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Abstract: This paper describes a recent, innovative educational approach taken
at the University of Colorado for teaching a senior-level undergraduate controls
course. By using software written in a graphical programming language (in this
case LabVIEWTM) to control the hardware, the students were able to do all
the programming themselves. The advantages of this approach over “canned” lab
approaches are many. The students feel more responsible for the final product and
they are able to apply control techniques learned in class in a more fundamentally
creative way. We present some anecdotal evidence from the class taught in Autumn
term, 2005, that suggests that students will often use tools from beyond the scope
of the class to solve problems in creative and occasionally unexpected ways.
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1. INTRODUCTION
This paper describes an innovative approach to
teaching a controls laboratory aimed at upper
division undergraduate students. We use a less
structured approach to the laboratory than is
typically used. In particular, the students are in
charge of all programming, the labs are more
open-ended than typical controls labs, and the
students work in rotating groups (which forces
them to incorporate “legacy” code from previous
groups). This course structure gives the students
a sense of the difficulties and ambiguities often
associated with solving real problems. The basic
thesis of this paper is that if one uses a graph-
ical programming environment, a course can be
designed to give students much more control by
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allowing them to do all the programming and
giving them more open-ended assignments. The
consequence of this is a deeper understanding of
the application of controls to real problems, which
we illustrate anecdotally.

Traditional control courses often involve pre-
written, or “canned,” software (often written in
an intermediate-level programming language like
C or C++). Moreover, partially because of the
constraints imposed by the pre-written software,
labs are highly regimented. This choice is made
largely because it is not feasible for the students to
write all the code–there simply is not enough time
during a one-term course for students to cover as
much material as we would like as well as do all
the programming themselves in an intermediate-
level language.



By using a graphical programming environment,
however, it is possible to create a course where
students do nearly all of the programming them-
selves. This prepares them well for jobs where
they will be expected to know how to integrate
software and hardware, and it additionally helps
them learn controls concepts more deeply by al-
lowing them more flexibility in exploring control
designs. Moreover, this course structure has other
advantages as well. In particular, it is possible
to give students more open-ended labs (that do
not include step-by-step instructions), which is
typically more engaging for the students. This
also leaves more room for creative application of
concepts the students are learning.

The decision to let students write all of the
code was inspired by noticing that graphical
programming environments (such as LabVIEW,
Matlab/SimulinkTM, and others) are faster envi-
ronments for programming. We used LabVIEW
for all laboratory development and students used
LabVIEW for analysis, simulation, and exper-
imental implementation. (For a useful, if not
comprehensive, introduction to LabVIEW, see
(Bishop, 2003).)

Over the course of the term, the students learned
to write all of their own code, both for simula-
tion and for hardware experiments. They quite
literally started with blank code, or would incor-
porate student-created code from previous labs.
They used LabVIEW in a manner similar to that
reported in (Benyo et al., 2003). However, instead
of the instructor and teaching assistant writing
the code for the students, the students were given
very short tutorials on graphical programming
and wrote the code themselves.

This paper is organized as follows. Section 2 dis-
cusses the hardware setup, the lab organization,
the tasks the students were expected to complete,
and the general level of background students had
coming into the course. Section 3 has anecdotal
evidence that this structuring of the class led to
more internalization of controls techniques as well
as more creative approaches to open-ended prob-
lems. Section 4 discusses the necessary trade-offs
made when teaching a course using the described
approach. Section 5 discusses the various advan-
tages and disadvantages to the instructor using
this method and Section 6 describes student re-
actions to the course, including course evaluation
results. We end with conclusions in Section 7.

2. LAB ORGANIZATION

The Electrical and Computer Engineering Depart-
ment at the University of Colorado offers two
senior elective control courses: Control Systems
Analysis (ECEN 4138) and Control Systems Lab-
oratory (ECEN 4638). Both courses typically have

20-30 students. This last autumn was the first
time in the last several years the laboratory was
offered using hardware, made possible through
funds provided by the university and National
Instruments. Typically students take both courses
concurrently, although they may take the lab if
they have taken the lecture course previously.

The goal of the class was two-fold. First and
foremost, the class aimed to reinforce the stu-
dents’ understanding of introductory controls con-
cepts–Modeling, PID, Root Locus, Bode, Nyquist,
and state-space techniques. A secondary goal of
the class was to reinforce the fact that the models
we write down do not actually reflect the true
dynamics of a system; they only approximate
them. We wanted to see students discover control
designs that work in principle but fail in practice.
The more students are in charge of discoveries of
this sort, the more we expect they will retain key
concepts past the class.

All the students worked in randomly selected,
rotating groups of three people each. These groups
changed five times over the course of the term.
This structure forced the students to combine
and use legacy code from each member’s previous
group. One of the byproducts of this was that by
the end of term, all the students had very good,
stable code for running experiments. Moreover,
they typically understood the code and could
replicate it as needed.

The course included the following topics.

(1) Modeling
(2) System Identification
(3) PID tuning
(4) Lead/Lag Controllers
(5) Root Locus Analysis
(6) Bode/Nyquist Analysis

Moreover, the students did a final project. 2

2.1 Student Background Prior To This Laboratory

Students were predominantly seniors with a stan-
dard electrical engineering background. All but
one student was taking the lecture course (ECEN
4138) concurrently (the one student had taken it
a year previously). Most had never seen any more
controls than a PID controller.

Almost none of the students had any graphical
programming experience, but several had seen
Matlab/Simulink and LabVIEW in demonstra-
tions in other classes. Hence, students view these
languages more as interfaces than computer lan-
guages. Because of this, the students had some-

2 Although this last term we did not have time for a state-
space lab, this was largely due to the course being in its

infancy, and we anticipate that we will include state-space

design in Autumn term, 2006.



what of a predisposition against using the soft-
ware, but this was overcome by pointing out that
it would be nearly impossible to have them write
all the code in C or C++.

2.2 Hardware

The experimental set-up used in the laboratory
was comprised of a torsional disk system from
Education Control Products, seen in Figure 1.
These experiments are relatively robust, which
was particularly important given the level of con-
trol we gave the students. The software used was
LabVIEW 7.1 (as it has been used in other class-
rooms, see (Benyo et al., 2003)), the Simulation
Module 1.0 (Haugen, 2005b) and Control Design
Toolkit 2.0 (Haugen, 2005a) that both run as
part of LabVIEW. Our input/output capabili-
ties were all provided by a National Instruments
FPGA (NI FPGA 7831R) (Falcon, 2006; Limroth
et al., 2005). The students modeled the system,
performed system identification, applied the basic
techniques of PID tuning, Lead/Lag, Root Locus,
Bode, and Nyquist analysis. The course ended
with a final project and competition.

Fig. 1. The ECP Model 205a Torsional Plant
(photograph taken from the manufacturer’s
website http://www.ecpsystems.com)

This system has a 2 N · m DC motor at the
bottom that drives the first disk. Two more disks
are connected via a torsional spring that allow
for torsional displacement between disks with an
associated torsional spring constant. Thus, the
dynamics of this system are sixth-order, mak-
ing this a nontrivial control system. Moreover,
weights (also seen in Fig. 1) are included that
allow the user to change the inertia of each disk.
This system is basically linear, making it a good
choice for a linear controls laboratory. The biggest
downside to this experiment is that it is neutrally
stable, unlike other classic control systems such

as an inverted pendulum. (For a description of
using these plants with LabVIEW, see (Bishop
and Lin, 2005).)

2.3 Programming From the Ground Up

As previously mentioned, the students wrote all of
the code for the course. Hence, for simulation and
analysis, the students wrote their own simulation
code from scratch and integrated analysis tools
(such as root locus, bode, and Nyquist plots) into
their simulation. With the exception of some basic
hardware safety (such as turning the system off if
the torsion between two disks became too high),
the students also wrote all of the experimental
software. The communication and hardware safety
was given to them in the form of a template, an
example of which is seen in Fig.2.

Labs were generally open-ended (with the excep-
tion of the system identification laboratory). They
focused on problem solving rather than following
instructions. In particular, all labs were divided
into high-level tasks (known in the education com-
munity as “authentic” tasks), most of which were
not mathematically defined for the student, de-
scribed next.

2.4 Examples of Assigned Tasks

In designing the tasks for this lab, we were trying
to avoid the more traditional approach of giving
students a long series of steps to follow. Instead,
we tried to give them tasks that were more similar
to verbal tasks they might be asked to accomplish
in a job, but that nevertheless required the tech-
nical detail and insight generally learned in the
lecture course.

Examples of assigned tasks included the following:

(1) Model the ECP system as a single-input-
single-output system first using the bottom
disk as an output and then using the top
disk as an output. Simulate this using both
the symbolic transfer function and symbolic
state-space model representations in Lab-
VIEW. (Note to reader: The sample code
given to students regarding how to create
state space models in LabVIEW consisted
of what is contained in Fig.3–more than
enough to solve the problem, but in no way
a “canned” solution for them to use.)

(2) Design a controller that is stable for all
possible locations of two weights on disk 3.
Is it possible to do this and guarantee a rise
time of 0.5 second?

(3) Run the experiment and your simulation
simultaneously. What are the differences? If
there are differences, where are they coming
from and can you fix them?

(4) Consider the system with the bottom disk
as an output and with the top disk as an



Figure 1: The template you will be using

3 Things You May Want To Know

All of the FPGA code for this lab and subsequent labs will be written for you and loaded
onto the boards in advance. This has been done primarily because it can take up to an hour
to download code to the device. This also means that you should under no circumstances
alter the code on the FPGA that is being referenced in your vi’s.

Template vi’s, in normal LabVIEW for windows, have been created for your use in this
lab. They can be found at

C:\Program files\National Instruments\Code_for_L3

on the four machines in the lab that are attached to the ECP units. You should use
”Clamped Plant.vi” for all tasks that do not involve the hardware gain. When you open
this vi you may be prompted to find ”reading encoders.vi.” It should by default be in the
window that pops up, in which case select this vi and click ok. If not, the vi can be found at

C:\Program files\National Instruments\FPGA_code.

Encoder 0 is at the bottom of the ECP unit. The only thing that you need to do to this
code is convert encoder position to radians and look at the output. To convert to radians
you must use the fact that there are 16,000 pulses/revolution of the disk.

Since the data acquisition and analogue out(which will be how you send an input to the
motor in ”Hardware Gain on Torque”) are within a Simulation Loop, you can use the same
vi’s that you have been using to do your Simulations, i.e. step input, simulation time graph,
etc.
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Fig. 2. One of the templates the students used for communicating with the hardware. It provided the
signals going to the DC motor and coming from the encoders, as well as a halt feature to gracefully
reset the FPGA if needed. This was all the students were provided with–everything else needed for
the laboratory they created themselves.

output. Which is “more” stable using a PID
or Lead/Lag controller? Why? You may ap-
proach this problem in whatever way you
find most convenient–just detail it in your
writeup.

(5) Plot the root locus for the parameter you
think introduces the largest amount of uncer-
tainty. You may wish to “lump” some uncer-
tainties together. Does a parameter variation
necessarily give a valid root locus? 3

(6) We know that using a PID controller with
the top disk as the output requires a very
low gain on the controller. Design a higher
performance controller that allows you to
push the overall system gain up higher while
not destabilizing.

The labs generally became shorter and shorter as
the term progressed and the students required less
and less guidance in the labs. This, it seems, is a
good indication that the students were becoming
more competent. By the time the end of term drew
near, and it was time to do the final project, it
was possible to give the final project using the
following four bullets:

(1) make the bottom disk go from 0 to π and
stabilize back to 0 as quickly as possible,

(2) accomplish the same task for the top disk,
(3) do so without breaking the ECP unit,
(4) and do so knowing that the instructor will

move the weights up to three centimeters
away from their nominal position on the ECP
machine. 4

3. CLASSROOM SUCCESSES
There were several different elements of this en-
deavor that we consider substantial successes.

3 The answer to this is “no” because the root locus may

have higher order dependencies, depending on how the
parameter enters the transfer function.
4 Hence, introducing uncertainty into the system.

These include the increasing quality of computer
code the students were writing, the improved
understanding of block diagram representations
(that was a clear consequence of having to create
block diagrams repeatedly while programming in
the graphical environment), and the creativity
shown in the final projects. By the end of the
term, the students were treating control problems
as actual problems to be solved, and were using
an appropriate balance of physical intuition and
analysis skills from the control analysis lecture
course.

Often, because of the lack of structure in the
teaching of this laboratory, students would come
up with controller designs that worked in princi-
ple but not in practice. This, too, is a valuable
aspect of the open-ended nature of the way the
laboratory was designed.

3.1 Final Project

This section describes anecdotal evidence, based
on this one class, that the “programming from
the ground up” teaching philosophy does indeed
have positive consequences. As noted above, the
final project was very simple. Students were to
make the bottom disk go from 0 to π and stabilize
back to 0 (within 2 degrees or 0.035 radians) as
quickly as possible and then were to do a separate
design with the same goal for the top disk. The
students then competed on the final day of class
for who had the best performance for the bottom
disk and who had the best performance for the top
disk. In addition, the students knew that on the
day of the competition the instructor would move
the weights to introduce some plant uncertainty
(although not of a particularly malicious type).

Using the bottom disk as the output, of course, did
not present much difficulty. All the students knew
that they should go with some version of a PID
or Lead/Lag controller. However, using the top



9. A completed loop would look something like what is found in Fig.2 (with a proportional
controller).

10. Symbolic State-Space Systems are roughly the same procedure.

11. More details can be found in the Control Design Toolkit Manual, which is available
online from National Instruments at ni.com. A Google search should find it for you
reasonably quickly.

Figure 2: A LabView program with a symbolic transfer function RL
Ls+R , where R = 10 and

L = 2.

3.2 Creating Sub-Systems in your Simulation

You will find that your code gets quite complicated as you get more functionality. If you
want to replace part of your code with a subsystem block, just select the parts you want in
the subsystem and go to Edit and select Create Simulation Subsystem. This will create a
block that has the same inputs and outputs and the region you selected. You can then view
the contents of the block by right clicking on it and selecting Open Subsystem.

ECEN 4638–T.D. Murphey
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Fig. 3. Sample code given to the students to help them in creating state space models in LabVIEW.

disk as the output generated surprisingly creative
approaches. This is because the top disk is the
“noncollocated” problem (where the actuation is
not located at the same place as the sensing),
which is substantially more challenging than the
collocated problem. Moreover, we believe that
some of the approaches students used would have
been impossible to expect in a class that gave the
students “canned” software for control design.

A few notable designs (using the top disk as the
output) by students:

(1) The noncollocated problem has a transfer
function with six poles and no zeros. One stu-
dent tried a controller that had five poles and
no zeros. This controller worked in simulation
(with terrific performance and stability) but
did not work on the experiment. He discov-
ered that the controller was requiring 104

N ·m while the DC motor we had could only
provide 2 N · m. Fortunately, he introduced
a saturation into his simulation after this.

(2) Some groups decided that despite the fact
that we had not covered state-space control in
the laboratory, they would use a state-space
design for the final project. They learned
LabVIEW’s tools for doing so and used both
an LQR and pole placement technique for
their designs.

(3) Another group also chose to use a state-space
design. However, they noticed that in fact
the ECP unit has all three outputs available.
This, they reasoned (correctly), implied that
they could get a much better estimate of
the system using all three outputs rather
than getting an estimate only using one out-
put and using a sixth order estimator. Their
performance ended up being nearly twice as
fast as any other group. This is an excellent
example of the groups choosing a perfectly
valid control strategy that creatively applies

what they have learned in class and in lab,
but nevertheless goes beyond the scope of
what they have explicitly learned. Moreover,
this strategy would have impossible to imple-
ment, much less conceive of, in a more struc-
tured lab where all the code was provided a
priori.

(4) The second best performance came from a
group that realized that the top disk was
passively stable with respect to the bottom
disk. Hence, they chose to use a PID con-
troller on the bottom disk and allowed the
natural dynamics of the system to stabilize
the top disk. Hence, they were using a form
of passivity control (certainly without ever
even having heard the phrase). There is no
question that this solution was somewhat
outside the intended approach, but this does
not mean that it does not reflect real insight
and learning on the part of the students.

4. WHAT IS LOST IN THIS APPROACH

As with all choices in teaching, some things were
lost because of having the students write their
own code in the graphical environment. One of
the most significant of these losses is that the
students never had to concern themselves with
digital control–LabVIEW took care of all the
translation of continuous time design into digital
control on the FPGA.

Moreover, the students did not learn anything
about the embedded systems (in particular, the
FPGA) they were using. This is because Lab-
VIEW automatically compiled all the code they
were writing to the FPGA. Whether or not this
is actually a negative or a positive aspect of the
class is up for debate, particularly since the course
is not aimed at embedded systems. Such a course
would, in all likelihood, not allow students to actu-
ally implement much more than a PID controller
by the end of a one term course.



Another downside, which we intend to address in
Autumn term, 2006, is the fact that there was
only one experiment. The motivation for this was
that the students had to derive all the equations of
motion themselves, and this was reasonably time-
consuming. However, there were several times dur-
ing the course when the laboratory was substan-
tially ahead of the lecture course. Therefore, what
is needed are substantially simpler (e.g., lower-
order) systems that are reasonably easy to model
but that have different properties from the ECP
unit. In particular, we would like to use a plant
that is unstable, such as an inverted pendulum.

5. PROS/CONS OF TEACHING THIS WAY

This method of teaching is easier for the instruc-
tor prior to a course beginning and harder once
the course has started. The instructor must be
competent at programming in the chosen graph-
ical programming language. This is because the
students are actually learning not just how to
program in the graphical environment, but they
are simultaneously improving their more generic
programming skills.

Another aspect of a course like this is that stu-
dents get to see the instructor solving problems
in class. Although in principle this can undermine
the instructor’s authority, the first author’s expe-
rience teaching this class is that the students gen-
erally appreciated the spontaneous nature of the
interaction, even when it occasionally produced
enigmatic results that were not immediately re-
solvable.

6. STUDENT REACTIONS

The students reacted positively to nearly all por-
tions of the course. Our university administers
mandatory course evaluations at the end of every
course, with the most important metrics being
“Course Rating” and “Instructor Rating.” The
students gave the course a B+ and the instructor
an A, both of which are high for a laboratory (par-
ticularly given that it was the first time this lab-
oratory was offered in its current form). Students
specifically mentioned the fact that programming
was a valuable experience (partially because many
of them were asked in job interviews whether
they were familiar with graphical programming
techniques). Moreover, the majority of students
felt that they had learned control techniques that
they would feel comfortable applying in realistic
settings. (One student (out of 22) complained that
the labs were not “industrial” enough.) Roughly
two-thirds of the students mentioned that the
open-ended labs were more interesting and fun
than previous lab courses they had taken.

The only part of the course that the students
did not like was the rotating, assigned groups.
This is because of the fact that they had to

incorporate legacy code into their projects at the
beginning of each new rotation. Although they
viewed this negatively, the authors feel that the
uniform improvement in the quality of code over
the course of the term is an indication that this
was a useful part of the course. Therefore, despite
the fact that students disliked the practice, we
will continue to have rotating, assigned groups in
future versions of the course.

7. CONCLUSION
This paper describes an approach to teaching a
hardware-based controls laboratory that allows
students to be in charge of all the programming
required for the course. This was made possible
through the choice of a graphical programming
environment, specifically LabVIEW 7.1, though
any graphical programming language would ac-
complish the same goal. We found that students
were more involved in the course and offered more
intrinsically creative solutions to problems than
they would in a course where the software is
pre-written for them. Additionally, the laboratory
used open-ended labs, which was facilitated by the
fact that the students wrote the software them-
selves. We are going to revise the course again
to involve more experiments, to cover state-space
methods, and to make the assignments more open-
ended. Moreover, we are going to engage in more
formal assessment of the course, partially sup-
ported by the U.S. National Science Foundation.
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