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Abstract—Current approaches to distributed control involv-
ing many robots generally restrict interactions to pairs of robots
within a threshold distance. While this allows for provable
stability, there are performance costs associated with the lack
of long-distance information. We introduce the acute angle
switching algorithm, which allows a small number of long-range
interactions in addition to interactions with nearby neighbors.
We show that the acute angle switching algorithm provides
an improvement in performance while retaining the quality of
provable stability.

I. INTRODUCTION
With recent advances in integration and wireless com-

munication, there has been increasing interest in the con-
trol problem associated with large numbers of cooperating
robots. We are particularly interested in the problem of fully
distributed control (commonly referred to as swarming), in
which useful formations are created without any centralized
coordination. Limitations on communication bandwidth and
range make effective swarming algorithms necessary when
the number of robots is large.
Many robotic swarming algorithms are modeled after

phenomena observed in nature, such as the flocking behavior
of birds or the schooling behavior of fish. Others are based
on simulated physical systems. Common to these approaches
are simple local control laws implemented on each robot,
and designed in such a way that desirable global behaviors
emerge. The control laws are typically based on interactions
between a given robot, the environment, and any nearby
robots that are within a threshold distance.
One key drawback of this approach is that disconnected

clusters of robots may never coalesce into a single formation.
Disconnected clusters may form as a result of the initial
deployment configuration, localized disturbances in the envi-
ronment, or temporary communication failure, for example.
Our work extends the nearby-neighbors approach so that

robots interact with selected neighboring robots at larger
distances when possible, in addition to interacting with
neighbors within a threshold distance. We have developed
a nearest neighbor dynamics model paired with an acute
angle switching algorithm that uses a small amount of global
information to guarantee a planar and connected adjacency
graph at all points in time. This allows robots to be deployed
in an arbitrary starting configuration and still reach a single
connected formation if their sensing is not limited.
We show that the underlying system is stable in terms of

velocity; that is, all of the robots are guaranteed to come

to rest. Further, we show that the addition of long-range
interactions based on the acute angle switching algorithm
do not destabilize the system. Thus, in environments where
some long-range interactions are possible, we may attain
both provable connectivity between all robots and provable
stability of the entire system.

II. RELATED WORK

There is a significant body of previous work dealing with
coordination of small teams of robots, e.g.[1], [2], [3], [4],
[5], [6]. More recently, there has been research into behavior-
based and virtual-physics based control of large teams of
robots[7], [8], [9], [10], [11], [12]. The work most closely
related to our own is summarized below.

A. Behavior-based Control

Fully distributed control based upon simple local behaviors
has been used in several contexts. Much of this research
is based on the intuition gained from observing behaviors
such as flocking in animals. In flocking situations, animals
seem to draw most of their behavioral cues from the nearby
flockmates. Using this observation as a basis, Brooks[7] has
investigated behavior-based control extensively; Werger[8]
later described the design principles of such systems. Balch
and Hybinette[13] suggested the use of “attachment sites”
that mimic the geometry of crystals; this is used to cre-
ate formations with large numbers of robots. A variety of
projects have made use of “swarm robotics,” e.g., [14] and
[15], to carry out simple tasks such as light tracking. Gage[9]
investigated the use of robot swarms to provide blanket,
barrier, or sweep coverage of an area. Several researches
have used models based on the interactions of ants within
a colony[16], [15], [17]. These approaches generally seek
to define simple local behaviors that lead to large-scale
properties that are beneficial in a particular application.
Our work seeks to extend the intuition behind behavior-

based control to include small amounts of non-local infor-
mation. We hypothesize that while animals in a flock mostly
follow their local neighbors, they may also make use of
some larger-scale observations, especially when there are few
neighbors in the immediate vicinity. This inspires us to use a
switching function that occasionally allows interaction over
longer distances.



B. Virtual Physics
Distributed control based on virtual physics (also called

“artificial physics” or “physicomimetics”) has also been
investigated, although not in the manner described here.
Howard, Mataric and Sukhatme[10] model robots as like
electric charges in order to cause uniform deployment into an
unknown enclosed area. Spears and Gordon[11], [12], [18]
use a more sophisticated model analogous to the gravita-
tional force, but make the force repulsive at close range.
Both of these models use switching functions based on a
threshold distance. McLurkin[19] used a partially-connected
interaction graph with a physics model similar to that of
compressed springs to produce uniform deployment within
a limited indoor environment. These works provide useful
heuristic algorithms, but unlike our work, they do not attempt
to show any provable properties of the resulting formations.

C. Switched Systems
Jadbabaie and colleagues used algebraic graph theory to

show stability for switched networks using nearby-neighbor
rules[20], [21], [22]. Hespanha and Morse used dwell-time
analysis to show stability in linear systems with arbitrary
switching that is slow on the average[23], [24], [25]. Bullo
and colleagues showed stability in a switched system using
Voronoi neighbors[26]. These results all differ from our work
in that we use a switching function that is designed first to
create specific geometric properties.

III. CONTROL ALGORITHM
Our algorithm is based on virtual springs created between

specific pairs of robots. As with real springs, each virtual
spring in the mesh has a natural length and a spring constant.
For a given set of springs, the control law for each robot

is
ẍ = u (1)

u =
[

∑

i∈S

ks(li − l0)v̂i

]

− kdẋ (2)

where x represents the Cartesian coordinates describing the
robot’s position, ẍ is the robot’s acceleration, ẋ is the robot’s
velocity, S is the set of springs connected to this robot, li is
the length of the i’th spring, and v̂i is the unit vector from
this robot to the robot on the other end of the i’th spring.
Control constants are the natural spring length (l0), the spring
stiffness (ks), and the damping coefficient (kd).

IV. NETWORK TOPOLOGY SWITCHING
Deciding which adjacent robots with which to form

springs is a nontrivial problem. After investigating many
options[27], we have developed a new algorithm that is
based upon an acute-angle test, described in more detail in
[27] and [28]. This algorithm retains the connections typical
to a nearby-neighbors approach, but adds additional long-
range connections in order to maintain connectivity among
all robots.
Consider a graph in which the vertices represent robots and

the edges represent virtual spring connections. Each vertex

has a location equivalent to the estimated location of the
robot it represents. Under the Acute-Angle Test algorithm,
there is an edge between vertices A and B if and only if
for all other vertices C, the interior angle " ACB is acute1.
This creates a mesh of acute triangles. The acute-angle test is
equivalent to a test for the presence of any vertex C inside the
circle with diameter AB, which is more efficient to compute.
Figure 1 shows two examples of the acute-angle test.

In Figure 1(a), an edge exists between A and B, since
all interior angles " ACB are acute. In Figure 1(b), the
edge does not exist because the acute-angle test fails with
robot C4. The circle with diameter AB is also shown; it is
equivalent to say that the edge does not exist because C4 is
inside the circle.
The acute angle test is symmetric, so it does not require

communication between the robots. It results in a planar
and connected graph, regardless of the initial distribution of
robots. Formal proofs of these properties are given in a com-
panion paper[31]. This provable connectivity is a significant
advantage over the standard threshold distance algorithm,
since it prevents the formation of separated clusters of robots.
The acute angle algorithm is also parameter–free (that is,
there is no threshold value that needs to be determined),
does not require a global reference frame, and does not put
any constraints on the global shape of the mesh.

V. STABILITY
A. Static Stability
Any spring mesh with fixed topology and kd > 0 will

eventually converge to a stationary state, where all robots
have velocity approaching zero. Intuitively, this is because
the dynamics of a virtual spring are analogous to those of a
real spring, in which energy is conserved. Since we ensure
kd > 0, there is always a damping effect acting against
the motion of each robot. This forces a reduction in kinetic
energy. Kinetic energy may be gained by converting potential
energy stored in springs, but since springs are dissipative, the
total energy (potential + kinetic) in the mesh cannot increase.
Since the existence of kinetic energy results in a decrease in
total energy, and this energy cannot be replenished, kinetic
energy must eventually approach zero.
Formally, for n robots in a spring mesh, define X as the

vector of Cartesian positions of the robots. Define the n x n
spring matrix as S such that S(i, j) = 1 iff a spring exists
between robots i and j and S(i, j) = 0 otherwise. Define
the n x n displacement matrix D such that:

D(i, j) = (dist(i, j) − l0)
2 (3)

where dist(i, j) is the distance between robots i and j. D
represents the displacement from natural length of every
spring that may exist, and is time-dependent.
Lemma 5.1: In a spring mesh with fixed topology and

kd > 0, all robots eventually reach zero velocity.
Proof: Our proof will take advantage of Barbalat’s

lemma, which states that if f(t) is finite and if ḟ(t) is
1This test is equivalent to that used to generate a Gabriel graph[29], [30].



(a) Satisfied acute-angle test (b) Unsatisfied acute-angle test

Fig. 1. Illustration of acute-angle test

uniformly continuous (or equivalently, f̈(t) is finite), then
ḟ(t) approaches zero as t approaches infinity. We will apply
Barbalat’s lemma to an energy function V, thereby showing
that V̇ goes to zero, which together with our definition will
imply that all robots reach zero velocity.
Consider the following energy function:

V = 1nT 1

2
ks(S. ∗ D)1n +

1

2
(ẊT Ẋ) (4)

where ks > 0 is the spring stiffness, .∗ represents an element-
by-element multiply and 1n is the vector of n ones.
AsD and S are positive-definite and ks > 0,V is positive-

definite.
While we omit the derivation (which is nontrivial but fairly

straightforward) for brevity, we claim that the derivative of
the energy function is the following:

V̇ = −kd(ẊT Ẋ) (5)
which is obtained by differentiating V and using Equation
1 to substitute for Ẍ . As intended by our choice of control
laws, all of the spring potential terms cancel out and leave
only the damping terms.
Differentiating V̇, we see:

V̈ = −2kd(ẊT Ẍ) (6)
We defined Ẍ in Equation 1, and it is clearly finite as long
as the distances between the robots are finite. We also know
that Ẋ is finite, because it is a term of V (V contains only
positive terms and is bounded above by its initial condition,
as its derivative is negative semi-definite). Thus, all terms in
V̈ are finite.
Since V is lower bounded by zero, V̇ is negative semi-

definite, and V̈ is finite (equivalently, V̇ is unifromly contin-
uous), Barbalat’s lemma states that V̇ → 0 as t → ∞. This
can only occur when all terms in Ẋ are zero, so all robots
eventually reach zero velocity.

Notice that while V̇ must approach zero, V may not. It
is possible for some potential energy to exist even in a fixed
spring mesh in its stationary state. In the general case, it
is of course possible to add energy by changing the mesh
topology.
Also note that the state with zero potential energy does not

necessarily exist in a given environment. This is most easily
seen in the case where many robots are placed in a small
room (perhaps smaller across than the natural spring length).
In this environment, there is no reachable configuration with
zero potential energy.
These properties imply that in the absence of switching,

all the robots come to rest, but that the exact final formation
is not uniquely determined.

B. Dynamic Stability
In order to show stability in the presence of time-varying

topology (the dynamic case), we modify the switching algo-
rithm in a manner inspired by dwell-time analysis. Hespanha
and Morse[24] proved that if all members of a given class
of linear systems are stable, then arbitrary switching among
those systems results in a stable hybrid system, provided
that the switching rate is “slow-on-the-average”. They further
show how to compute the average time between switches (the
dwell time) that guarantees stability. Essentially, the proof
shows that the rate of decrease of the Lyapunov function
due to the dissipation is greater than the rate of increase of
the Lyapunov function due to switching.
In our approach, instead of computing a limit on the

switching frequency explicitly, we use a notion of a global
“energy reserve” to create the same limiting effect on the
switching rate. We find this approach intuitive and more
straightforward to implement in our distributed system, in
which switching events are detected locally.



Let the global energy reserve E be denoted as E and
define constant ke such that 0 < ke < 1. The quantity E
is defined to be the solution to a differential equation. It
starts with some nonnegative initial value E0 and evolves
according to the following:

∆E

∆t
= kekd((

∆X

∆t
)T (∆X

∆t
)) (7)

−1nT 1

2
ks(∆S. ∗ Dt)1n (8)

where the .∗ operator indicates an element-by-element mul-
tiply and 1n indicates the column vector of n ones. Note
that S is no longer constant; it changes whenever there is a
change in topology.
The first term in the above equation is positive-definite

as before. The second term only comes into play when a
topology change occurs (that is, when there is a change in
S), and it is exactly the opposite of the instantaneous change
in V due to the topology change.
To ensure stability in the dynamic case, our algorithm must

forbid topology changes in any case where the result would
cause Et < 0. This is easy to enforce, since the effect on E
of forming each spring is precisely defined. This restriction,
combined with the original switching algorithm, defines the
modified acute-angle switching algorithm.

Algorithm 1 u = Update(X, ∆x, E, priorSprings)
1: currentSprings ← AcuteAngleTest(X)
2: deltaE ← Potential(currentSprings - priorSprings, X)
3: if (E - deltaE) < 0 then currentSprings ← priorSprings
4: else E ← E - deltaE
5: u ← ControlLaw(currentSprings, X, ∆x)
6: E ← E + kekd(

∆x

∆t
)T (∆x

∆t
)

7: E ← AvgWithNeighbors(E)
8: priorSprings ← currentSprings

Algorithm 1 shows pseudocode including the modified
switching algorithm. The update function executes once per
time step on each robot. The spring sets indicated only
include springs connected to the robot on which the code is
executing. X represents the vector of positions of all visible
robots, and ∆x represents the executing robot’s change in
position since the last time step.
At each time step, each robot recomputes its spring con-

nections using the acute angle test. The change in potential
caused by the new spring connections is computed, and
that quantity is subtracted from E if it would not bring E
below zero (this implements the second term of Equation 8).
Otherwise, the old set of spring connections are retained. The
control law is then applied to update u, and the first term of
Equation 8 is applied to complete the update of E. Changes
in E are propagated through the mesh through averaging
with neighbors, which is described more below.
Theorem 5.2: In a spring mesh with topology determined
by the modified acute-angle switching algorithm, all robots
eventually reach zero velocity.

Proof: Our proof will invoke Barbalat’s lemma in
the same manner as before, but with a modified potential
function:

V
′ = V + E (9)

Recall that E was defined in such a way that it is non-
decreasing in the absence of switching. Also, our modified
switching algorithm forbids any switch that would cause E
to become negative. This restriction is vital in that it ensures
that V′ never becomes negative.
Converting V̇ to discrete-time form, we have:

∆V

∆t
= −kd(

∆X

∆t
)T (∆X

∆t
)

+1nT 1

2
ks(∆S. ∗ Dt)1n

The first term is derived from Equation 5; the second term
reflects the possible instantaneous change in V due to a
topology change and is derived from Equation 4.
Substituting from previous equations, we have:

∆V′

∆t
=

∆V

∆t
+

∆E

∆t
(10)

∆V′

∆t
=

[

− kd(
∆X

∆t
)T (∆X

∆t
) + 1nT 1

2
ks(∆S. ∗ Dt)1n

]

+
[

kekd(
∆X

∆t
)T (∆X

∆t
) − 1nT 1

2
ks(∆S. ∗ Dt)1n

]

which simplifies to:

∆V′

∆t
= −kd(1 − ke)((

∆X

∆t
)T (

∆X

∆t
)) (11)

It is convenient at this point to convert back to continuous-
time notation:

V̇′ = −kd(1 − ke)(ẊT Ẋ) (12)

Now it is easy to see that, similarly to the static case,

V̈′ = −2kd(1 − ke)(ẊT Ẍ) (13)

where Ẍ is now discontinuous, but is still finite.
Thus, we again have a nonnegative potential function

V′ with V̇′ negative semi-definite and V̈′ finite. Barbalat’s
lemma still applies, implying V̇′ → 0 as t → ∞, so all
velocities must approach zero.

By design, switching does not affect the value of V′

because the changes in V caused by switching are countered
exactly by opposite changes in E. Intuitively, the change in
E at each time step indicates the amount of energy that is
damped out of the system (reduced by the constant factor ke),
minus the energy created or destroyed by spring switching.
By forbidding spring switching when E < 0 and using
0 < ke < 1, we ensure that, on the average, the energy
introduced by switching is less than the energy removed from
the system by damping. This is intuitively similar to the result
obtained through dwell-time analysis.



(a) Initial state (b) Final state

Fig. 2. Cluster deployment scenario: robots deploy from a clustered initial configuration

(a) Initial state (b) Final state

Fig. 3. Distributed deployment scenario: robots deploy from a scattered initial configuration

(a) Initial state (b) Intermediate state (c) Final state

Fig. 4. Multiple cluster deployment scenario: robots from initially separated clusters deploy into a single mesh
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Fig. 5. Fraction of edges that are not within threshold distance, for the
situation shown in Figure 4

Because the effect of each switch on the global potential
can be locally determined, no global communication is
necessary. Although E is defined as a global value, each
robot may have its own estimate of the current value of E.
Changes in E may be propagated by causing each robot to
periodically average its estimate of E with its neighbors’
estimates. Averaging is a conservative operation (it does not
change the sum of all estimates of E), and in a connected
mesh all estimates will eventually converge to the same
value. Such convergence is provable and is known as the
consensus problem[32]. Thus, every estimate will be driven
to the same value, which has the same behavior (neglecting
scaling by the number of robots) as the global E, since no
energy was created or destroyed by the averaging process.

VI. SIMULATION RESULTS
Figures 2, 3, and 4 show the results of three simulated

deployment scenarios. In Figure 2, forty robots deploy from a
tight cluster. In Figure 3, forty robots deploy from a scattered
configuration. In Figure 4, four distinct clusters of ten robots
each deploy simultaneously. In all cases, the potential in the
final configuration is near zero, but not equal to zero. This
is a typical result.
The result illustrated in Figure 4 is significantly different

from what would be obtained with a nearby neighbors
algorithm. The addition of the acute angle switching function
guarantees that the clusters all connect into a single mesh;
without this, there would be no assurance that the clusters
would merge.
Figure 5 shows the fraction of the edges that are longer

than the nearby-neighbors threshold distance as a function of
simulation time. This quantity represents the degree to which
the acute angle switching algorithm is behaving differently
than the threshold distance algorithm. There are a significant
number of long edges during the period when the clusters
are combining, but the number of long edges decreases
rapidly to zero when the combination is complete. This is
not surprising—the dynamics of the system tend to drive all
edge lengths to the natural length. Thus, the acute angle mesh
becomes equivalent to the threshold distance mesh over time.

VII. CONCLUSION
We have demonstrated an alternative to nearby-neighbor

switching algorithms. The acute angle switching algorithm
creates a switched system that features a provably connected
adjacency graph. While providing connectivity, the added
long-distance links created by the acute angle switching
algorithm do not destabilize the system. This allows an in-
crease in performance when compared to standard switching
algorithms based on simple distance thresholds.
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