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Abstract— In this paper we consider motion planning for
kinematically overconstrained vehicles. Such vehicles are rea-
sonably common in applications that require many axles for
static stability. When a system is kinematically overconstrained,
typically some contacts with the environment must slip, violating
the constraint. This introduces nonsmooth behavior into the
equations of motion, making classical motion planning strategies
inapplicable. As an example, we consider a vehicle that has
a simplified version of the kinematic structure of the rover
from the first Mars mission. We introduce a provably com-
plete motion planner for purposes of illustration. However, the
primary purpose of this paper is to clearly identify some of
the open problems in motion planning for these mechanisms
and to propose a kinematic modeling framework that reveals
the underlying complications due to slipping while maintaining
the relative simplicity associated with kinematic systems over
dynamic ones. The planner we describe has properties that we
anticipate will be relevant to a general methodology for motion
planning for both kinematically overconstrained systems as well
as more general systems that have uncertain dynamics.

I. I NTRODUCTION

Mechanisms that experience mechanical contact with their
environment are common in robotics. For many systems,
design constraints and environmental factors often guarantee
that some of these contacts must transition between “stick” and
“slip” states. Such transitions introduce uncertainty into the
system dynamics, partially due to the transitions themselves
and partially due to uncertainties in modeling the contact
interface itself. Often these uncertainties take on an explicitly
hybrid form (discussed shortly). The question we face is how
to create provably complete motion plans in the face of this
model uncertainty.

This paper approaches the problem of motion planning with
model uncertainty by considering motion planning from the
perspective of motion primitives. Although a primitives-based
approach has the disadvantage of being inherently heuristic, it
often gives insight into what type of structure is needed for a
more general motion planning framework.

The example we use is based on a famous example of a
kinematically overconstrained system–the Rocky 7 rover, the
first rover to travel to Mars. As we will describe shortly,
this rover is intrinsically overconstrained, leading to equations
of motion that are nondeterministic. However, it is a highly
structured uncertain nonlinear system, and we use an analysis
approach that allows this structure to be more clear. We believe

that the relative simplicity of our approach will have advan-
tages over the other (also correct) more complex analyses of
such complicated mechanisms, such as [1].

Vehicles are not the only common overconstrained systems.
Similar scenarios of kinematic overconstraint arise in grasping
and in multi-point manipulation [2], [3]. In each of these
examples actuators can also be out of contact entirely, leading
to a discrete change in support. Hence, the ability to incor-
porate and account for the effects of stick/slip and changing
support is inherent to the study of a broad class of mechanisms.
Moreover, in each one of these cases the driving force behind
the contact changes is environmentally determined, indicating
that in an uncertain environment one cannot expect to be able
to explicitly predict the changes in contact state based on
modeling principles. Therefore, we will consider the contact
state as a model uncertainty, and will discuss motion planning
with this in mind.

Mechanisms involving mechanical contact, such as the
Rocky 7, multiple point manipulation, and slip-steered vehi-
cles, have been studied for many decades. Examples of such
devices include autonomous vehicles for both civilian and
military purposes [4], “smart” vehicles capable of integrating
sensor data for purposes of collision avoidance [5]–[7]. Prior
work addressed motion planning [5]–[10], and control [11]–
[14] for such devices. All these techniques have implicitly
required single-valued, differentiable equations of motion,
properties that the mechanisms discussed in this paper do not
have.

Overconstrained systems have been studied for a number
of years in the context of slip-steered vehicles [15], [16].
These early works developed slip-steering heuristics based on
assumptions that all wheels exhibit sliding friction. Geometric
properties were typically ignored, thereby ignoring the rich
literature on nonholonomic mechanics [17]–[22] that could
be applied to these vehicles. Recently, however, with the
development of high-visibility vehicles like the Mars rovers,
where autonomous, fine-scale motion planning is a require-
ment, more emphasis has been placed on motion control of
overconstrained vehicles [15], [16], [23].

We should note that although motion planning with sensor
uncertainty has been a very active area of research for many
years [24], [25], relatively little has been done with model
uncertainty. This paper is intended to start filling that gap.

This paper is organized as follows. Section II discusses a



simplified model of the Rocky 7 rover as an example of a
kinematically overconstrained system. This example illustrates
many of the difficulties associated with motion planning for
such systems as well as the advantages of the proposed
methodology. Section III discusses modeling, particularly the
modeling of friction and how and why one should avoid it.
One of the main points of this paper is that explicit modeling
of friction should be avoided because real environmental
uncertainties rarely allow one to pick a particular friction
model. Instead, one should bound equations of motion and
develop the motion planner with these bounds in mind. Given
such a model, Section IV discusses how to create a motion
planner for such a system. We initially discuss a primitives-
based approach, and provide a planner that is sufficiently
rich in its structure that one can prove that it is complete.
We then discuss how insights from this problem should be
applied to more general motion planning strategies, such as the
use of Probabilistic Roadmaps (PRMs) and Rapidly Exploring
Random Trees (RRTs). We end in Section V with conclusions
about this preliminary work and where we think it will lead
us over the next few years.

II. EXAMPLE
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Fig. 1. 1 driven and steered wheel, 2 passive wheels

As an example of an overconstrained mechanism, consider
the vehicle shown in Fig. 1 with one front wheel that can
turn and two back axles that are fixed. Such a vehicle mimics
the kinematic structure of trucks with multiple axles as well
as the original Mars rover (the Rocky 7). If we assume that
the front wheel always maintains contact with the ground, this
vehicle is, at least intuitively, always capable of motion. Let’s
denote the configuration of this vehicle byq = [x, y, θ, ψ, φ]
where(x, y, θ) represent theSE(2) configuration of the body,
ψ represents the front wheel angle, andφ represents the
front wheel rolling angle. The constraints are of the form
A(q)q̇ = 0 where each row ofA represents a nonholonomic
constraint (the form ofA can be found in any standard
robotics textbook that includes nonholonomic systems–see
[12] for example). In this case the onlẏq that satisfies
this equation areq̇ = [0, 0, 0, 1, 0]T (if ψ 6= 0) and q̇ =
[Cos[θ], Sin[θ], 0, 0, 1]T and [0, 0, 0, 1, 0]T (if ψ = 0). Hence,
for ψ 6= 0 andu1 6= 0, this system is not kinematically well-
posed. Whenψ = 0, the constraints are linearly dependent,
thus admitting the additional kinematically admissible vector
field (that corresponds to moving straight forward). The point
is that the degeneracy of the constraints atψ = 0 provides

a non-overconstrained (and therefore non-error-accumulating)
motion for the vehicle.

We will want to be able to concisely express the dynamics of
this system in a way that is amenable to motion planning anal-
ysis. The next section discusses how we do this. In particular,
we justify the use of the vehicle’skinematicdescription instead
of a dynamic description. We do this despite the fact that
friction generally introduces dynamic effects into a system’s
equations of motion. However, some systems, including our
example, satisfy the necessary and sufficient conditions for
a system to be kinematic even with frictional (and other
dissipative) forces acting on it.

III. M ODELING

We assume that the systems we are interested in are finite-
dimensional simple mechanical systems (as described for
smooth systems in [26]). That is, their equations of motion
may be found using a Lagrangian of the form kinetic energy
minus potential energy (L = K.E. − V ) along with a
set of constraints on the system of the formω(q)q̇ = 0
(or equivalentlyA(q)q̇ = 0), where q is the configuration.
Moreover, there may be external forces acting on the system.
If we ignore potential energy (as is appropriate for many planar
systems including the one in Section II), such a system’s
dynamics may be written down as:∇q̇ q̇ = uαYα, where
the notationuαYα implies summation over theα. In this
expression,∇ is the constrained affine connection encoding
the free kinetic energy and the constraints, in our case the
nonslip constraints. Moreover,u represents external forces
(not necessarily inputs) andY represents the associated vector
fields on the configuration manifoldQ (i.e., Y ∈ TqQ). If we
wish to include potential energy, it will show up as a vector
field on the right-hand side of the equation.

The systems of interest have two types of external
forces–those that correspond to inputs and those that corre-
spond to external disturbances. In the case of multiple point
contact, the external disturbance forces generally correspond to
reaction forces due to friction when a contact slips. Therefore,
it will be useful to write the dynamic equations as:∇q̇ q̇ =
uαYα+dβVβ so that we can distinguish between the different
types of external forces. (Note that if a constraint is satisfied so
that the contact is not slipping, there is still a reaction force. In
that case the reaction force is incorporated into the definition
of of the constrained affine connection∇).

Lastly, because the contact state changes over time (as the
contacts transition between stick and slip), the constraints
change over time. This implies that∇ is not a single con-
strained affine connection, but rather comes from a set of
constrained affine connections∇σ, each of which represents
a different set of stick/slip states of the mechanism. The same
holds true forY σ and V σ. Hence, if we index the set of
possible stick/slip states byσ, we get equations of motion of
the following form:

∇σ
q̇ q̇ = uαY σα + dβV σβ (1)

whereu are input forces andd are external forces. Equation (1)
represents the equations of motion for any multiple contact
system or overconstrained system mentioned in Section I.
(Note that for this equation to make sense, one must assume



that the switching signalσ is at least measurable, and often it is
assumed that it is piecewise continuous.) Lastly, it is important
to point out that the representation∇q̇ q̇ = uαYα is neither
more nor less than the Euler-Lagrange equations [26].

Consider what this modeling methodology implies for a
vehicle such as that in Fig. 1. If we apply a torque to the
front wheel, the output of the system will depend on which
wheels are in contact with the ground and which are sticking
or slipping. This, in turn, depends on the mass distribution and
normal forces, which even statically may be difficult to model
accurately. Therefore, efforts in motion planning and control
must take these transitions into account.

A. Kinematic Descriptions of Systems that Slip

We use the affine connection formalism to describe mechan-
ical systems because it is in the context of this formalism that a
useful technical connection between2nd-order mechanical sys-
tems and1st-order kinematic systems has been made (found for
smooth systems in [27] and for nonsmooth systems in [28]).
Because of the importance that kinematic systems have played
in motion planning and control for robotic systems that are
not overconstrained, we believe that a well-posed kinematic
description of overconstrained systems will be useful in their
analysis. That is, it would be useful to be able to write Eq. (1)
in the form:

q̇ = uaXσ
a , (2)

whereu are velocity inputs instead of force inputs. Roughly
speaking, a system is kinematic if it can be written as a first
order differential equation inq without losing any information
about what trajectories the system is capable of producing.
More precisely, this kinematic description is only useful if
it satisfies two requirements. First, for every solution of the
dynamic system in Eq. (1) there must exist a kinematic
solution of the form in Eq. (2). In the case of a vehicle, this
corresponds to requiring that for everytrajectoryof the vehicle
there exists a correspondingpath that can be obtained from
kinematic considerations alone. Secondly, for every kinematic
solution there must exist a dynamic solution that is equal
to the kinematic solution coupled with its time derivative
(so that it lies inTQ). This means that there must exist
a dynamic solution for every feasible kinematic path. This
way of viewing smooth kinematic systems has been studied
extensively, including [27], [29]. Motion planning has been
studied using these concepts in [30]–[32], but these works
were all intended for smooth systems. However, it was shown
in [28] that the kinematic reduction of a nonsmooth system of
the form in Eq. (1) to one of the form in Eq. (2) is equivalent
to the reduction of each smooth model of the multiple model
system. The associated algebraic test of kinematic reducibility
is that thesymmetric productbetween two vector fieldsY σi
and Y σj (defined by

〈
Y σi : Y σj

〉
= ∇σ

Y σ
i
Y σj + ∇σ

Y σ
j
Y σi for

given i, j, σ) lie within the distribution of the vector fields and
that any reaction forces lie within the span of the input vector
fields. That is,〈

Y σi : Y σj
〉

∈ span{Yi|i = 1, . . . ,m} ∀ i, j, σ (3)

V σβ ∈ span{Yi|i = 1, . . . ,m} ∀ β, σ (4)

Notice that this need only hold for eachσ, so the calculation
is a smooth calculation, despite the fact that our system is
nonsmooth. That is, even with the nonunique solutions these
systems can have, one may test for each model independently
(i.e., holdingσ constant) whether a system is kinematic.

It is important to note that the only assumption made
regarding friction is that it creates stick/slip effects. In the
context of this paper, no other assumptions are necessary. This
is an important consequence of the formal modeling approach
just outlined. At the expense of quite a bit of formalism, one
can almost completely remove the dependence on the contact
interface modeling by merely stating that the contact interface
mechanics induce stick/slip transitions. This statement (which
originated in [28]) allows one to be reasonably certain that the
uncertainties in real-world motion planning problems where
the environment is not well-characterized ahead of time will fit
within the motion planning schema developed here. Moreover,
we will see that a simplified version of the Mars rover is
kinematic, even though its wheels must slip against the ground
in order for it to turn.

B. Uncertainty Representations

It is additionally worth noting that the contact state enters
solely in the σ dynamics in Eq. (1) and (2). Hence, the
uncertainty has a hybrid, discrete-valued structure rather than
a continuous one like that typically addressed in the robust
control community. Moreover, the consequences of this un-
certainty can be more drastic; it is often true that choices of
σ (in particular dependencies on the configurationq) can lead
to equations of motion that have no solution. The primary
(and rather conservative) manner in which we can guarantee
solutions is by replacing Eq. (1) and (2) with differential
inclusions that allowσ to switch arbitrarily quickly. Although
this provides a viable notion of solution, it implies that motion
planning and stabilization must typically take into account
these non-unique solutions.

C. Example Model

We now return to the example in Section II. If the vehicle’s
location in space can be identified withSE(2), (i.e., [x, y, θ]T )
and the controlsu1 andu2 are associated with the drive and
steering velocities respectively, we may consider the configu-
ration of the total vehicle to beq = [x, y, θ, ψ, φ]T , whereψ
is the turning angle andφ is the drive angle. We would like to
be able to show that the set of paths this vehicle can follow are
not affected by its dynamic characteristics or by a particular
choice of friction model (under reasonable assumptions). That
is, we must show that the system is kinematic, even when there
are frictional reaction forces due to slipping and discontinuities
due to changes in contact.

Let us call the no-sideways-slip constraint associated with
the front wheelω1, the no-forward-slip constraint associated
with the front wheelω2, and the no-sideways-slip constraint
associated with the back two wheelsω3 and ω4 respec-
tively. We assume that the normal load on the front wheel
is sufficiently high that the wheel does not slip (i.e.,ω1

andω2 are always satisfied)–otherwise the system is trivially
uncontrollable because it cannot move if the other contacts



are in a “stick” state. Given this assumption, and the fact
that the two back wheels are passive (so that they may
accommodate any rolling velocity required to not slip in their
forward rolling direction), the only switching that can occur is
between the middle wheel sliding sideways (i.e., the constraint
ω3 is broken) and the back wheel sliding sideways (i.e., the
constraintω4 is broken). Note that this only happens when
ψ 6= 0 and u1 6= 0. Because these are the only switching
signals allowed, the system always satisfies the property found
in Eq. (3) for a system to be kinematic, even with the reaction
forces due to frictional slipping. That is, this system satisfies〈
Y σi : Y σj

〉
∈ span{Yi|i = 1, . . . ,m} ∀ i, j, σ and V σβ ∈

span{Yi|i = 1, . . . ,m} ∀ β, σ. See [28] for their description
of these calculations.

Hence, the kinematic equations of motion are precisely
those kinematics that, for each possible set of constraints
that are not overconstrained, annihilate the constraints. In
this case there are two such sets,Ω1 = [ω1, ω2, ω3], and
Ω2 = [ω1, ω2, ω4]. This gives us kinematic equations of the
form in Eq. (2):

q̇ = gσ(q)u1 + g3(q)u2 σ : (q, t) → {a, b} (5)

ga =
[
cos(ψ) cos(θ) cos(ψ) sin(θ) 1

l sin(ψ) 0
]T

gb =


cos(ψ) cos(θ)− r sin(θ) sin(ψ)

l+r

cos(ψ) sin(θ) + r cos(θ) sin(ψ)
l+r

1
l+r sin(ψ)

0


g3 =

[
0 0 0 1

]T
where r is the distance from the back wheel to the middle
wheel andl is the distance from the middle wheel to the front
wheel. In this description,ga and g3 annihilateΩ1 and gb
and g3 annihilateΩ2. As this system evolves, ifψ = 0 then
ga = gb, so the system is not overconstrained, and there is
therefore no uncertainty due to switching. Ifψ 6= 0, then at
any given time the system either evolves withσ = a or σ = b,
thus changing the vector fieldgσ. This uncertainty inσ is
the uncertainty we will address in a moment in our motion
planning algorithm.

IV. M OTION PLANNING

Motion planning for nonlinear systems with model uncer-
tainty like the one being discussed here is nontrivial, but
provably complete planners to exist. We now move forward
with our description of such a planner based on motion
primitives.

A. Controllability Properties of Nonsmooth Systems

Many results in motion planning and stabilization require
a system to becontrollable as a prerequisite. For smooth
systems, controllability (and its many flavors) are compara-
tively well understood. For nonlinear driftless systems, Chow’s
theorem [33] gives a sufficient condition for small-time local
controllability (STLC)–the property that, in a given neigh-
borhoodBε(q0) of an initial configurationq0, the system
can get to any finalqf in finite time T without leaving
Bε(q0). STLC thus guarantees the existence of a motion

plan for smooth systems. One may reasonably ask whether
an overconstrained mechanism (such as the Mars rover or
the slip-steered vehicle) is STLC. Nonsmooth systems, such
as those systems discussed here, have only recently had
their associated controllability properties studied [23], [34].
With assumptions on the admissible dependence between the
switching signalσ and configurationq, an analog to Chow’s
theorem may be obtained as shown in [23]. In particular, that
result shows that the example system in Section II is STLC
under some assumption onσ. That is, σ cannot degenerate
the controllability properties for the system. This result gives
us reason to anticipate that our system is STLC, and we will
build our motion planning tools with this assumption in mind.

B. Primitives-based Motion Planning

The use of motion primitives for motion planning is intu-
itive because it allows us to use physical insight to produce
motions. The downside is that primitives almost always must
be designed on a case-by-case basis. What is desired is a set
of guidelines for how to look for useful primitives and how
to prove the completeness of a motion plan.

Consider again the example in Fig.1. The only primitive
that is kinematically well-posed for this system is the straight
forward motion (because no slipping is required). Any turning
motion necessarily accumulates error depending on how the
contact state changes over time. These effects can be incor-
porated into a formally complete motion planner, however.
Our goal is to drive the vehicle in Fig. 1 from(x0, y0, θ0)
to (xf , yf , θf ) within ε relative to a metric defined by√

(x1 − x2)2 + (y1 − y2)2 + (θ1 − θ2)2, the Euclidean met-
ric on SE(2). We will consider three primitives. The first
primitive worth noting is that the vehicle can move forward
and backward without accumulating any error due to contact
changes. The second is the turning primitive–that the vehicle
can turn left or right even if we cannot dictate how quickly
it turns. This is effectively because switching in the model
causes the wheel base to change length unpredictably, thereby
changing the radius of curvature that the vehicle is moving
around. Lastly, we can stabilize to any line submanifold ofR2

if we are sufficiently well aligned with it initially. That is, if the
submanifold is described byN = (x0 +s cos θ0, y0 +s sin θ0)
for s ∈ R and |θ − θ0| is sufficiently small, we can get
arbitrarily close toN using a linear control law (described
below) that is valid for both models in the multiple model
system for the vehicle. These three primitives are enough to
produce a motion planner, as follows.

Motion Planning Algorithm for Vehicle in Fig. 1

P1 Turn vehicle until at an angle ofπ6 to the line leaving
the point (x0, y0) (the vehicle’s initial position) at an
angle ofθf (the desired final orientation).

P2 Use the control law

u1 = k

u2 = −k1(g−1(q0 − qf ))− k2(θ − θf )− k3φ

until vehicle is within ε/2 of the line and within
ε

2
√

(x−xf )2+(y−yf )2
of the orientationθf . Here g is



the mapping from the world coordinates to the body
coordinates.

P3 Travel on the forward-backward primitive to withinε/2
of (xf , yf ).

We call these three primitives (P1, P2, and P3) “Feedback
Primitives” because each one involves some level of feedback
in its statement. The first and third primitives (P1 and P3) use
feedback to determine when they should terminate, and the
second primitive (P2) uses continuous feedback for purposes
of stabilization to the manifoldN .

Lemma 4.1:The motion plan in the above algorithm
has a finite-time admissible solution for every
((x0, y0, θ0), (xf , yf , θf )) pair.

Proof: We work backwards from(xf , yf , θf ). Define the
vehicle coordinates as(x, y, θ) and define the manifoldN by
N = (xf + s cos θf , yf + s sin θf ) (for s ∈ R). The distance
from a point(x, y) ∈ R2 to N is defined bydistN ((x, y)) =
min
s∈R

‖(x, y) − (xf + s cos θf , yf + s sin θf )‖. If the vehicle

satisfiesdistN ((x, y)) < ε/2, and|θ−θf | < ε
2‖(x,y)−(xf ,yf )‖ ,

then the vehicle will be withinε2 after backing up a distance
‖(x, y)− (xf , yf )‖.

Now we need to show that we can make the vehicle satisfy
distN ((x, y)) < ε/2 and|θ−θf | < ε

2‖(x,y)−(xf ,yf )‖ . To do so,
we use the fact that for(θ − θf ) sufficiently small the linear
control law

u1 = k

u2 = −k1(g−1(q0 − qf ))− k2(θ − θf )− k3φ

is stable toN for both parts of the multiple model system.
(This can be verified using the common Lyapunov function
candidateV = distN (·)). Therefore, because the controlled
system is asymptotically stable, there exists a time such that
the vehicle will be withinε/2 of N and the orientation will
be within ε

2
√

(x−xf )2+(y−yf )2
of the desired orientationθf .

Lastly, we need to be able to orient the vehicle so that
|θ − θf | is small (in this case|θ − θf | < π

6 works well).
However, we can see from the equations of motion that for
both models, turning the wheel to some choice ofφ guarantees
that the vehicle will turn. That is, forψ 6= 0 we know that
0 /∈ θ̇. We know this because zero is not in the convex hull
of the models from the multiple model system. That is, either
θ̇ < 0 or θ̇ > 0 for ψ 6= 0–hence the vehicle must turn in one
direction for both models.

We have shown that for any choice of initial condi-
tion (x0, y0, θ0) and final condition(xf , yf , θf )) this motion
plan will bring the vehicle from(x0, y0, θ0) to within ε of
(xf , yf , θf )).

Hence, the use of these three primitives provides a planner
that is guaranteed to have a solution for any initial condition
and any final condition inSE(2), at the expense of requiring
feedback as anencoded part of the primitive definition. This
motion plan does not account for obstacles nor does it account
for lack of dead reckoning. It does produce a functional
motion planner in the absence of these complexities that
accommodates the errors generated by the contact state un-
certainty. Moreover, in practice, accounting for obstacles can
be achieved reasonably by choosing intermediate waypoints

that avoid the obstacles. However, we do not address obstacles
here.

Although this approach is effective for this example, cur-
rently there are no guidelines for how to generalize this
approach. We must be able to show the existence of feedback
primitives and, moreover, show how to construct a motion
planner based on them. We intend to do this by extending
the work on “kinematically decoupled vector fields” [32] by
finding conditions under which the decoupled vector fields are
invariant with respect toσ dynamics.

C. Simulation
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Fig. 2. Simulation (inMathematica) of overconstrained rover-type vehicle
driving from (x0, y0, θ0) = (0, 0, π

2
) to (xf , yf , θf ) = (8, 2, π

2
)

We simulated this system using the equations of motion
in Eq. (5) and by havingσ1 be a random variable. We
usedMathematicafor the numerical simulation. Primitive 1
requires that the wheel be turned at some some angleψ which
we chose to beπ6 . We ran the algorithm over many initial
conditions and never came across a failure mode. Figure 2
shows snapshots of one simulation that illustrates nicely the
functionality (and some shortcomings) of the algorithm. The
initial condition was (x0, y0, θ0) = (0, 0, π2 ) and the final
condition was(xf , yf , θf ) = (8, 2, π2 ). Therefore,N = (8, s)
for s ∈ R. Although the vehicle does eventually arrive at
the final destination, it clearly turned the wrong direction
at the beginning of the algorithm. However, if the final
condition was(xf , yf , θf ) = (−8, 2, π2 ), the algorithm works
much more quickly because the vehicle does not need to
turn nearly2π rad before stabilizing toN . Details such as
these can be fixed in more sophisticated motion planners–our



purpose here is to show that a motion planner can indeed be
designed that incorporates the effects of uncertainty in contact
state (and possibly other uncertainties) while guaranteeing the
termination of the planner.

V. CONCLUSIONS

In this paper we introduce both a class of interesting motion
planning problems and give a preliminary solution we believe
will be relevant to a reasonably wide range of mechanisms.
Despite the heuristic nature of motion planning using primi-
tives, these primitives give us insight into the general structure
one should look for. Loosely speaking, we believe that this
structure is essentially that each primitive should at least act
predictably on a submanifold of the configuration manifold. In
the case of our example, Primitive 1 (P1) acts predictably on
the manifold described by the orientationθ. Primitive 2 (P2)
acts predictably relative to the manifoldN by stabilizing to it.
Primitive 3 (P3) acts predictablyon N by just backing down
it. In some sense, this is similar to the work on manipulation
in [35] in that it just requires that the uncertainty be reduced
with each step in the plan.

It is also worth noting that although we do use feedback,
it is not our goal to create a “stabilized” system. Instead, we
see feedback as functioning purely to make the statement of
the motion primitives well-posed. In this way we avoid many
of the somewhat superficial concerns with global convergence
of nonlinear systems while simultaneously taking advantage
of the uncertainty mitigation feedback provides.

Future work will include the encoding of these primitives
into a Probabilistic Roadmap setting and the development of
numerical tools for automatically calculating “feedback prim-
itives.” Although this work is certainly preliminary, it seems
likely that this approach will eventually lead to substantial
improvements in motion planning for more general systems
with uncertain dynamics.
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[33] W. Chow, “Über systeme von linearen partiellen differentialgeichungen
erster ordinung,”Math Ann., vol. 117, pp. 98–105, 1939.

[34] F. Rampazzo and H. J. Sussmann, “Set-valued differentials and a
nonsmooth version of Chow’s theorem,” inProc. of 40th Conf. Decision
Control, 2001.

[35] M. Erdmann and M. Mason, “An exploration of sensorless manipula-
tion,” IEEE Journal of Robotics and Automation, vol. 4, no. 4, 1988.


