in the x and y coordinates as the object is sta-
bilized. These peculiar features can be understood from
Remark III.1. As the object gets very close to, but is not
precisely situated at the origin of 2 , the system becomes
difficult to control since for this system not all points in
the vicinity of the origin are stabilizable. Consequently,
if the object’s trajectory approaches too closely to the ori-
gin of 2 before the θ value is very near the desired one,
the controls naturally “push” the system away from the
origin of 2 until the orientation is close to the desired
value. Moreover, the Lyapunov function V is decreasing
along the trajectory, indicating that the control laws are
behaving as expected. See Extension 2 for a movie of this
experiment.

C. Smooth Feedback for Full Actuation
This experiment implements the methods of Section
V on a nine cell configuration. Fig. 12 shows the tra-
jectory realized by the object when using this control
law under the assumption of full actuation. This experi-
ment used an initial state of approximately (x0, y0, θ0) =
(0.3 m,−0.4 m, 1.8 rad), and the final position was ap-
proximately (xf , yf , θf ) = (0.01 m, 0.01 m, 0.05 rad).
Notice the smoothness of the trajectory. This experiment
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Fig. 12. Smooth feedback control

Fig. 13. Smooth feedback movie snapshots
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indicates that when a distributed array is fully actuated,
the feedback law in Eq. (20) works extremely well. More
importantly it is computationally very simple, and the
number of computations scales linearly with the number
of actuators. The feedback law has good disturbance re-
jection properties, as can be seen by the fact that the ob-
ject is stabilized despite the fact that the actuator initial
conditions are not compatible with the desired motion,
hence verifying the result in Theorem V.1. Also note that
although the (x, y) trajectory has “overshoot,” the Lya-
punov function V is steadily decreasing. See Extension 3
for a movie of this experiment.

D. The Globally Stabilizing Controller of Section VI
This experiment used nine FADM actuators arranged
in a regular array (see Fig. 15) to implement the algo-
rithm of Section VI. The feedback region consisting of
a 0.25 meter radius circle centered on the goal position.
Outside of this region, object motions are governed by a
programmable force field. Inside of this region, we allow
the wheels to be fully actuated as in Section V and use
a locally stabilizing feedback law that takes advantage of
the fact that all of the wheels can be individually steered.
This leads to exceptional performance inM. This experi-
ment used an initial state of approximately (x0, y0, θ0) =
(−0.3 m, 0.2 m, 2.1 rad), and the final position was ap-
proximately (xf , yf , θf ) = (0.01 m, 0.01 m, 0.05 rad).
See Extension 4 for a movie of this experiment.

IX. SUMMARY
This paper introduced a fundamentally different ap-
proach to the control of distributed manipulation than
that found in [8], [20], [31]. Much prior work in dis-
tributed manipulator control, particularly the use of pro-
grammable force fields, has not paid sufficient attention
to the effects of friction and intermittent contact. We
have shown here these effects lead to nonsmooth dynam-
ical behavior, and are non-negligible. However, we intro-
duced tractable non-smooth analysis and control methods
to capture these effects and control them.
While the control algorithms we presented are nons-
mooth, they are relatively simple, improving the likeli-
hood that these control laws can be scaled up to high num-
bers of actuators. Moreover, they were shown to be ex-
ponentially stable, which provides bounds on the time it
takes an object to reach the goal configuration. In the case
of a fully actuated distributed manipulator, a smooth con-
trol law ensures good performance which is robust with
respect to small errors in actuation. A small disadvan-
tage of these methods is that they require local feedback
near the desired equilibrium. The experimental results
presented here confirm that these modeling and control
methodologies are valid in practice.
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Fig. 14. Combining the programmable force field with local feedback

Fig. 15. Global stabilization movie snapshots
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A next important step will be to implement the theory
demonstrated here on the micro-scale, where friction and
limited actuation are very important factors in control.
We hope that our methods will in the future be adapted
to physical conditions at the MEMS level in cases where
the manipulated object is at the same scale as the MEMS
actuators. Such an adaptation could then be applied to
making micro assembly and other micro tasks more fea-
sible.
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[7] K.F. Böhringer, B. R. Donald, and N. C. MacDonald. Single-
crystal silicon actuator arrays for micro manipulation tasks. In
Proc. IEEE Workshop on Micro Electro Mechanical Systems
(MEMS), San Diego, California, February 1996.
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APPENDIX

The multimedia extensions to this article are at:
http://www.ijrr.org.
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Extension Media Type Description

Extension 1 Video

This is a video of an experimental implementation of an open loop ellip-
tic velocity field. Recall that the object being manipulated is a clear piece
of plexiglass with a white and black piece of paper on top for feedback.
As predicted, the x and y coordinates are successfully stabilized and the
θ dynamics are not stabilized.

Extension 2 Video
This is a video of an experimental implementation of the under-actuated
system. Notice that despite the under-actuation, the plexiglass is stabi-
lized to the origin at the desired orientation.

Extension 3 Video

This is a video of an experimental implementation of the fully actuated
system. Here the advantage of full actuation is clear. The trajectory to
the desired equilibrium is quite smooth and the wheels are all coordinated
without any slipping.

Extension 4 Video

This is a video of an experimental implementation of the globally stabi-
lizing controller that combines the open loop techniques with the closed
loop techniques. Outside of the circle shown in the video, the system
is running open loop. However, as soon as the center of mass of the
plexiglass enters the circle, the closed loop control is turned on and the
plexiglass is stabilized to the origin at the correct orientation using the
full actuation control laws.


