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Abstract—In this paper we consider motion planning for that the relative simplicity of our approach will have advan-
kinematically overconstrained vehicles. Such vehicles are rea- tages over the other (also correct) more complex analyses of
sonably common in applications that require many axles for such complicated mechanisms, such as [1].

static stability. When a system is kinematically overconstrained, vehicl tth | trained svstems
typically some contacts with the environment must slip, violating . ? Icles are. no e_ only C_ommon overcpns r_a - Y e
the constraint. This introduces nonsmooth behavior into the Similar scenarios of kinematic overconstraint arise in grasping
equations of motion, making classical motion planning strategies and in multi-point manipulation [2], [3]. In each of these

inapplicable. As an example, we consider a vehicle that has examples actuators can also be out of contact entirely, leading
a simplified version of the kinematic structure of the rover to a discrete change in support. Hence, the ability to incor-
from the first Mars mission. We introduce a provably com- t d t for the eff .t f t', K/slio and chanain

plete motion planner for purposes of illustration. However, the porate an_ account for the efiects of Stck/slip and cha g g
primary purpose of this paper is to clearly identify some of Support |S|_nherent to the study of a broad clags_ ofmechamsr_ns.
the open problems in motion planning for these mechanisms Moreover, in each one of these cases the driving force behind
and to propose a kinematic modeling framework that reveals the contact changes is environmentally determined, indicating
the underlying complications due to slipping while maintaining {hat i an uncertain environment one cannot expect to be able

the relative simplicity associated with kinematic systems over . . .
dynamic ones. The planner we describe has properties that we to explicitly predict the changes in contact state based on

anticipate will be relevant to a general methodology for motion Modeling principles. Therefore, we will consider the contact
planning for both kinematically overconstrained systems as well state as a model uncertainty, and will discuss motion planning
as more general systems that have uncertain dynamics. with this in mind.

Mechanisms involving mechanical contact, such as the
Rocky 7, multiple point manipulation, and slip-steered vehi-
cles, have been studied for many decades. Examples of such

Mechanisms that experience mechanical contact with theligvices include autonomous vehicles for both civilian and
environment are common in robotics. For many systemsijlitary purposes [4], “smart” vehicles capable of integrating
design constraints and environmental factors often guarangemsor data for purposes of collision avoidance [5]-[7]. Prior
that some of these contacts must transition between “stick” amdrk addressed motion planning [5]-[10], and control [11]-
“slip” states. Such transitions introduce uncertainty into th@4] for such devices. All these techniques have implicitly
system dynamics, partially due to the transitions themselvesjuired single-valued, differentiable equations of motion,
and partially due to uncertainties in modeling the contaptoperties that the mechanisms discussed in this paper do not
interface itself. Often these uncertainties take on an explicithave.
hybrid form (discussed shortly). The question we face is how Overconstrained systems have been studied for a number
to create provably complete motion plans in the face of thi§ years in the context of slip-steered vehicles [15], [16].
model uncertainty. These early works developed slip-steering heuristics based on

This paper approaches the problem of motion planning wittssumptions that all wheels exhibit sliding friction. Geometric
model uncertainty by considering motion planning from thproperties were typically ignored, thereby ignoring the rich
perspective of motion primitives. Although a primitives-baseliterature on nonholonomic mechanics [17]-[22] that could
approach has the disadvantage of being inherently heuristidyét applied to these vehicles. Recently, however, with the
often gives insight into what type of structure is needed fordevelopment of high-visibility vehicles like the Mars rovers,
more general motion planning framework. where autonomous, fine-scale motion planning is a require-

The example we use is based on a famous example ofmant, more emphasis has been placed on motion control of
kinematically overconstrained system—the Rocky 7 rover, tlerconstrained vehicles [15], [16], [23].
first rover to travel to Mars. As we will describe shortly, We should note that although motion planning with sensor
this rover is intrinsically overconstrained, leading to equationscertainty has been a very active area of research for many
of motion that are nondeterministic. However, it is a highlyears [24], [25], relatively little has been done with model
structured uncertain nonlinear system, and we use an analysisertainty. This paper is intended to start filling that gap.
approach that allows this structure to be more clear. We believeThis paper is organized as follows. Section Il discusses a

I. INTRODUCTION



simplified model of the Rocky 7 rover as an example of a non-overconstrained (and therefore non-error-accumulating)
kinematically overconstrained system. This example illustratesotion for the vehicle.

many of the difficulties associated with motion planning for We will want to be able to concisely express the dynamics of
such systems as well as the advantages of the propo#@d system in a way that is amenable to motion planning anal-
methodology. Section Il discusses modeling, particularly thesis. The next section discusses how we do this. In particular,
modeling of friction and how and why one should avoid itwe justify the use of the vehicleldnematicdescription instead
One of the main points of this paper is that explicit modelingf a dynamic description. We do this despite the fact that
of friction should be avoided because real environmentiiction generally introduces dynamic effects into a system’s
uncertainties rarely allow one to pick a particular frictiorequations of motion. However, some systems, including our
model. Instead, one should bound equations of motion aedample, satisfy the necessary and sufficient conditions for
develop the motion planner with these bounds in mind. Given system to be kinematic even with frictional (and other
such a model, Section IV discusses how to create a motidissipative) forces acting on it.

planner for such a system. We initially discuss a primitives- . M ODELING

based approach, and provide a planner that is sufficientIyW that th " int ted | finit
rich in its structure that one can prove that it is complete, € assume that the systems we are interested in are finite-

We then discuss how insights from this problem should lgémensional simple mechanica_l systgms (as_ described_ for
applied to more general motion planning strategies, such as ﬁqéoo;h fsystt;ms n [263)‘ That_|s, tr;e'r: eﬁ“a“?(f‘s (.)f motion
use of Probabilistic Roadmaps (PRMs) and Rapidly Explori ay be found L:S'ng a agra_ng}a;nEo the orn|1 metlf:henergy
Random Trees (RRTs). We end in Section V with conclusio inus potential energy [( = K.E. — V) along with a

about this preliminary work and where we think it will lead>®! of c;onstramts qn the system Of. the fom@g)g’ :.0
us over the next few years. (or equivalently A(q)¢ = 0), wheregq is the configuration.

Moreover, there may be external forces acting on the system.
Il. EXAMPLE If we ignore potential energy (as is appropriate for many planar
systems including the one in Section Il), such a system’s
dynamics may be written down a&;¢ = u“Y,, where
the notationu®Y, implies summation over thev. In this
)w expression,V is the constrained affine connection encoding
y the free kinetic energy and the constraints, in our case the
nonslip constraints. Moreovel represents external forces
(not necessarily inputs) arid represents the associated vector
)8 fields on the configuration manifol@ (i.e., Y € 7,Q). If we
wish to include potential energy, it will show up as a vector
field on the right-hand side of the equation.

X The systems of interest have two types of external
forces—those that correspond to inputs and those that corre-
spond to external disturbances. In the case of multiple point
&9 tact, the external disturbance forces generally correspond to
ﬁeaction forces due to friction when a contact slips. Therefore,
g will be useful to write the dynamic equations @8, =

Fig. 1. 1 driven and steered wheel, 2 passive wheels

As an example of an overconstrained mechanism, consi
the vehicle shown in Fig. 1 with one front wheel that ca

turn and two back axles that are fixed. Such a vehicle mimi Y. +dfy that distinquish bet the diff ¢
the kinematic structure of trucks with multiple axles as welf o +d7V; SO that we can distinguish between the difiereén

as the original Mars rover (the Rocky 7). If we assume th pes of external forces. (Note that if a constraint is satisfied so

the front wheel always maintains contact with the ground thﬁ at the contact is not slipping, there is still a reaction force. In
vehicle is, at least intuitively, always capable of motion L’et’ at case the reaction force is incorporated into the definition

denote the configuration of this vehicle by= [z, y, 6, ¢, ¢ of of the constrained affine connectian). .
where(z, y, 0) represent thé E(2) configuration of the body, Lastly, because the contact state changes over time (as the
" repreééhts the front wheel angle, asdrepresents thé contacts transition between stick and slip), the constraints

front wheel rolling angle. The constraints are of the for hange over time. This implies thar is not a single con-

A(g)q = 0 where each row ofd represents a nonholonomicstrained affine connection, but rather comes from a set of
constraint (the form ofA can be found in any Standardconstrained affine connectiong’, each of which represents

robotics textbook that includes nonholonomic systems— %é:gfertent sfet ;_fUSt'CkéS‘“/g Stﬁtes of t.?e me_cr:janlstr;:. Th? sefmme
[12] for example). In this case the only that satisfies olds true for an - mence, 1T we ndex the set o

this equation arej — [0,0,0,1,0]T (if ¢ # 0) and § — possible sitick/slip'states by, we get equations of motion of
[Cos|6], Sin[6], 0,0, 1]7 and[0,0,0,1,0)7 (if v — 0). Hence, e following form:

for 1) # 0 andu; # 0, this system is not kinematically well- Viq=uY] +d°Vy (1)
posed. When) = 0, the constraints are linearly dependentyherew are input forces and are external forces. Equation (1)
thus admitting the additional kinematically admissible vectoepresents the equations of motion for any multiple contact
field (that corresponds to moving straight forward). The poislystem or overconstrained system mentioned in Section I.
is that the degeneracy of the constraintsyat= 0 provides (Note that for this equation to make sense, one must assume



that the switching signat is at least measurable, and oftenitis Notice that this need only hold for eaet so the calculation
assumed that it is piecewise continuous.) Lastly, it is importaist a smooth calculation, despite the fact that our system is
to point out that the representation;¢ = u®Y, is neither nonsmooth. That is, even with the nonunique solutions these
more nor less than the Euler-Lagrange equations [26]. systems can have, one may test for each model independently
Consider what this modeling methodology implies for é.e., holdingos constant) whether a system is kinematic.
vehicle such as that in Fig. 1. If we apply a torque to the It is important to note that the only assumption made
front wheel, the output of the system will depend on whictegarding friction is that it creates stick/slip effects. In the
wheels are in contact with the ground and which are stickirapntext of this paper, no other assumptions are necessary. This
or slipping. This, in turn, depends on the mass distribution aiglan important consequence of the formal modeling approach
normal forces, which even statically may be difficult to modeust outlined. At the expense of quite a bit of formalism, one
accurately. Therefore, efforts in motion planning and contrehn almost completely remove the dependence on the contact

must take these transitions into account. interface modeling by merely stating that the contact interface
mechanics induce stick/slip transitions. This statement (which
A. Kinematic Descriptions of Systems that Slip originated in [28]) allows one to be reasonably certain that the

We use the affine connection formalism to describe mecha.ﬂ;certqinties in real—world motion p!anning pmb'e’.“s wherg
ical systems because it is in the context of this formalism thafE environment is not vyell—charactenzed ahead of time willfit
useful technical connection betwegi-order mechanical sys- W'th'n. the motion pIannmg ;chema Qeveloped here. Moreoyer,
tems and St-order kinematic systems has been made (found o/ will see that a S'm_p“f'Ed version of_the Mars Fover 1S
smooth systems in [27] and for nonsmooth systems in [28 inematic, even though its wheels must slip against the ground
Because of the importance that kinematic systems have pla &)rder for it to tum.

in motion planning and control for robotic systems that arg Uncertainty Representations

not overconstrained, we believe that a well-posed kinematicIt is additionall th noting that th tact stat t
description of overconstrained systems will be useful in their IS additionally worth noting that the contact stale enters

analysis. That is, it would be useful to be able to write Eq. ( plely i_n the o dynamics _in Eq. (1) and (2). Hence, the
in the form: ncertainty has a hybrid, discrete-valued structure rather than

§=u"X° @) a continuous one like that typically addressed in the robust
“ control community. Moreover, the consequences of this un-

wherew are velocity inputs instead of force inputs. Roughlycertainty can be more drastic; it is often true that choices of
speaking, a system is kinematic if it can be written as a first(in particular dependencies on the configuratjgrcan lead
order differential equation ip without losing any information o equations of motion that have no solution. The primary
about what trajectories the system is capable of producingnd rather conservative) manner in which we can guarantee
More precisely, this kinematic description is only useful iolutions is by replacing Eg. (1) and (2) with differential
it satisfies two requirements. First, for every solution of thiclusions that allows to switch arbitrarily quickly. Although
dynamic system in Eq. (1) there must exist a kinematifis provides a viable notion of solution, it implies that motion
solution of the form in Eq. (2). In the case of a vehicle, thiglanning and stabilization must typically take into account
corresponds to requiring that for evergjectoryof the vehicle these non-unique solutions.
there exists a correspondirgath that can be obtained from
kinematic considerations alone. Secondly, for every kinemafic Example Model
solution there must exist a dynamic solution that is equal We now return to the example in Section II. If the vehicle’s
to the kinematic solution coupled with its time derivativeéocation in space can be identified wistE (2), (i.e.,[z,y, 0]T)
(so that it lies inT'Q). This means that there must existnd the controls;; andu, are associated with the drive and
a dynamic solution for every feasible kinematic path. Thisteering velocities respectively, we may consider the configu-
way of viewing smooth kinematic systems has been studiggtion of the total vehicle to be = [7,y,0,v,¢]T, wherewy
extensively, including [27], [29]. Motion planning has beefs the turning angle and is the drive angle. We would like to
studied using these concepts in [30]-[32], but these workeg able to show that the set of paths this vehicle can follow are
were all intended for smooth systems. However, it was showat affected by its dynamic characteristics or by a particular
in [28] that the kinematic reduction of a nonsmooth system ehoice of friction model (under reasonable assumptions). That
the form in Eq. (1) to one of the form in Eq. (2) is equivalenis, we must show that the system is kinematic, even when there
to the reduction of each smooth model of the multiple modgte frictional reaction forces due to slipping and discontinuities
system. The associated algebraic test of kinematic reducibiliie to changes in contact.
is that thesymmetric producbetween two vector field¥}” Let us call the no-sideways-slip constraint associated with
and Y7 (defined by(Y7 :Y7) = V{. Y7 + V§. Y for  the front wheelv;, the no-forward-slip constraint associated
giveni, j, o) lie within the distribution of the vector fields andwith the front wheelkv,, and the no-sideways-slip constraint
that any reaction forces lie within the span of the input vectassociated with the back two wheels; and w, respec-

fields. That is, tively. We assume that the normal load on the front wheel
o oo ' o is sufficiently high that the wheel does not slip (i.ey
(Y7:Y7) € span{Yjli=1,....m} Vi, j,o (3) andw, are always satisfied)—otherwise the system is trivially

Vi € span{Yili=1,...,m} V3,0 (4) uncontrollable because it cannot move if the other contacts



are in a “stick” state. Given this assumption, and the faptan for smooth systems. One may reasonably ask whether
that the two back wheels are passive (so that they mag overconstrained mechanism (such as the Mars rover or
accommodate any rolling velocity required to not slip in theithe slip-steered vehicle) is STLC. Nonsmooth systems, such
forward rolling direction), the only switching that can occur ims those systems discussed here, have only recently had
between the middle wheel sliding sideways (i.e., the constratheir associated controllability properties studied [23], [34].
w3 is broken) and the back wheel sliding sideways (i.e., th&ith assumptions on the admissible dependence between the
constraintw, is broken). Note that this only happens wheswitching signalc and configuratiory, an analog to Chow's
¥ # 0 andu; # 0. Because these are the only switchintheorem may be obtained as shown in [23]. In particular, that
signals allowed, the system always satisfies the property fourgult shows that the example system in Section Il is STLC
in Eq. (3) for a system to be kinematic, even with the reactiamder some assumption an That is, o cannot degenerate
forces due to frictional slipping. That is, this system satisfieke controllability properties for the system. This result gives
(YF - Yj"> € span{Yili = 1,...,m} V i,j,0 and V§ € us reason to anticipate that our system is STLC, and we will
span{Y;|i = 1,...,m} V (,0. See [28] for their description build our motion planning tools with this assumption in mind.
of these calculations.

Hence, the kinematic equations of motion are precisely. Primitives-based Motion Planning
those kinematics that, for each possible set of constraintsyy . se of motion primitives for motion planning is intu-

that are not overconstrained, annihilate the constraints. itR/e because it allows us to use physical insight to produce

tgtztis_case there areh.two. such Slf.m = [wi,ws,03], ar;dh motions. The downside is that primitives almost always must
. 2 = [w1,wQ,2w-4]- This gives us kinematic equations of thg,q jesigned on a case-by-case basis. What is desired is a set
orm in Eq. (2): of guidelines for how to look for useful primitives and how

i = 9o (Q)us + g3(q)us o:(q,t) — {a,b} (5) 1O prove the completeness of a motien plan. o
Consider again the example in Fig.1. The only primitive
ga = [cos(v)cos() cos(y)sin(f) 7 sin(y) O]T that is kinen_tatically WeII-poseq fer th_is system is the straight
» sin(6) sin() forward motion (because no slipping is required). Any turning
cos(h) cos(f) — ——r5—— motion necessarily accumulates error depending on how the
g = cos(v)) sin(6) + w contact state changes over time. These effects can be incor-
ﬁsin(zp) porated into a formally complete motion planner, however.
0 Our goal is to drive the vehicle in Fig. 1 frorfwo, yo, o)
g = [0 0 0 1]T to (xy,ys,0y) within e relative to a metric defined by

V(1 —22)2 + (y1 — y2)2 + (01 — 62)2, the Euclidean met-
wherer is the distance from the back wheel to the middlgc on SE(2). We will consider three primitives. The first
wheel and is the distance from the middle wheel to the fronprimitive worth noting is that the vehicle can move forward
wheel. In this descriptiong, and g3 annihilate Q; and g, and backward without accumulating any error due to contact
and g3 annihilateQ),. As this system evolves, iy = 0 then changes. The second is the turning primitive—that the vehicle
Jda = g, SO the system is not overconstrained, and theredan turn left or right even if we cannot dictate how quickly
therefore no uncertainty due to switching.«f £ 0, then at it turns. This is effectively because switching in the model
any given time the system either evolves with= ¢ or o = b, causes the wheel base to change length unpredictably, thereby
thus changing the vector fielg,. This uncertainty inc is changing the radius of curvature that the vehicle is moving
the uncertainty we will address in a moment in our motioaround. Lastly, we can stabilize to any line submanifoldRdf
planning algorithm. if we are sufficiently well aligned with it initially. That is, if the
submanifold is described by = (x¢ + s cos 6y, yo + ssin )
] ) i ) for s € R and |6 — 6| is sufficiently small, we can get
Motion planning for nonlinear systems with model uncerypitrarily close toN' using a linear control law (described
tainty like the one being discussed here is nontrivial, bylow) that is valid for both models in the multiple model

provably complete planners to exist. We now move forwargstem for the vehicle. These three primitives are enough to
with our description of such a planner based on motigitoduce a motion planner, as follows.

primitives.

IV. MOTION PLANNING

Motion Planning Algorithm for Vehicle in Fig. 1

A. Controllability Properties of Nonsmooth Systems

Many results in motion planning and stabilization require
a system to becontrollable as a prerequisite. For smooth
systems, controllability (and its many flavors) are compara-p,
tively well understood. For nonlinear driftless systems, Chow’s
theorem [33] gives a sufficient condition for small-time local u = k
controllability (STLC)-the property that, in a given neigh- uy = —ki(g (g0 —qy)) — k2(0 — 05) — k3o
borhood B.(¢qp) of an initial configurationgy, the system
can get to any finalg; in finite time 7" without leaving .
Bc(q0). STLC thus guarantees the existence of a motion 2\ /(e—z,)2+(y—y;)°

P1 Turn vehicle until at an angle of to the line leaving
the point (zo,y0) (the vehicle’s initial position) at an
angle off; (the desired final orientation).

Use the control law

until vehicle is within ¢/2 of the line and within
of the orientationd;. Here g is




the mapping from the world coordinates to the bodthat avoid the obstacles. However, we do not address obstacles

coordinates. here.
P3 Travel on the forward-backward primitive to withiy2 Although this approach is effective for this example, cur-
of (x¢,yy). rently there are no guidelines for how to generalize this

We call these three primitives (P1, P2, and P3) “FeedbagRproach. We must be able to show the existence of feedback
Primitives” because each one involves some level of feedbgatimitives and, moreover, show how to construct a motion
in its statement. The first and third primitives (P1 and P3) ugéanner based on them. We intend to do this by extending
feedback to determine when they should terminate, and tfe work on “kinematically decoupled vector fields” [32] by
second primitive (P2) uses continuous feedback for purpodéxling conditions under which the decoupled vector fields are
of stabilization to the manifoldV. invariant with respect tea dynamics.

Lemma 4.1:The motion plan in the above algorithm
has a finite-time admissible solution for every . .

. C. Simulation

((z0,y0,00), (z7,ys,0¢)) pair.

Proof: We work backwards froniz s, y,8¢). Define the
vehicle coordinates ag:, y, ) and define the manifoldv by 20
N = (zf + scosby,yr + ssinfy) (for s € R). The distance
from a point(z,y) € R? to N is defined bydisty ((z,y)) =
IsnelﬂgH(f,y) — (x5 + scosby,y; + ssinfy)|. If the vehicle
satisfiesdist v ((z,y)) < €/2, and|0 —0¢| < PR CTEmIE
then the vehicle will be within§ after backing up a distance
Iz, y) — (g5l

Now we need to show that we can make the vehicle satisfy
disty((z,y)) < e/2and|§—0;| < m To do so,
we use the fact that foff — 6) sufficiently small the linear
control law

15

Uy = k
us = —ki(g (g0 —q5)) — k2(0 — 0f) — k3o

is stable to/NV for both parts of the multiple model system.

(This can be verified using the common Lyapunov function
candidateV = disty(-)). Therefore, because the controlled
system is asymptotically stable, there exists a time such that o
the vehicle will be withine/2 of N and the orientation will

be within (zfzf)eu(yfyf)z of the desired orientatiofi;.
Lastly, we need to be able to orient the vehicle so that
|0 — 0f| is small (in this casdt — 0y < & works well).
However, we can see from the equations of motion that for
both models, turning the wheel to some choic@gfuarantees Fig. 2. Simulation (inMathematicy of overconstrained rover-type vehicle
that the vehicle will turn. That is, foty # 0 we know that 9ving from (zo,yo,00) = (0,0, 5) 10 (ws,yy,0f) = (8,2, 3)
0 ¢ 6. We know this because zero is not in the convex hull
of the models from the multiple model system. That is, either We simulated this system using the equations of motion
6 < 0 or § > 0 for ¢ # 0O—hence the vehicle must turn in onén Eq. (5) and by havings; be a random variable. We
direction for both models. used Mathematicafor the numerical simulation. Primitive 1
We have shown that for any choice of initial conditequires that the wheel be turned at some some anglbich
tion (20, yo,60) and final condition(xy,ys,0y)) this motion we chose to beg. We ran the algorithm over many initial
plan will bring the vehicle from(xg,yo,6p) to within ¢ of conditions and never came across a failure mode. Figure 2
(xr,yr,0f)). B shows snapshots of one simulation that illustrates nicely the
Hence, the use of these three primitives provides a planrienctionality (and some shortcomings) of the algorithm. The
that is guaranteed to have a solution for any initial conditianitial condition was (zo,0,00) = (0,0,%) and the final
and any final condition ir6 £(2), at the expense of requiring condition was(xy,yy,05) = (8,2, 5 ). Therefore,N = (8, s)
feedback as aencoded part of the primitive definitiomhis for s € R. Although the vehicle does eventually arrive at
motion plan does not account for obstacles nor does it accotint final destination, it clearly turned the wrong direction
for lack of dead reckoning. It does produce a functionat the beginning of the algorithm. However, if the final
motion planner in the absence of these complexities thaindition was(zs,yy,0r) = (=8,2, 5), the algorithm works
accommodates the errors generated by the contact state mnoeh more quickly because the vehicle does not need to
certainty. Moreover, in practice, accounting for obstacles cauirn nearly2n rad before stabilizing toN. Details such as
be achieved reasonably by choosing intermediate waypoithigse can be fixed in more sophisticated motion planners—our
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purpose here is to show that a motion planner can indeed I
designed that incorporates the effects of uncertainty in contact
state (and possibly other uncertainties) while guaranteeing pﬂ@
termination of the planner.

V. CONCLUSIONS [11]

In this paper we introduce both a class of interesting motion
planning problems and give a preliminary solution we belie\i¢2]
will be relevant to a reasonably wide range of mechanisnE.s]
Despite the heuristic nature of motion planning using primi-
tives, these primitives give us insight into the general structure
one should look for. Loosely speaking, we believe that thi&")
structure is essentially that each primitive should at least agf
predictably on a submanifold of the configuration manifold. In
the case of our example, Primitive 1 (P1) acts predictably ?ﬂi]
the manifold described by the orientatién Primitive 2 (P2)
acts predictably relative to the manifald by stabilizing to it.
Primitive 3 (P3) acts predictablgn N by just backing down
it. In some sense, this is similar to the work on manipulation
in [35] in that it just requires that the uncertainty be reducdds]
with each step in the plan. 19]

It is also worth noting that although we do use feedbacig,o]
it is not our goal to create a “stabilized” system. Instead, we
see feedback as functioning purely to make the statement[ﬂﬁ
the motion primitives well-posed. In this way we avoid many
of the somewhat superficial concerns with global convergence
of nonlinear systems while simultaneously taking advantagé]
of the uncertainty mitigation feedback provides.

Future work will include the encoding of these primitive$23]
into a Probabilistic Roadmap setting and the development of
numerical tools for automatically calculating “feedback primgoy;
itives.” Although this work is certainly preliminary, it seems
likely that this approach will eventually lead to substanti
improvements in motion planning for more general systems
with uncertain dynamics.

(17]

(27]
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