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Abstract— Current approaches to distributed control involving
many robots generally restrict interactions to pairs of robots
within a threshold distance. While this allows for provable
stability, there are performance costs associated with the lack
of long-distance information. We introduce the acute angle
switching algorithm, which allows a small number of long-range
interactions in addition to interactions with nearby neighbors,
without sacrificing provable stability. We prove several formal
properties of the acute angle switching algorithm, including
system-wide connectivity. Further, we show simulation results
demonstrating the efficacy and robustness of multi-robot systems
based on the acute angle switching algorithm.

I. INTRODUCTION

Teams of cooperating robots may be capable of performing
tasks that are difficult or impossible with a single robot. With
recent advances in wireless communication and integration,
it is becoming feasible to deploy such teams with robots
numbering in the hundreds. In such a system, the control and
coordination problems become challenging.

We have deleveloped a control scheme designed to address
the case of a large number of robots performing a distributed
remote sensing mission. Our approach builds upon previous
work in distributed control systems, in which each robot imple-
ments only local interactions with neighboring robots within
a set threshold distance (for example, [1], [2]). Typically,
the local interactions are designed to create desirable overall
properties in the system. Thus, there is global cooperation
without any centralized control, which is essential for systems
that must scale to hundreds of robots.

Limiting interactions to neighbors within a threshold dis-
tance allows for provable stability, but has several drawbacks.
Most significantly, the robots may be partitioned into several
disconnected clusters. Causes of partitioning may include
environmental disturbances, failure of one or more robots,
or temporary communications failure, among others. With a
threshold-distance algorithm, there is no guarantee that the
disconnected clusters will ever reconnect.

Our work extends the previous approach so that robots
interact with selected neighboring robots at larger distances
when possible, in addition to interacting with neighbors within
a threshold distance. We have developed an acute angle
switching algorithm that guarantees connectivity at all times
when the robots’ vision range is sufficient. The acute angle

switching algorithm ensures that any disconnected clusters will
reconnect if the environment allows.

In this paper, we describe the acute angle switching al-
gorithm itself, and formally show the key properties of the
algorithm. We then discuss implementation concerns and show
simulation results.

In a companion paper[3] , we formally prove that the acute
angle switching algorithm does not destabilize the system.

II. RELATED WORK

There is a significant body of previous work dealing with
coordination of small teams of robots, e.g.[4], [5], [6], [7], [8],
[9]. More recently, there has been research into behavior-based
and virtual-physics based control of large teams of robots[10],
[11], [12], [1], [13], [14]. The work most closely related to
our own is summarized below.

A. Behavior-based Control
Fully distributed control based upon simple local behaviors

has been used in several contexts. Much of this research is
based on the intuition gained from observing behaviors such
as flocking in animals. In flocking situations, animals seem to
draw most of their behavioral cues from the nearby flockmates.
Using this observation as a basis, Brooks[10] has investigated
behavior-based control extensively; Werger[11] later described
the design principles of such systems. Balch and Hybinette[15]
suggested the use of “attachment sites” that mimic the geom-
etry of crystals; this is used to create formations with large
numbers of robots. A variety of projects have made use of
“swarm robotics,” e.g., [16] and [17], to carry out simple
tasks such as light tracking. Gage[12] investigated the use of
robot swarms to provide blanket, barrier, or sweep coverage
of an area. Several researches have used models based on
the interactions of ants within a colony[18], [17], [19]. These
approaches generally seek to define simple local behaviors that
lead to large-scale properties that are beneficial in a particular
application.

Our work seeks to extend the intuition behind behavior-
based control to include small amounts of non-local infor-
mation. We hypothesize that while animals in a flock mostly
follow their local neighbors, they may also make use of
some larger-scale observations, especially when there are few
neighbors in the immediate vicinity. This inspires us to use



a switching function that occasionally allows interaction over
longer distances.

B. Virtual Physics
Distributed control based on virtual physics (also called

“artificial physics” or “physicomimetics”) has also been inves-
tigated, although not in the manner described here. Howard,
Mataric and Sukhatme[1] model robots as like electric charges
in order to cause uniform deployment into an unknown en-
closed area. Spears and Gordon[13], [14], [20] use a more
sophisticated model analogous to the gravitational force, but
make the force repulsive at close range. Both of these mod-
els use switching functions based on a threshold distance.
McLurkin[21] used a partially-connected interaction graph
with a physics model similar to that of compressed springs
to produce uniform deployment within a limited indoor envi-
ronment. These works provide useful heuristic algorithms, but
unlike our work, they do not attempt to show any provable
properties of the resulting formations.

C. Switched Systems
Jadbabaie and colleagues used algebraic graph theory to

show stability for switched networks using nearby-neighbor
rules[2], [22], [23]. Hespanha and Morse used dwell-time
analysis to show stability in systems with arbitrary switching
that is slow on the average[24], [25], [26]. Bullo and col-
leagues showed stability in a switched system using Voronoi
neighbors[27]. These results all differ from our work in that
we use a switching function that is designed first to create
specific geometric properties.

III. ACUTE ANGLE SWITCHING ALGORITHM

Our system is based on simple spring-like interactions
between the robots. Such dynamics are intuitive and easy
to implement on a real system. Robots use the acute angle
switching algorithm to determine with which other robots to
interact.

For a given set of springs, the control law for each robot is

ẍ = u (1)

u =
[

∑

i∈S

ks(li − l0)v̂i

]

− kdẋ (2)

where x represents the cartesian coordinates describing the
robot’s position, ẍ is the robot’s acceleration, ẋ is the robot’s
velocity, S is the set of springs connected to this robot, li is
the length of the i’th spring, and v̂i is the unit vector from this
robot to the robot on the other end of the i’th spring. Control
constants are the natural spring length (l0), the spring stiffness
(ks), and the damping coefficient (kd).

At every time step, the current set of springs is determined
with an acute angle test. Consider a graph in which the
vertices represent robots and the edges represent virtual spring
connections. Each vertex has a location equivalent to the
estimated location of the robot it represents. By definition,
there is an edge between vertices A and B if and only if for
all other vertices C, the interior angle 6 ACB is acute. This

creates a mesh of acute triangles. Note that the acute-angle
test is equivalent to a test for the presence of any vertex C

inside the circle with diameter AB, which is more efficient to
compute.

The graph produced by the acute-angle test is equivalent
to the Gabriel graph, which was originally described in the
context of geographic variation analysis[28]1.

Figure 1 shows two examples of the acute-angle test. In
Figure 1(a), an edge exists between A and B, since all interior
angles 6 ACB are acute. In Figure 1(b), the edge does not
exist because the acute-angle test fails with robot C4. The
circle with diameter AB is also shown; it is equivalent to say
that the edge does not exist because C4 is inside the circle.

The basic acute angle switching algorithm is fully dis-
tributed; robots need only local information in order to de-
termine spring connections. Our simulations show empirically
that basic acute-angle meshes are stable. In a companion
paper[3], we describe a modified algorithm that uses an
additional value called the energy reserve, which is propagated
through the mesh at low frequency and used to restrict
switching in certain cases. We show that the modified acute
angle switching algorithm creates provably stable meshes.

IV. PROPERTIES OF ACUTE-ANGLE MESHES

Acute-angle meshes have several desirable properties, in-
cluding provable connectivity. For completeness, we present
proofs of the more relevant properties. Alternative proofs of
these properties, as well as additional properties, may be found
in [29].

Definition 4.1: A ./ B is a relation on robots A and B.
A ./ B iff ∀ robots C distinct from A and B, the interior
angle 6 ACB is acute. A ./ B indicates that a spring exists
between A and B.

Definition 4.2: A¬B is defined as (not A ./ B).
Definition 4.3: dist(X,Y ) represents the distance between

robots X and Y .
Lemma 4.4: All robots have a spring connection to the

nearest neighboring robot.
Proof: Suppose ∃ at least 2 robots. Pick any robot A.

Then some robot B must be closest to A; that is, ∃ robot
B, B 6= A, such that ∀ robots C distinct from A and B,
dist(A,B) ≤ dist(A,C). We want to show A ./ B. Let
b represent interior angle 6 ABC and let c represent interior
angle 6 ACB. Since dist(A,B) ≤ dist(A,C), we know c ≤
b. Thus c must be acute, since c+b < 180 and c is the smaller
of the two. This is true for any choice of robot C, which is
exactly the condition that defines A ./ B.

Lemma 4.5: For robots A and B, if A¬B then there exists
a robot C distinct from A and B such that dist(A,C) <

dist(A,B) and dist(B,C) < dist(A,B). That is, if A and B

are not connected then some C is closer to A and to B than
they are to each other.

1As the authors do not follow the literature in geographic analysis, we
arrived at this algorithm independently. We thank the anonymous reviewer
for bringing this reference to our attention.



(a) Satisfied acute-angle test (b) Unsatisfied acute-angle test

Fig. 1. Illustration of acute-angle test

Fig. 2. Illustration of Theorem 4.6.

Proof: By definition, if A¬B then ∃ robot C distinct
from A and B such that the interior angle 6 ACB ≥ 90 (this
is the contrapositive of the definition). With this choice of C,
segment AB is the longest side of triangle ABC, since it is
opposite the largest angle. Thus, dist(A,C) < dist(A,B) and
dist(B,C) < dist(A,B).

Theorem 4.6: Any acute-angle spring mesh is planar.
Proof: By contradiction (see Figure 2): Suppose an in-

tersection exists. Specifically, suppose A ./ B and C ./ D for
distinct robots A,B,C,D and AB intersects CD. Consider
quadrilateral ACBD. Some angle in any quadrilateral must be
at least 90 deg. Without loss of generality, let 6 DAC ≥ 90.
Then by definition, C¬D since it fails the acute-angle test
with A. This contradicts C ./ D. Since any intersection leads
to a contradiction, the mesh must be planar.

Theorem 4.7: Any acute-angle spring mesh is connected.

Proof: Consider a spring mesh M partitioned into two
parts, M1 and M2, so that every robot is in either M1 or
M2 and there is at least one robot each in M1 and M2. It
is sufficient to show that there exists a spring between some
robot in M1 and some robot in M2 for any such partitioning.2

Pick robots A ∈ M1 and B ∈ M2 such that for any A′ ∈
M1, B′ ∈ M2, dist(A,B) ≤ dist(A′, B′). That is, pick the
robots A and B with the smallest distance between them. Now
we show A ./ B by contradiction.

Suppose A¬B. Then by Lemma 4.5, there is a robot C such
that dist(A,C) < dist(A,B) and dist(B,C) < dist(A,B).
Robot C must be in either M1 or M2. If C ∈ M1 then
dist(A,B) ≤ dist(C,B) because of how we selected A

and B (we are using C as A′ and B as B′). However, we
know dist(C,B) = dist(B,C) < dist(A,B), which is a
contradiction. If C ∈ M2 there is a similar contradiction, so
A ./ B.

This proof is valid when there are at least 3 robots. The
2–robot case is covered by Lemma 4.4. The 1–robot case is
meaningless.

The preceding proofs assume that vision limitations are not
significant. In reality, a mesh could of course become dis-
connected due to great distances or environmental occlusion.
However, since the connections between two partitions always
include the shortest pairwise distance between robots in each
partition, acute-angle meshes tend to be connected whenever
the environment allows.

V. IMPLEMENTATION CONCERNS

The control scheme we have described is straightforward
to implement and inherently scalable. The complexity of the

2This is true because if some group of robots M
′ ⊂ M is not connected

to the others, then one can set M1 = M
′ and M2 = M \ M

′. This
immediately leads to a contradiction, since there must be at least one spring
between M1 and M2.



(a) Initial condition (b) Final condition with threshold distance
algorithm

(c) Final configuration with acute angle algo-
rithm

Fig. 3. Multiple clusters of robots deploying into a single mesh
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Fig. 4. Fraction of edges that are not within threshold distance, for the
situation shown in Figure 3

algorithm running on each robot increases with the number
of locally visible robots (that is, the number of neighboring
robots that are currently in sight), but significantly, complexity
is independent of the total number of robots. In fact, robots are
not explicitly aware of the existence of any other robot that is
not locally visible. For this reason, there is no particular limit
on the number of robots that may be members of a single
cluster.

There is no fundamental communication overhead associ-
ated with the control scheme. Since the acute angle switching
algorithm and force computations are symmetric, it is not
necessary for robots to communicate with each other in
order to update the graph topology and execute the virtual
physics model. However, the modified switching algorithm
described in [3] does require periodic communication with
local neighbors.

A. Simulation Results
We have implemented our dynamics model in simulation

with both the threshold distance and acute angle switching
algorithms. Figure 3 shows four separate clusters of ten
robots each deploying into a single mesh. With the threshold
distance algorithm, two of the clusters combine, but the other
two remain separate. The acute angle switching algorithm

Fig. 5. Initial condition

Fig. 6. After multi-robot failure, using threshold distance algorithm

successfully combines all four clusters into a single connected
mesh. For the latter case, Figure 4 shows the fraction of the
edges that are longer than the threshold distance as a func-
tion of simulation time. This quantity represents the degree
to which the acute angle switching algorithm is behaving
differently than the threshold distance algorithm. There are a
significant number of long edges during the period when the
clusters are combining, but the number of long edges decreases
rapidly to zero when the combination is complete. This is
not surprising—the dynamics of the system tend to drive all
edge lengths to the natural length. Thus, the acute angle mesh
becomes equivalent to the threshold distance mesh over time.

Figures 5, 6, and 7 show the performance of both algo-
rithms for a simple test case involving multiple robot failure.
Figure 5 shows an initial formation of 31 robots in a stable
configuration. In this test case, three robots in the center of
the formation fail simultaneoulsy, causing the overall mesh to
be partitioned into two smaller meshes.



(a) Immediately after failure (b) Final configuration

Fig. 7. After multi-robot failure, using acute angle algorithm

(a) Intermediate state (b) Final configuration

Fig. 9. Target tracking using threshold distance algorithm

Fig. 8. Initial condition: all targets are moving laterally away from the mesh.

As seen in Figure 6, the threshold distance switching
algorithm does not cause the two smaller meshes to join, since
the robots in each partition are beyond the threshold distance
from each other. However, the acute angle switching algorithm
will cause the partitions to join, provided that the robots
have sufficient vision range (which is true by definition in
this case). Figure 7 shows the acute angle mesh configuration
immediately after the multi-robot failure, and the final stable
configuration.

Figures 8, 9, and 10 show a situation in which the positions
of the robots are externally forced by the presence of targets
(denoted by squares). All targets are moving away from the
mesh, as the robots near the targets move to intercept. The
targets “stretch” the entire mesh, but distortion in the mesh

Fig. 10. Final condition using acute angle switching algorithm

is most significant near the targets, since the disturbance
caused by the targets is split among more and more springs
as it propagates inward. Thus, the longest edges are those
connected to the robots that are intercepting the targets.

When using the threshold distance algorithm, this fact
means that the robots tracking the targets may split off from
the main group, as their connections are stretched beyond the
threshold. This is illustrated in Figure 9. Such target-induced
splits do not occur with the acute angle switching algorithm,
since it is designed to prohibit disconnection. Instead, as seen
in Figure 10, a string of robots is pulled out in the direction
of each target.

VI. CONCLUSION

We have demonstrated an alternative to the standard dis-
tributed control switching algorithms based on a threshold dis-
tance. The acute angle switching algorithm creates a switched
system that features a provably connected adjacency graph.
Without sacrificing stability, this algorithm allows robots to



take advantage of long-distance interactions whenever possi-
ble, which improves the robustness and performance of the
overall system.
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