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The Power Dissipation Method and Kinematic
Reducibility of Multiple Model Robotic

Systems
T.D. Murphey and J.W. Burdick

Abstract—This paper develops a formal connection be-
tween the Power Dissipation Method and Lagrangian me-
chanics, with specific application to robotic systems. Such a
connection is necessary for understanding how some of the
successes in motion planning and stabilization for smooth
kinematic robotic systems can be extended to systems with
frictional interactions and overconstrained systems. We es-
tablish this connection using the idea of a multiple model
system, and then show that multiple model systems arise
naturally in a number of instances, including those arising
in cases traditionally addressed using the Power Dissipation
Method. We then give necessary and sufficient conditions
for a dynamic multiple model systems to be reducible to a
kinematic multiple model system. We are particularly moti-
vated by mechanical systems undergoing multiple intermit-
tent frictional contacts, such as distributed manipulators,
overconstrained wheeled vehicles, and objects that are ma-
nipulated by grasping or pushing. Examples illustrate how
these results can provide insight into the analysis and control
of physical systems.

I. I NTRODUCTION

Many mechanical systems, though intrinsically sec-
ond order in their governing dynamics, can be adequately
described by first order equations of motion. That is,
one can often propose a “quasi-static” or “kinematic” ver-
sion of the governing equations of motion for the pur-
poses of system analysis or control design. The bene-
fits of this simplification are numerous: the dimension of
the state space drops by half, the control inputs go from
being force inputs to being velocity inputs (which are of-
ten more easily realized in practice), and the governing
equations typically take a simpler form than the full dy-
namic model. Additionally, kinematic systems, although
potentially nonlinear, do not typically involve drift terms.
There is a greater quality and quantity of nonlinear con-
trol results available for driftless systems, as compared to
systems with drift. See [3], [10], [16], [17], [22], [36],
[41] for just a few examples.

This paper has several inter-related goals. One of
the main technical goals of this paper is to determine the
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formal conditions under which such reductions can be
achieved formultiple model systems. In multiple model
systems (see Section IV) the system’s governing equa-
tions switch between several possible models that de-
scribe the system’s evolution. This paper presents neces-
sary and sufficient conditions for a multiple model system
to be kinematically reducible—i.e., the2nd-order dynam-
ical models can be reduced to1st-order kinematic models
of the form in Definition IV.1. The necessary and suffi-
cient conditions for kinematic reducibility of smooth dy-
namical systems were first developed by Lewis [23]. One
of this paper’s contributions is the extension of kinematic
reducibility theory to the multiple model case.

While our kinematic reducibility results can be ap-
plied to a large class of problems, we are particularly
motivated by the multiple model systems that arise fre-
quently in robotics practice. The multiple model frame-
work has received an increasing amount of attention in the
control community recently [4], [19], [20], [18], so there
are many control results available for our use. There-
fore, understanding the connection between problems in
robotics and the multiple model framework will be pro-
ductive. Examples of multiple model systems include
robotic systems involving intermittent mechanical con-
tacts, such as distributed manipulators, overconstrained
wheeled vehicles, and objects that are manipulated by
grasping or pushing (see Section X). A number of similar
approaches have been proposed or used to create quasi-
static models of such systems. Most representative of
these is the Power Dissipation Method (PDM) (see Sec-
tion V) introduced by Alexander and Maddocks [3] in
the context of overconstrained wheeled vehicles. Peshkin
also used similar ideas in the study of pushed objects [39].
Based on this method, one can develop first-order (or
quasi-static) equations of motion for mechanical systems
that undergo intermittent sliding contacts. We show in
Section VII that solutions to the PDM are multiple model
systems. We have used the PDM to model distributed
manipulation systems that generate motion via frictional
contacts [34], [31]. The resulting multiple model descrip-
tions are very amenable to control analysis [33], [30],
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and the associated nonsmooth control laws worked well
in practice. See [34] for details.

As a second goal of this paper, we address a key
question: does the PDM produce models that are con-
sistent with a complete dynamic (Lagrangian) analysis?
The formalization of the PDM and the analysis of its rela-
tionship to Lagrangian analysis are the other main contri-
butions of this work. Formally, in Section VIII we show
that every solution to the power dissipation method is pre-
cisely a reduction of a solution to the Lagrangian formu-
lation. Moreover, this is true forall solutions, which is
important, as solutions are not unique in either the power
dissipation method nor are they unique in the Lagrangian
formulation (when nonsmooth interactions such as im-
pacts and friction are taken into consideration).

The paper is organized as follows. To motivate our
results, we first examine some examples of mechanisms
that naturally involve stick/slip phenomenon in Section II.
Then we briefly review the classical Lagrangian approach
in Section III before covering the basic ideas of the multi-
ple model formalism in Section IV. We then specifically
address an example in Section VI using these ideas. In
Section VII we cover characteristics of the power dissi-
pation method and we then move on to reduction theory
for multiple model systems in Section VIII. Section IX
relates solutions to the power dissipation method to so-
lutions to the Lagrangian analysis. We end in Section X
with a detailed look at several examples where we have
found our analysis practically useful.

II. EXAMPLES

To show the potential breadth of applications for
our results, we summarize here four typical robotic and
physical systems to which our theory applies (Fig. 1):
a wheeled bicycle, the Rocky 7 prototype of the NASA
Mars rover family, a distributed manipulation system
whose function is to manipulate a planar object via roll-
slide contacts, and a multi-fingered robotic hand. All of
these systems are characterized by complex mechanical
interactions involving contact mechanics and slip. More
specifically, all of these systems can be modeled and an-
alyzed using the multiple-model framework developed in
this paper.

Consider the bicycle of Fig. 1(a) . For simplicity,
we assume that the bicycle is constrained to move along
a line, and that both wheels are actuated. (We will re-
peatedly return to this example, as it exhibits many of
the features that are relevant to our discussions). Apply-
ing the exact same torque to both wheels is very diffi-
cult task, and thus this bicycle would typically experience
small amounts of slipping in practice. More interestingly,
this slipping is likely to change over time due to variabil-
ity in contact friction characteristics, leading to a multiple
model, or hybrid, mechanical system. The multiple model
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Fig. 1. Here are a) a bicycle with both wheels driven, b) the Mars
rover Rocky 7 Sojourner prototype, c) a distributed manipulation test
bed developed at Caltech (see description below), and d) a hand capable
of grasping objects

methodology introduced in this paper and companion pa-
pers is well suited to analyze such systems.

The NASA Mars rover family members have six in-
dependently driven wheels as well as two wheels inde-
pendently steered. As discussed in [29] and reviewed in
Section X, because this vehicle’s suspension is kinemat-
ically overconstrained, some of these wheels are always
slipping, and it can be difficult to predict which wheels
slip at any given moment. There is already an exten-
sive literature on wheeled vehicles, establishing control-
lability based on a Lie Algebra Rank Condition (LARC)
[21], [35], stability based on center manifold theory [41]
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and hybrid systems theory [18], motion planning based
on Voronoi diagrams [9], and rapidly exploring random
trees [10]. However, all of these methods assume that
the vehicle motions are governed by smooth, kinematic
equations of motion. Because of the inherent and unpre-
dictable switches in slipping, the governing dynamics are
not smooth. Nevertheless, the methods developed in this
paper show that such vehicles are still kinematic systems,
albeit nonsmooth ones. Moreover, in related work, we
have made progress on extending classical nonlinear con-
trol concepts, such as the LARC, to the domain of mul-
tiple model systems [32]. We will discuss this more in
Section X-B.

Distributed manipulation has received recent atten-
tion in the robotics community [6], [26]. Fig. 1(c) shows
a distributed manipulation test-bed developed by the au-
thors in which nine actuated wheels can be used to ma-
nipulate planar objects set upon the manipulation sur-
face. All of these wheels can be independently driven and
steered, giving the system 18 control inputs, with only the
position and orientation of the manipulated object as the
output. Hence, this system is massively over-actuated.
The idea of many actuated devices interacting with an
object to achieve some desired manipulation goal is ap-
pealing partially because of its scalability and the possi-
bility of using many inexpensive actuators rather than a
few expensive ones. Moreover, micro-electromechanical
system (MEMS) fabrication technologies potentially en-
able distributed manipulation to be a leading candidate
for micro-manipulation. We have shown in prior work
how distributed manipulators that employ frictional con-
tacts fall into the multiple-model domain [34]. The multi-
ple model kinematic reducibility theory developed in this
paper provides a simple but rigorous framework for the
design of stabilizing control laws that take into account
the non-smooth effects of friction. We have used kine-
matic reductions both to show the potential shortcomings
of control laws based on smooth idealizations and to ex-
plicitly compute stabilizing control laws that work well
experimentally (see [34]).

Grasping and locomotion continue to be active ar-
eas of robotics research. Current methods often use kine-
matic models [16], [17] to represent the system dynamics,
yet grasping implicitly contains many of the previously
mentioned difficulties. In particular, although stick/slip
phenomena occur in a grasping problem, there are not
very convincing ways to show that the kinematic meth-
ods typically used for grasping are robust with respect to
the variation in stick and slip states for a given contact.
The analytical methods presented here create a method
for analyzing these difficulties without resorting to dy-
namic, second order analysis.

In Section X we will revisit these examples in order
to show how the kinematic reduction theory of this paper

can provide simplification or insight.

III. B ACKGROUND: LAGRANGIAN MODELS WITH

FRICTIONAL CONTACTS

This work has been largely motivated by the problem
of modeling and controlling mechanical systems which
experience multiple, possibly intermittent, contacts that
involve friction, particularly Coulomb friction. Clearly,
the contacts place constraints on the system’s evolving
motions. Constrained mechanical systems can be mod-
eled using conventional Lagrangian mechanics through
the use of Lagrange multipliers. Consider a generic me-
chanical system with up ton frictional contacts between
rigid body surfaces, where the contacts can be intermit-
tently slide or stick. Such a system admits up to2n pos-
sible contact states which represent all possible permuta-
tions of sliding and sticking. LetL(q, q̇) denote the sys-
tem’s Lagrangian (kinetic minus potential energy), where
q ∈ Q denotes the configuration of the mechanical sys-
tem,Q is its the configuration space, which is assumed
to be ann-dimensional manifold. If theith physical con-
tact does not slip, the contact imposes a nonholonomic
constraint on the mechanical system’s motion. This con-
straint can be expressed in the formωi(q)q̇ = 0. If the
ith contact slips, the Coulomb friction law states that
the tangential reaction force at that contact isFT

i =
− vi

||vi||µiF
N
i , whereµi, FN

i , andvi are respectively the
Coulomb friction coefficient, normal force to the contact-
ing surface, and slipping velocity of the contact at theith

contact. Hence, the mechanical system’s overall equa-
tions of motion can described by:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+

∑
i∈S

FT
i +

∑
j 6∈S

λjω
T
j (q) = T (1)

whereS is theslipping contact set, the {λj} are unde-
termined Lagrange multipliers, andT are the generalized
applied forces. That is,k ∈ S if the kth contact is slip-
ping. If thekth contact is not slipping,λk corresponds to
the tangential reaction force that is needed to maintain the
no-slip constraint at thekth contact. We generally assume
in this work that the contact normal forces,{FN

i } are
known. If this is not the case, then additional Lagrange
multipliers may typically be added to solve for these nor-
mal forces. Note that this description involves a choice
of coordinates. The equivalent, coordinate independent,
representation is the formalism in which we address these
problems, and is briefly reviewed in the Appendix.

There are two primary practical problems with the
Lagrangian modeling approach. First, one must solve for
the Lagrange multipliers—a tedious task that often leads
to complex equations. Second, an additional (and often
sensitive) analysis is necessary to determine which con-
tacts are slipping at any given instant. Consequently, the
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practical need to analyze such systems in a tractable way
motivates the use of quasi-static or kinematic approxi-
mations, and in particular the Power Dissipation Method
that is reviewed in the Section V. A natural question
arises when using quasistatic analysis: what is the rela-
tionship between the equations of motion predicted by
quasi-static analysis and those generated by Lagrangian
analysis? Moreover, can the quasistatic equations prop-
erly predict the motions of the true system? The next
section briefly reviews the concept of a multiple-model
system, which is the appropriate mathematical setting for
this question in the case of intermittent frictional contacts.
We describe a method for finding quasistatic equations of
motion in Section V and we answer these questions in
Section IX.

IV. BACKGROUND: MULTIPLE MODEL SYSTEMS

We use the formalism of multiple model systems to
address kinematic reducibility of systems involving fric-
tional and intermittent contact.

Definition IV.1: A control systemΣ evolving on a
smoothn-dimensional manifold,Q, is said to be amul-
tiple model driftless affine system (MMDA)if it can be
expressed in the form

Σ : q̇ = f1(q)u1 + f2(q)u2 + · · ·+ fm(q)um (2)

whereq ∈ Q. For anyq andt, the vector fieldfi assumes
a value in a finite set of vector fields:fi ∈ {gαi

|αi ∈ Ii},
with Ii an index set. The vector fieldsgαi

are assumed
to be analytic in(q, t) for all αi, and the controlsui ∈ R
are piecewise constant and bounded for alli. Moreover,
letting σi denote the “switching signals” associated with
fi

σi : Q× R −→ N
(q, t) −→ αi

theσi are measurable in(q, t).
Definition IV.1 implies that the control vector fields

may change, or switch, among a finite collection of vec-
tor fields, each representing a single smooth model in a
set of modelsP. An example of such a system is a ve-
hicle whose wheels can potentially skid. The system’s
governing dynamics will vary when the wheels slip or
do not slip. Such systems are intimately related to mul-
tiple model systems such as studied in [18]. However,
we should emphasize that the “switching” isnot like the
switching phenomena found in [8], [25], [12], [44], or
as typically studied in the hybrid control systems litera-
ture (e.g., [38], [5]). In these studies, the switching phe-
nomena is part of a control strategy to be implemented in
the controller. In our case, the switching is induced by
environmental factors, such as variations in the contact
state between rigid bodies. Since the phenomena which

govern the switching behavior may not be precisely char-
acterized, we make no assumptions about the nature of
the switching functions, except that they are measurable.
A long term goal of our work is to develop systematic
methods for analyzing control systems with the type of
hybrid (and therefore nonsmooth) structure seen in Defi-
nition IV.1.

To distinguish between the overall control system
and the smooth control systems that comprise it, we de-
fine theindividual control systemsto be the smooth con-
trol systems making up the multiple model system, com-
prising ofq̇ = g1u1 + · · ·+gkuk · · ·+gnun for gk = gαi

for someαi. A system will be termed amultiple model
affinesystem if it has the forṁq = f0(q) + f1(q)u1 +
f2(q)u2 + · · · + fm(q)um, where the vector fieldf0(q)
(or “drift term”) is also selected from a set of analytic
vector fieldsgσ0 .

V. OVERVIEW OF THE POWER DISSIPATION

METHODOLOGY

This section reviews the basic concept behind the
Power Dissipation Method (PDM), which we will for-
malize in Section VII. Letq again denote a system con-
figuration. The relative motions between moving objects
at a point contact can be written in the formω(q)q̇. If
ω(q)q̇ = 0, then the contact point is not slipping, while if
ω(q)q̇ 6= 0, thenω(q)q̇ describes the contact point’s slip-
ping velocity. Thepower dissipation functionmeasures
the object’s total frictional energy dissipation due to con-
tact slippage.

Definition V.1: Consider a mechanical system,S
(which consists of a single rigid body or a set of rigid
bodies) that maintainsn frictional contacts, where some
or all of the contacts may be slipping. TheDissipationor
Friction Functionalfor n-contact states that are governed
by Coulomb friction is defined to be

D =
n∑

i=1

µiNi | ωi(q)q̇ | (3)

whereωi(q)q̇ describes the relative slipping velocity,µi

is the Coulomb friction coefficient, andFN
i is the normal

force at theith contact.
The form of this function reflects the Coulomb fric-

tion model, but it can easily be extended to different fric-
tion models (see [37]) by replacing the linear termµiNi

with a more general state-dependent function,hi(q). Ev-
ery slipping contact dissipates energy. Based on this ob-
servation, Alexander and Maddocks proposed the follow-
ing axiom:

Power Dissipation Principle: A system’s motion at
any given instant is the one that minimizesD (Eq. 3)
with respect toq̇.
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The power dissipation methodis built upon this axiom.
That is, the first order equations of motion generated by
the system are precisely the ones that minimize the dissi-
pation.

Remark V.1:Some insight into the relationship be-
tween the motions predicted by the PDM and those given
by the Lagrangian approach can be seen in the follow-
ing example. Consider a particle constrained to move
on a surface, with friction between the particle and the
surface. Lagrangian analysis suggests that there are two
possible contact states–one slipping and one not slipping.
The PDM predicts that the particle will not slip. Hence,
it misses some of the contact states predicted by the La-
grangian framework. However, the non-slip motions that
it does predict are consistent with a Lagrangian analysis.

For overconstrained systems with control inputs, the
PDM leads to more interesting and useful results. When a
configurationq can be decomposed into two components
q = (s, r) (where we refer tos as the group variable and
r as the shape variable), Eq. (3) implies that the PDM will
predict ṡ given ṙ. In most cases of interest, the variable
ṙ corresponds to the control inputs, while the variablesṡ
corresponds the system motion of interest.

VI. EXAMPLE : A TWO-WHEELED BICYCLE

Consider the planar bicycle (Fig. 1(a)) which is con-
strained to move along a line. We will revisit this example
using the PDM formalism, but for now we treat it in the
Lagrangian framework. Letq = [x, φ1, φ2]T , whereφ1 is
the front wheel angle,φ2 is the rear wheel angle, andx de-
notes the bicycle’s translation along the line. The down-
ward normal force on each wheel depend upon the bicy-
cle’s weight distribution, which is assumed to be known.
Assume that each wheel is actuated, with torquesτ1 and
τ2, and that each wheels may possibly slip.

Using Eq. (1) and solving for the Lagrange multipli-
ers, there are four different governing equations of motion
(see Table I), each corresponding to a different type of
contact state. The analysis based on Lagrangian mechan-
ics suggests that there arefour possible contact states, cor-
responding to Eq. (A) where neither wheel slips, Eq. (B)
where the front wheel slips, Eq. (C) where the rear wheel
slips, and Eq. (D) where both wheels slip.

When theith wheel slips, the tangential reaction
force at theith contact point is governed by the Coulomb

friction law: FT
i = − ẋ−Rφ̇i

‖ẋ−Rφ̇i‖
µiF

N
i , whereµi is the

Coulomb friction coefficient, andFN
i is the normal force

bearing down upon theith wheel contact. When theith

wheel does not slip, the tangential reaction force is given
by the Lagrange multiplierλi. The Coulomb friction
model implies that the boundary between slipping and
nonslipping states occurs at some value of the Lagrange
multiplier, denoted byλnom. Whenλi > λnom

i , the ith

q̈ =

 R
2J+mR2

1
2J+mR2

1
2J+mR2

 τ1 +

 R
2J+mR2

1
2J+mR2

1
2J+mR2

 τ2 (A)

q̈ =


F R

1
J+mR2

−RF R
1

J
RF R

1
J+mR2

 +

 0
1
J
0

 τ1 +

 R
J+mR2

0
1

J+mR2

 τ2 (B)

q̈ =


F R

2
J+mR2

RF R
2

J+mR2

−RF R
2

J

 +

 R
J+mR2

1
J+mR2

0

 τ1 +

 0
0
1
J

 τ2 (C)

q̈ =


F R

1 +F R
2

m
−F R

1 R
J

−F R
2 R
J

 +

 0
1
J
0

 τ1 +

 0
0
1
J

 τ2 (D)

TABLE I
THE LAGRANGIAN DYNAMICS OF THE PLANAR BICYCLE IN THE

FOUR POSSIBLE CONTACT STATES. J IS A WHEEL’ S MOMENT OF

INERTIA ABOUT ITS ROTATIONAL AXIS , m IS TOTAL BICYCLE

MASS, AND R IS THE WHEEL RADIUS.

contact slips. Consequently, theλ space is divided into
regions corresponding to different contact slipping states.
The problem of contact state determination arises from
the inherently complicated dependency ofλ on the cur-
rent state. For the planar bicycle model, the Lagrange
multipliers assume the following values when model (A)
holds:

λ1 =
J(τ1 − τ2)−R2mτ1

R(R2m+ 2J)
λ2 =

J(τ2 − τ1)−R2mτ2
R(R2m+ 2J)

.

Under the Coulomb friction model, the critical value
of λ for this example takes the valueλnom = µiF

N
i .

However, depending on the friction modelλnom will take
different values. This fact implies that the boundary of
these regions is both terrain dependent and sensitive to
the details of the friction model. One of the purposes of
this paper is to provide a modeling foundation for control
strategies that are not sensitive to the friction model, such
as those we employ in [34].

Alexander and Maddocks showed thatD is convex
as a function ofq̇; therefore its local minima are global
minima [3]. Note that the minimum ofD must occur
at a nondifferentiable point ofD, since the function is
monotone everywhere else. By direct comparison of the
two nondifferentiable states, which correspond to one of
the wheels not slipping, the minimum is associated with
whichever wheel is associated with a lower value ofµN .
Consequently, the zero level set of the function

Ψ(q) = µ1N1 − µ2N2
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determines the contact state of the bicycle. This determi-
nation is nonunique whenµ1N1 = µ2N2. (This is also
true for the Lagrangian system.) This model has only two
states, making it simpler to analyze than the Lagrangian
model. Additionally, the governing equations take the
simplified form:

ẋ = Rui (4)

wherei indexes the wheel not slipping and theui are ve-
locity inputs.

To compare the PDM method to Lagrangian analy-
sis, consider the bicycle example with torque inputs on
both the front wheelW1 and the back wheelW2. The
PDM predicts two different contact states corresponding
to either the front or rear wheel slipping. In comparison,
Lagrangian analysis predicts four possible contact states.
Eqs. (A) and (D) in Table I both imply that the inertial
terms dominate the system’s dynamics, thereby violating
the “quasi-static” assumption. Eq. (D) implies that the bi-
cycle is skidding out of control. The physical conditions
corresponding to Eq. (A) are unlikely to be found in an
actual system, as they imply that both contacts must be
driven atexactlycompatible speeds. Moreover, this con-
tact state will be predicted by the PDM so long as the two
wheels are driven at exactly the same speed—we will see
later these conditions can be interpreted as a special de-
generate case. This leaves the second two contact states
represented by Eqs. (B) and (C), which are the same as
those found in Eq. (4) using the power dissipation model.
This is an indication of how the quasi-static assumption
helps to simplify our problem, while yielding results that
are consistent with the contact state analysis of the La-
grangian. With the additional analyses introduced below,
we can investigate the relationship between the motions
predicted by the Lagrangian method and the PDM in com-
parable contact states.

VII. C HARACTERISTICS OF THEPDM

In this section we formalize the Power Dissipation
Method and show that the PDM generically gives rise to
multiple model driftless affinesystems, as described in
IV.1.

Before proceeding, let us recall a few facts that
were already established by Alexander and Maddocks [3].
They showed that the dissipation function of Eq. 3 is con-
vex, so that its local minima are also its global minima,
should they exist. They also show that if such a minimum
exists, it must exist at a point of nondifferentiability ofD
due to the piecewise continuity ofD.

Let Ω = {ω1, · · · , ωm} and denote theconstraint
1-forms. Furthermore, letQ = {q̇1, q̇2, · · · , q̇r} consist
of the

(
n

n − m

)
velocities that have the property thatq̇k is a

kinematic solution to a non-overconstrained subsetΩ′ ⊂

Ω consisting ofn−m constraints, i.e.,

Ω′q̇k =

 ωk1

...
ωkm−n

 q̇k = 0.

That is, at all points inQ the derivatives ofD are non-
smooth. From Alexander and Maddocks, we have only a
finite number of points to check in order to find the min-
ima of D. It is straightforward to show that these min-
ima mustat leastoccur at points inQ. See, for instance,
Clarke [11]. ReorderQ so thatD(q̇1) ≤ D(q̇2) ≤ · · · ≤
D(q̇r). AlthoughQ is associated with at least one of the
minima achieved byD, it does not necessarily contain
all of them. In fact, if more than one element ofQ is a
minimum, then every element of the convex hull of these
minima are also minima. Hence, if there is more than one
solution, there are an infinite number of solutions.

Proposition VII.1: If q̇1 and q̇2 both minimize the
dissipation functional found in Definition V.1, then so
doesco{q̇1, q̇2}.

Proof: AssumeD(q̇1) = D(q̇2) = a andδ ∈ [0, 1].
Then

D(q) (δq̇1 + (1− δ)q̇2) =
n∑

i=1

µiF
N
i |ωi (δq̇1 + (1− δ)q̇2)|

≤ δ
n∑

i=1

µiF
N
i |ωi (q̇1)|+ (1− δ)

n∑
i=1

µiF
N
i |ωi (q̇2)| = a

Assume thatD is strictly less thanD(q̇1) somewhere in
co{q̇1, q̇2}. Then∃ δ′ such thatD(δ′q̇1+(1−δ′)q̇2) is at a
minimum by an extension of Rolle’s Theorem for the real
line [15]. Thenq̇′ = δ′q̇+(1−δ′)q̇ is at a point whereD is
nonsmooth in all its directional derivatives [3] (becauseD
is monotone elsewhere). This implies thatq̇′ ∈ Q and that
D(q̇′) < D(q̇1), thus violating our assumption thatD(q̇1)
is a minimum ofD. ThereforeD(q) (δq̇1 + (1− δ)q̇2) =
a ∀δ ∈ [0, 1]. The proof for higher numbers ofq̇i having
equal dissipation is by induction on this argument.

This result formalizes the intuition that if the power
dissipated is equal for two velocitieṡqi, then all possi-
ble trajectories whose velocity lies in the convex hull of
the q̇i will satisfy the minimum also. That is, in the non-
generic case whenD does not have a unique minimum,
we can still bound the object’s motion. (We will see later
that these solutions correspond exactly to kinematic solu-
tions of the Lagrangian dynamics.) Nowco{q̇i, i ∈ J} is
a set of points on whichD is nondifferentiable, just not
in all directions. It therefore still meets the criterion to be
a minimum [3]. Let us consider the extent to which the
functionD having a unique minimum is generic. We de-
note the function space of the coefficient of friction byΞ,
the function space of normal forces byN .
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Proposition VII.2: AssumeD : (U ,Ξ,N , TQ) →
R is of the form in Definition V.1 and that theµ is mea-
surable inx andt. Then the dissipation functionalD has
a unique minimum almost always (i.e., except on a set of
measure zero1 relative to the space(U ,Ξ,N , TQ))

Proof: Case 1: If q̇1 is a unique minimum inQ,
then it is the unique global minimum since Alexander and
Maddocks showed that the minimum must occur inQ.
Case 2: If ∃ q̇1 and q̇2 such that both are minima, then
by Proposition VII.1, we know thatco{q̇1, q̇2} also mini-
mizes theD. However, this situation can only occur when
the parameters(ui, Nj , µk) ∈ U × N × Ξ are chosen to
satisfy the constraintD(q̇1) = · · · = D(q̇n). This implies
that the constraint is only satisfied on a set of measure 0
in the spaceU ×N × Ξ.

That is, the PDM will almost always lead to a unique
set of governing equations. The reader should note that
the proof of Proposition VII.2 is only useful if we have al-
ready foundQ, and moreover for a high number of states
it may be computationally expensive to find the mini-
mum ofQ.2 Also note that in the non-overconstrained
case ofn − m constraints, the dissipation method leads
to the classical kinematic solution in the sense of the
Appendix. Proposition VII.2 allows us to now state what
we mean by the dissipation functional leading generically
to an MMDA system. A direct consequence of Proposi-
tion VII.2 is the following Corollary.

Corollary VII.3: The multivalued mapF : TQ →
TQ implicitly defined byD(q̇) = min(D) is single val-
ued almost everywhere.

Corollary VII.3 implies that we can generically ex-
pect the power dissipation method to lead to a unique
and well defined set of first-order governing equations—
it will almost never lead to an indeterminate system. This
makes rigorous the comment made in [3] referring to the
physical expectation of continually switching back and
forth between the dominance of one wheel or another,
rather than staying in an indeterminate state. See [13]
for a discussion of implicitly defined multivalued maps.
Corollary VII.3 additionally establishes a relationship be-
tween solutions that minimizeD and MMDA systems.

1Intuitively, sets of measure0 can be as sparse as disjoint points in
Q or as replete as a submanifold ofQ. For example, consider a vehicle
moving on smooth terrain. In its ambient Euclidean space, a vehicle is
always constrained to a set of measure 0, yet that set is precisely where
the interesting dynamics occur. On the other hand, sets of measure 0
can represent arbitrary algebraic relationships between parameters and
the state space. Unless there is some reason to believe that these rela-
tionships are necessarily satisfied, we can feel physically motivated in
asserting they will not occur in practice. This is the case that we are
considering, and therefore we feel that the ensuing results do imply the
genericity we assert. Nevertheless, whether or not these sets are impor-
tant in the analysis is aphysical assumption, not a mathematical result.
For a reference on measure theory, see [2].

2This problem, thus stated, bears more than a passing resemblance to
the simplex method found in LP theory and techniques from that theory
can be applied to the problem of finding the minimum of the functionD
in the presence of high numbers of contact states.

Moreover, we will see that the contact states predicted by
the PDM are(U ,U) reductions of a class of mechanical
control systems onTQ.

Corollary VII.3 also implies that multiple model
systems are a natural result of frictional interactions. Con-
sequently, multiple model modeling and control tech-
niques should be developed for systems involving fric-
tional contact. In Section IX we will explore more for-
mally the relationship between solutions to the PDM and
solutions to the Lagrangian dynamics.

VIII. K INEMATIC REDUCIBILITY FOR MULTIPLE

MODEL SYSTEMS

This section introduces the formal tools and results
required to relate solutions arising from the power dis-
sipation method to solutions arising from the full La-
grangian analysis. A rigorous understanding of the
PDM’s properties and its relationship to conventional La-
grangian mechanical analysis has heretofore been miss-
ing. We structure our analysis of this issue in two steps. In
the previous section we developed a more formal mathe-
matical framework for the PDM. In particular, we showed
that the PDM leads generically to multiple model sys-
tems. This section introduces kinematic reducibility the-
ory for multiple model systems. We then use our multi-
model reduction theory to formally study the relationship
between the properties of the PDM solutions and those of
the associated Lagrangian models (in Section IX.2).

A. Review of Kinematic Reducibility for Smooth Systems

We briefly review the relevant notions of kinematic
reduction here, without going into details of the under-
lying formalism. For some of these details, refer to the
Appendix and to [23]. First we start with what we mean
by a solution to a control system. In the following,Q
is the configuration space andTQ is its tangent bundle.
Moreover, if{Xi} are kinematic vector fields and{Yj}
are dynamic vector fields (see the Appendix for notational
details), we let thedistributionsDkin andDdyn be de-
fined byDkin = span{Xi} andDdyn = span{Yj}.

Definition VIII.1: Let Σs be a smooth control sys-
tem q̇ = f(q, u) onQ and letu ∈ U ⊆ Rm. A (U , T )-
solutionto Σs is a pair(c, u), whereu : [0, T ] → U and
c : [0, T ] → Q satisfyc′(t) = f(c(t), u(t)).
We now can define what it means for a mechanical system
of the form in Eq. (20) to be(U ,U) reducible to Eq. (21).
Let τQ

τQ : TQ → Q
(vq, q) → q

denote the tangent bundle projection.
Definition VIII.2: Let∇ be an affine connection on

Q (see the Appendix), and letU andU be two families
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of control functions. The system in Eq. (20) is
(
U ,U

)
-

reducibleto the system in Eq. (21) (also in the Appendix)
if the following two conditions hold:

i ) for each(U , T )-solution (η, u) of the dynamic
Eq. (20) with initial conditionsη(0) in the distri-
butionDkin, there exists a

(
U , T

)
-solution(γ, u)

of the kinematic Eq. (21) with the property that
γ = τQ ◦ η;

ii ) for each
(
U , T

)
-solution(γ, u) of the kinematic

Eq. (21), there exists a(U , T )-solution (η, u) of
the dynamic Eq. (20) with the property thatη(t) =
γ′(t) for almost everyt ∈ [0, T ].

Condition i) says that for every solution of a dynamic sys-
tem there must exist a kinematic solution that is the pro-
jection of the dynamic system. In the case of a vehicle,
this corresponds to requiring that for everytrajectory of
the vehicle there exists a correspondingpath that can be
obtained from kinematic considerations alone. Condition
ii) says that every kinematic solution must be the integral
of a dynamic solution. For a vehicle, this means that there
must exist a dynamic solution for every feasible kinematic
path. We should point out here that this is related to the
classes of admissible inputs. Because kinematic inputs
must be essentially integrals of dynamic inputs, they must
be absolutely continuous if the dynamic inputs are mea-
surable. Otherwise, infinite forces would be required (see
[23]).

Let χ∞(D) denote thoseC∞ vector fields taking
values in a distributionD. The following theorem states
the local test for Eq. (20) to be(U ,U) reducible to
Eq. (21).

Theorem VIII.1—Lewis [23]:Let ∇ be an affine
connection, and letY1, . . . , Ym andX1, . . . , Xm be vec-
tor fields on a manifoldQ. The control system in Eq. (20)
is

(
U ,U

)
reducibleto a system of the form in Eq. (21) if

and only if the following two conditions hold:
i ) spanR{X1(q), . . . , Xm(q)} =
spanR{Y1(q), . . . , Ym(q)} for each q ∈ Q
(in particular,m = m)

ii ) 〈X : Y 〉 ∈ χ∞(Ddyn) for every X,Y ∈
χ∞(Ddyn) where〈·, ·〉 is the symmetric product of
vector fields, defined in the Appendix.

This theorem says that if the input distributions of both the
kinematic system and the dynamic system are the same
and the dynamic system is closed under symmetric prod-
ucts, then the system is kinematic.

B. Main Result on Reducibility of Multiple Model Sys-
tems

We now consider the problem of whether or not
a dynamic multiple model system is kinematically re-
ducible to an MMDA system. Lemma VIII.2 states that
if switches in system dynamics are separated by a small

amount of time (making the switching signal piecewise
continuous), the resulting solution is also kinematically
reducible.

Lemma VIII.2: Let Σ be a multiple model system
whose switching signalσ is piecewise constant. Then,Σ
is (U ,U) reducible iff the individual model components
Σσi,··· ,σj

are all(U ,U) reducible.
Proof: Sinceσ is piecewise constant,σ switches a

countable number of times. Therefore, let the times when
σ changes its value be denoted{t1, t2, · · · , } for i in some
index setI. Then on the intervals(ti, ti+1), Σ is (U ,U)
reducible, making it(U ,U) reducible almost always.3 It
therefore satisfies the requirements of Definition VIII.2.

We will use this lemma to prove Theorem VIII.4,
which says that solutions to the differential inclusion de-
fined by multiple model systems are kinematically re-
ducible if and only if the individual models are kinemat-
ically reducible. Before proving that this is true, we will
need the following result from Filippov [14].

Theorem VIII.3—Filippov [14]:Let f : Q × R →
TQ be a compact, set-valued map and let{Φi} be a se-
quence of solutions to the differential inclusion

q̇ ∈ f(t, q) (5)

such that lim
i→∞

Φi → Φ. Then Φ is also a solution to

Eq. (5).
Note that solutions to the differential inclusionf are in
general not unique, meaning that there is often an infinite
family of solutions. This theorem says that for a compact
differential inclusion, a converging sequence of solutions
converges to a solution. Theorem VIII.3 will be used sev-
eral times in the proof of Theorem VIII.4. Roughly speak-
ing, piecewise continuous(U ,U) reducible solutions of
the multiple model mechanical system can be used as ap-
proximations to flows of elements inf , wheref assumes
the form of the right half side of Eq. (6). Theorem VIII.3
can then be used to show that their kinematic counterparts
onTQ must also converge to an element of the differen-
tial inclusion defined onTQ. This brings us to our main
result.

Theorem VIII.4:A multiple model systemΣ is
(U ,U) reducible iff the individual dynamical models
Σσi,··· ,σj are all(U ,U) reducible.

Proof: First note that it is obviously necessary that
all the individual models be(U ,U)-reducible in order for
the resulting multiple model system to be reducible. Oth-
erwise, a valid solution to a multiple model system is the
smooth, non-reducible solution of one of the models in
the set of models. To show sufficiency, we must show
that when the individual models are(U ,U) reducible,

3That is, it is reducible everywhere except for a set of measure 0.
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the MMDA system satisfies partsi) and ii) of Defini-
tion VIII.2. We show this in two steps. The first step
constructs kinematic solutions given dynamic ones, and
the second step constructs dynamic solutions given kine-
matic ones.

(i) A multiple model mechanical system has the form (see
the Appendix for notation)

Gl∇c′(t)c
′(t) ∈ uα lYα(c(t)) (6)

where l ∈ Λ ⊂ N is the index for a given model,Gl

is the metric appropriate to that model,Gl∇ is the affine
connection associated with the metricGl, andlYα is the
vector field representing the force input corresponding to
uα of the lth model of the multiple model system. In
coordinates, Eq. (6) is equivalent to

q̈i + GlΓi
jkq̇

j q̇k = uα lY i
α. (7)

Set lYi = −GlΓi
jkq̇

j q̇k + uα lY i
α andYi = co{lYi :

l ∈ Λ}, with co{·, ·} denoting the convex hull. In [14] it
was shown that solutions to a discontinuous system coin-
cide with solutions of a differential inclusion of the con-
vex hull of the discontinuous system. Applying this to
our systems of interest, we see that solutions to a multiple
model system coincide with solutions to the differential
inclusionq̈i ∈ Yi, or in vector notation:

q̈ ∈ Y. (8)

Eq. (8) is a second order system onQ that we can easily
rewrite as a first order system onTQ (see [23] for de-
tails of this procedure). Then, for a given solutionΦ(t)
of Eq. (8) rewritten as a first order system, we know that
d
dtΦ ∈ Y. Therefore, we can choose a selection (an ele-
ment) ofY, denoteds(Y) ∈ Y, such thatΦs(Y) locally
approximates the flowΦ. BecauseY is convex, we can
rewrite a selection ofY as

s(Y) = δ1
1Y + δ2

2Y + · · ·+ δm
mY (9)

for anyδj such thatδj > 0 and
m∑
j

δj = 1. Let us denote

the composition of a flowΦ with itself n times byΦn.
That is,Φn(q) = Φ◦Φ◦· · ·Φ◦Φ(q). In [28], it was shown
that we can choose the following map to approximate (in
the sense of pointwise convergence to a set) the flow of
the selections(Y):

Φt,n
dyn(q)

def
=

(
Φδ1

1Y t
n ◦ Φδ2

2Y t
n ◦ · · · ◦ Φδm

mY t
n

)n

(q)
(10)

Each of the component flowsΦδm
iY t

n contributing to the
flow Φt,n

dyn(q) consists of a flow along a(U ,U) reducible

mechanical system. Moreover,Φt,n
dyn(q) is a solution of

Eq. (8) onTQ which is absolutely continuous for every
n. This is due to the fact that we assume that the switch-
ing is measurable and the forces are measurable and that
the Lebesgue integral of measurable signals is absolutely
continuous. Lastly, it converges to the flow of the se-
lection s(Y) asn → ∞. That is, by applying Theo-
rem VIII.3 to the Taylor expansion ofΦt,n

dyn, we locally
get

lim
n→∞

Φt,n
dyn = Φs(Y).

By assumption, we know that each segmentΦδi
iY t

n

of Φt,n
dyn is (U ,U)-reducible. Therefore, for every choice

of n, Φt,n
dyn is (U ,U)-reducible by Lemma VIII.2. These

results then yield us, for eachn, a corresponding map on
Q:

Φt,n
kin(q)

def
= τQ ◦ Φt,n

dyn(q) =(
Φδ1

1X t
n ◦ Φδ2

2X t
n ◦ · · · ◦ Φδm

mX t
n

)n

(q)
(11)

where eachΦδi
iX t

n is the flow of equations that are
(U ,U)-reductions (as in Eq. (21)) from equations that
generate the flowΦδi

iY t
n . Moreover, from Theorem

VIII.3 we know that lim
n→∞

Φt,n
kin exists and that its limit

is a solution to
q̇ ∈ X (12)

whereX = co{lX|l ∈ L} and the{lX} come from the
reduced equations in Eq. (21). Therefore, parti) of Defi-
nition VIII.2 is satisfied.

(ii) The analysis of this second condition uses the same
essential steps as above, but begins with the solution to
the kinematic equations and works towards a dynamic
solution. Starting with the solutions from Eq. (21), we
know that for an individual model with indexl we have
q̇i = ua lXi

a, or in vector form:

q̇ = ua lXa. (13)

Therefore, this MMDA system can be associated with
governing equations having the form of Eq. (12). Again,
for any given solutionΦ of Eq. (12) we haved

dtΦ ∈ X,
so we can choose a selections(X) such thatΦs(X) lo-
cally approximates the flow for that solution. As before,
we construct a sequence of solutions converging toΦs(X).
By construction, there exists aΦt,n

kin whose limit isΦs(X).
From Def VIII.2 we know we must show there exists

anη solution with

d

dt
Φs(X) = η.

By our construction, we know that

lim
n→∞

Φt,n
kin = Φs(X)(q0, t) .
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From part(i) above, for everyn andΦt,n
kin there exists a

correspondingΦt,n
dyn such thatΦt,n

kin(q) = τQ ◦ Φt,n
dyn(q).

In the limit,
lim

n→∞
Φt,n

dyn = Φs(Y),

for some selection of the differential inclusions(Y).
Consequently,Φs(Y) is a solution to Eq. (8), again by
Theorem VIII.3. Taking the derivative of both sides, we
get (after repeated application of the chain rule)

d

dt
Φs(X) =

d

dt
lim

n→∞
Φt,n

kin = lim
n→∞

d

dt
Φt,n

kin

= lim
n→∞

Φt,n
dyn = Φs(Y)

so partii) is satisfied. This ends the proof.
Notice that the proof of Theorem VIII.4 relied heav-

ily on specifically constructing a solution with the de-
sired properties based onknownsolutions to the individ-
ual models comprising the multiple model system. This
result shows that determining the kinematic properties of
the individual models in a multiple model system is suf-
ficient for determining the kinematic properties of the en-
tire system.

IX. T HE PDM AND (U ,U) REDUCIBILITY

This section addresses the relationship between the
models produced by the power dissipation methodology
and the kinematically reducible states of a generic me-
chanical system. An informal restatement of this is the
question: does the PDM produce equations of motion that
are kinematic reductions of Euler-Lagrange equations?
First, we derive a result that will be shortly used to show
the relationship between PDM solutions and solutions of
mechanical, second order, systems.

Proposition IX.1: Given a configuration manifoldQ
and a set of constraintsωi(q) which span the cotangent
spaceT ∗q Q, then the input distributionDkin(q) minimiz-
ing D(q) will always satisfyDkin(q) = Null(Ωsat)(q)
whereΩsat(q) is the collection ofwi(q) which satisfy
wi(q)q̇ = 0 for q̇ ∈ Dkin.

Proof: Suppose that this was not the case. Then
there would existv 6= 0 which minimizesD such that
if ωi

s are the constraints which are satisfied, thenv ∈
Null{ωi

s} andv /∈ Dkin. This implies that for the choice
of uk = 0 ∀k, v still minimizesD. However, because
the{ωi} spanT ∗Q, 0 is the unique minimizer since D is
convex inq̇. This contradicts the assumption thatv 6= 0
and is a minimizer ofD.

This result roughly corresponds to the intuition that
the minimum dissipation in any unactuated direction is
to not move at all in that direction. We should comment
that this can still lead to a solution of no motion in the
group variabless–if the unactuated constraints dominate
the motion, then the actuators will all slip.

Next we consider the case where we are given a met-
ricG for some mechanical system and a set of constraints
described by one-forms{ωj}. What are sufficient con-
ditions for the resulting system to be(U ,U) reducible?
Lemma IX.2 gives one sufficient condition which is in-
variant with respect to the metricG, and is a simple corol-
lary to the work found in [24].

Lemma IX.2:Given a “constraint distribution”
Dcon ⊆ TQ which annihilates the constraints{ωj}
and an input distributionDdyn, if Ddyn = Dcon the
mechanical system described by∇q̇ q̇ = uY is (U ,U)
reducible.

Proof: Denote by∇ the connection and by∇
the constrained connection defined by the Lagrange-
dÁlembert principle (see Lewis [23] for details of this
construction). We know that

∇XY ∈ Dcon ∀ Y ∈ Dcon and X ∈ T (M),

which implies

∇XY +∇Y X ∈ Dcon ∀X,Y ∈ Dcon.

This in turn implies by Theorem VIII.1 that∇q̇ q̇ = uY is
(U ,U) reducible.

Therefore,(U ,U) reducibility of a multiple model
mechanical system is guaranteedregardless of the met-
ric G when the constraint distribution is covered by the
input distribution. Moreover, we already know that the
power dissipation model only admits solutions where this
is true. This allows us to interpret the use of the power
dissipation method. The power dissipation method is a
way of choosing a more tractablesubsetof contact states
from the full Lagrangian contact mechanics. In other
words, when we make the “quasistatic” assumption, we
are merely restricting our attention to(U ,U) reducible
systems. Moreover, when the reaction forces due to fric-
tion do not lie inDkin, then those contact states are not
(U ,U) reducible. However, we should be very clear that
this only shows that the power dissipation method cap-
tures(U ,U) reducible states whenDcon = Dkin. That
is, the correspondence only goes one direction: all PDM
contact states are kinematic states, but not all kinematic
states can be predicted by the PDM. There are exam-
ples of mechanical systems which are(U ,U) reducible
by virtue of properties of the metricG. For examples of
such systems, see Lewis [23].

In summary, we have shown is the following.
Theorem IX.3:Given a configuration manifoldQ

with tangent spaceTQ and constraints represented by
one-formsωi, then all solutions to the PDM are(U ,U)
reductions of solutions to the Euler-Lagrange equations
onTQ constrained by a subset of{ωi}.

We should also remark on the relationship between
Theorem VIII.1 (reduction for smooth systems) and The-
orem VIII.4 (reduction for multiple model systems). In
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the smooth case,(U ,U) reducibility is equivalent to
geodesic invariance (for details, see Lewis [23]). How-
ever, in the nonsmooth case there is no well defined no-
tion of geodesic invariance because the metric changes
over time. Nevertheless, we were able to extend the no-
tion of (U ,U) reducibility relatively easily. Therefore, the
concept of(U ,U) reducibility is in some sense more gen-
eral than that of geodesic invariance.

X. EXAMPLES

To illustrate how the results presented in this paper
are useful, and point towards more general applications
of theories developed here, we now revisit the examples
from Section II. First, we come back to the bicycle ex-
ample to illustrate all of the theory details. We study the
bicycle example in detail as illustration, and then quickly
summarize several applications in other related work. For
instance, we show how this analysis helps to establish
controllability characteristics for the Mars rover family
of vehicles and stability analysis for distributed manipu-
lation problems. We end this section with a brief discus-
sion of how the method presented here can be applied to
grasping and locomotion.

A. Bicycle

Now, we return to the bicycle example of Section II
in detail. Assume that the bicycle is constrained to move
on a line. Using the mechanics formulation as described
in the Appendix, the configuration space is{x, φ1, φ2} ∈
R×S2, and the Riemannian metric describing the kinetic
energy is

G = (m+ 2J)dx⊗ dx+ Jdφ1 ⊗ dφ1 + Jdφ2 ⊗ φ2.

The two non-rolling constraints are

ẋ−Rφ̇1 = 0 ẋ−Rφ̇2 = 0

and the constraint covectors can be written as

ω1 = dx−Rdφ1 ω2 = dx−Rdφ2

As inputs, we have

F 1 = dφ1 F 2 = dφ2.

Now, for each combination of slipping and no slipping
of the wheels, we have a set of equations to solve for.
Therefore, we have four sets of equations to solve. More-
over, because the Christoffel symbolsΓi

jk are all identi-
cally zero for this problem, the equations depend entirely
on the input forces and external forces due to friction.

1) No slipping: When both wheels do not slip, the
system must satisfẏφ1 = φ̇2. This, in turn, implies that
the constraint distribution is 1-dimensional, spanned by

R
∂

∂x
+

∂

∂φ1
+

∂

∂φ2
.

Moreover, one can readily compute that the orthogonal
complement ofD is

span

{
− J

mR

∂

∂x
+

∂

∂φ2
,− J

mR

∂

∂x
+

∂

∂φ1

}
.

The associated input vector fields are

Y1 = Y2 =
1

2J +mR2

(
R
∂

∂x
+

∂

∂φ1
+

∂

∂φ2

)
and the equations of motion are therefore:

q̈ = Y1u
1 + Y2u

2.

It is easy to see that〈Y1, Y2〉 = 0, so this is a kinematic
system (that is, it is reducible to Eq. 4).

2) One wheel slipping:In the case where one wheel
slips, we may assume without loss of generality that the
slipping wheel is wheel number 1. In this case, the con-
straint distribution is

span

{
R
∂

∂x
+

∂

∂φ1
,
∂

∂φ2

}
.

Moreover, one can readily compute that the orthogonal
complement ofD is

− J

mR

∂

∂x
+

∂

∂φ1
.

To compute the reaction force due to the other wheel slip-
ping, note that such a reaction force can be considered
an external force, and can therefore be added to the right
hand side of Eq. (20) with the associated control assum-
ing constant unity valueua ≡ 1. The associated input
vector fields and external force vector fields are

Y1 = 1
2J+mR2

(
R ∂

∂x + ∂
∂φ1

+ ∂
∂φ2

)
Y2 = 1

J
∂

∂φ2

E = R2F R
2

J+mR2
∂
∂x + RF R

2
J+mR2

∂
∂φ1

− RF R
2

J
∂

∂φ2

and the equations of motion are therefore:

q̈ = Y1u
1 + Y2u

2 + E.

To determine whether this system is kinematically re-
ducible or not, we first note that〈Y1, Y2〉 is again identi-
cally zero. Moreover, note that although Theorem VIII.1
does not directly address the case of external forces, we
can by direct inspection of Definition VIII.2 see that if
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E /∈ span{Yi} then the system cannot in general be re-
ducible. However, ifE ∈ span{Yi} and the{Yi} satisfy
the conditions for reducibility, then the system is automat-
ically reducible because the external forces are “covered”
by the inputs. Therefore, we need only check thatE lies
in the span ofY1 andY2. Indeed,E ∈ span{Y1, Y2} for
this example. Therefore, this system is kinematically re-
ducible. Note that this property does not depend on the
particular description of the reaction force, and is more-
over invariant with respect to the reaction forces’ differ-
entiability.

3) Both wheels slipping: When both wheels slip,
there are no constraints to enforce. In this case, the con-
straint distribution is identically zero and the orthogonal
complement is trivially the entire tangent space. More-
over, we can compute the reaction force due to the wheels
slipping to bew1(FR

1 ) andw2(FR
2 ). The associated input

vector fields and external vector fields are

Y1 = 1
J

∂
∂φ1

Y2 = 1
J

∂
∂φ2

E = F R
1 +F R

1
m

∂
∂x −

RF R
1

J2
∂

∂φ1
− RF R

2
J2

∂
∂φ2

and the equations of motion are therefore:

q̈ = Y1u
1 + Y2u

2 + E.

In this case, it is clear thatE /∈ span{Y1, Y2}. There-
fore this system (not surprisingly) is not kinematically re-
ducible, at least for genericFR.

B. Simplified Mars Rover

θ

ψ
ψ

θ

x

y

Fig. 2. Simplified Rocky 7. a) Is a cartoon of a six wheeled rover, and
b) is a cartoon of a simplification of the rover.

Next we revisit the example of Fig. 1(b), whose
geometry we simplify here for the sake of discussion.
This simplification has three wheels, with all three wheels
driven. This model can be interpreted as a simplification
of the Mars rover Rocky 7 vehicle, also seen in Fig. 1. The
three wheeled vehicle seen in the cartoon has a config-
uration space consisting of(x, y, θ, ψ, φ1, φ2, φ3). This

system has six nonholonomic constraints (one associated
with each wheel having both a no roll constraint and a no
sideways slip constraint). Therefore, there are26 = 64
possible models governing the dynamics of the vehicle.
For this reason, we do not relate all the calculations for
this vehicle. However, it is easy to show, using a sym-
bolic mathematics package such asMathematica, that this
system also has a subset of kinematic solutions, and that
these solutions correspond to the the solutions to the PDM

for this system. There only exist

(
6
3

)
=20 kinematic solu-

tions for this system. Such a correspondence is important
because the power dissipation method is very straight for-
ward to solve and these solutions can be used for both
controllability analysis and for purposes of motion plan-
ning (we have carried out this analysis in [32], [33]).

In [32], [33] we showed that this system’s control-
lability properties can be analyzed using a set-valued ex-
tension of the Lie bracket (the prerequisite calculation for
understanding controllability using the classical Lie Al-
gebra Rank Condition (LARC)) that arises naturally in
MMDA analysis. Controllability is important for systems
like the Rocky 7 primarily because many motion planning
algorithms for vehicles are based on controllability prop-
erties. For instance, Rapidly Exploring Random Trees
(RRT) have been used with much success to develop mo-
tion planning strategies. However, the computational in-
tensity of these calculations is formidable, and recently
[10] showed that significant advantage can be taken by re-
ducing mechanical systems to kinematic ones when using
RRTs for motion planning. Work is currently underway
to extend RRTs to the multiple model systems of this pa-
per. See [28] for a preliminary motion planning that is
based on the MMDA structure found here.

We should comment on the relationship between
kinematic reducibility results and controllability results
which can be obtained for multiple model systems [32],
[33]. One of the intuitive aspects of Theorem VIII.4 is
precisely that it is sufficient for each model to be(U ,U)
reducible in order to guarantee that the multiple model
mechanical system is(U ,U) reducible. That is, piece-
wise (U ,U) reducibility is enough to guarantee(U ,U)
reducibility across discontinuities. However, in the case
of controllability, this no longer holds. An MMDA sys-
tem can switch among individually controllable systems
in such a way as to destroy controllability [33]. Thus,
controllability of each model in an MMDA is not suffi-
cient for overall controllability.

The fact that there is such a high number of models
for the Rocky 7 suggests the need for a reduction theory
for multiple model systems. Indeed, for a six-wheeled
system like the actual Rocky 7, there are212 = 4096
possible models governing its dynamics, a completely un-
manageable number. For the three wheeled vehicle in the
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cartoon, 20 kinematic models is also perhaps an unrea-
sonably large number of models to analyze. In [33] we
did an adhoc reduction of this model which turned it into
a two model multiple model system (although it can be
shown that no additional reduction is possible). Combin-
ing kinematic reduction with this multiple model reduc-
tion reduced the number of models from4096 to2. There-
fore, formally utilizing reductions (both discrete and con-
tinuous) to reduce the dimensionality of the problem will
be very useful, both for motion planning and estimation
purposes. This will be a focus of future research.

C. Distributed Manipulation with Changing Contacts

2
π

4
π

4
3π

2
3π

4
7π

4
5π

I

IIIII

IV

V

VI VII

VIII

π 0

Fig. 3. Photograph and cartoon of 4 cell distributed manipulator.

Figure 3(a) shows a photograph of a particular con-
figuration of a distributed manipulation experiment at
Caltech pictured in Fig. 1(c) which has been used pre-
viously to test algorithms for distributed manipulation
[34].4 In the photograph we see four driving wheels
whose rims are oriented towards the origin. Each actu-
ator is a one degree of freedom actuator. We use a piece
of plexiglass (for purposes of visualization) on top of the
four wheels to represent a manipulated object. The white
line seen in the photograph indicates the outline of the
plexiglass. The goal is to control the center of mass to the

4Video of these experiments can be found at the website
http://robotics.caltech.edu/∼murphey.

origin in R2 with a desired orientation ofθ = 0. To do
this, we obtain feedback of the plexiglass’ configuration
by affixing a piece of paper with a black triangle (also
seen in the photo) whose right angle corner coincides
with the plexiglass’ center of mass. Using this, we ob-
tain the position and orientation of the plexiglass through
visual feedback. Figure 3(b) is a cartoon of the experi-
ment, where the four arrows correspond to actuators and
the regions denoted byI-VIII and0-7π

4 will be important
in our subsequent description of the equations of motion
described by the PDM.

Note that this system thus described is overactuated
because there are four inputs and only three outputs. As-
sume the coefficient of friction is the same for all four
driving actuators. In this case we can show that the model
switches as the center of mass moves across the array. In
fact, under these assumptions, the actuator wheel nearest
to the center of mass will have both its “rolling” constraint
and its “sideways” slip constraint satisfied. The actuator
wheel second closest to the center of mass will have one
of its two constraints satisfied. In the case of the wheels
shown in the figure, it will be the rolling constraint. For
details on this analysis, see [31]. Denote the actuator in-
put associated with the closest actuator byui and the ac-
tuator input associated with the second closest actuator by
uj . Then these considerations lead to first order govern-
ing equations of motion of the form: ẋ

ẏ

θ̇

 = g1ui + g2uj (14)

where

g1 ∈


−yi

(xj−xi) sin(θj)+(yi−yj) cos(θj)
xi

(xj−xi) sin(θj)+(yi−yj) cos(θj)
uj

(xi−xj) sin(θj)+(yj−yi) cos(θj)

 (15)

g2 ∈


sin(θj)((xi−xj) cos(θi)+yi sin(θi))+cos(θi) cos(θj)yj

(xj−xi) sin(θj)+(yi−yj) cos(θj)
− cos(θi) cos(θj)xi−sin(θi)(xj sin(θj)−(yi−yj) cos(θj))

(xj−xi) sin(θj)+(yi−yj) cos(θj)
− cos(θi−θj)

(xi−xj) sin(θj)+(yj−yi) cos(θj)


(16)

In these equationsxi, yi, andθi refer to the planar coor-
dinates and orientation of theith actuator. The set-valued
notation of (15) and (16) refers to the fact that at a transi-
tion between actuatorsi andj being the two closest actu-
ators to actuatorsk andl being the closest the kinematics
are discontinuous. Therefore, at these points we must al-
low multi-valued differentials in order to guarantee exis-
tence of solutions to the differential equation in (14). See
[27] for more details. It should be noted that here the in-
dex notation should be thought of as mapping(i, j) pairs
to equations of motion in some neighborhood (not nec-
essarily small) around theith andjth actuator. In each
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regionI − V III the kinematics are smooth, but when a
trajectory crosses a boundary0-7π

4 , there is a discontinu-
ity in the kinematics. It is possible to obtain point stabi-
lization to (x, y, θ) = (0, 0, 0) from any initial condition
using discontinuous control laws based on the kinemat-
ics and knowing the current model (see [27] for details of
this control design). Moreover, this stability is provably
exponential. However, there are many questions relevant
to this system which remain unanswered. In particular,
we are currently developing algorithms which do not re-
quire any knowledge of the slipping state, and instead use
an online estimation process based on hierarchical control
like that found in [4], [19], [20], [18].

D. Relationship to Grasping and Locomotion

We briefly give our vision of how the preceding ideas
can be related to both grasping and locomotion. Tra-
ditionally, analysis of grasping and locomotion has as-
sumed clean interactions between the robot and its en-
vironment. Moreover, kinematic analysis has proven to
be a very computationally and theoretically useful venue
for understanding many issues in both areas. However,
in real robotic systems, interactions in contact are often
not clean, and we expect slipping to take place. Consider,
for example, the hand shown in Fig. 1. As the hand ma-
nipulates the ball, its fingers will slip against the surface.
However, we generally expect such motions to not inter-
fere with the stability of the motion. The analysis pre-
sented in this paper provides a forum for robustness anal-
ysis as well as development of algorithms that explicitly
require slipping.

XI. SOME FINAL REMARKS

In this paper we derived conditions that are both nec-
essary and sufficient for a multiple model system to be
kinematically reducible. Such an understanding of a sys-
tem’s kinematic motions is important for the purposes of
tasking and motion planning. The structure we describe
here is put to advantage in [34] in an application to dis-
tributed manipulation and in [33] where we analyze the
controllability properties of an example like that found in
Fig. 1. Moreover, it has future potential for greatly sim-
plifying friction compensation problems in robotics. The
notion of kinematic reducibility we presented can be re-
lated to the Power Dissipation Method, a method for de-
termining the quasistatic equations of motion for an over-
constrained system (see [3], [39]). We have been able to
show that the solutions to the power dissipation method
correspond to kinematic solutions of multiple model sys-
tems.

We do not claim that the PDM is a better model than
the full Lagrangian setup, only that it is more tractable. It
produces first order equations of motion that are amenable

to analysis. Moreover, the fact that it allows us to com-
pute explicit controllers that work on a real experiment
is an indication of its validity [34]. Nevertheless, there
are certainly important systems that must be treated in the
full Lagrangian mechanical framework, since even in the
example of the planar bike there are important dynamic
states not accounted for in the PDM. This determination
will in general have to be made by the control designer.

Lastly, this work leaves several open questions to be
answered. First of all, in the definition presented in this
paper the dissipation functional is only applicable to a fi-
nite number of contacts. However, in many pushing prob-
lems the frictional interaction occurs at the interface be-
tween two continuous media. The example of the Mars
rover in Section X-B makes it clear that reduction the-
ory (beyond kinematic reduction theory presented here)
needs to be formally explored for multiple model systems.
Lastly, there is the question of external forces. Our use of
kinematic reducibility in the example avoids the problems
of differentiation of friction forces because the manifold
structure provides all the information we need. However,
this cannot be expected in general, and there is a clear
need to extend the work in [23] to cases that generic reac-
tion forces entering the equations of motion.

APPENDIX

We assume the reader is familiar with the basic no-
tation and formalism of differential geometry and nonlin-
ear controllability theory. See [35], [40], [1], [7], [43] for
more details.

The notion of(U ,U)-reducibility formalizes what
is meant by kinematic reducibility. For mechanical sys-
tems, we consider inputsu : [0, T ] → Rm that are essen-
tially bounded and Lebesgue integrable. In Lewis [23], it
was assumed that inputs are absolutely continuous func-
tions, since piecewise continuity implies that instanta-
neous changes in system velocity are possible. In the
presence of inertial effects, such changes can only occur
when infinite forces are allowed. We keep this assumption
on the inputs. However, here state transitions are being
approximatedwith piecewise continuous signals. This is
a common approximation in many areas of physical mod-
eling [42]–, such as impacting bodies. Therefore, we only
require that absolute continuity hold locally rather than
globally.

Definition .1: f : [a, b] → Rm is absolutely contin-
uousif for eachε > 0 ∃ δ > 0 such that for every finite
collection{(ti, t

′

i)}1≤i≤N of non-overlapping intervals in
[a, b] with the property that

N∑
i=1

|t
′

i − ti| < δ we have
N∑

i=1

‖f(t
′

i)− f(ti)‖ < ε
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This definition implies thatDf exists almost everywhere.
Like Lewis [23], we restrict our attention to systems

that can be modeled assimple mechanical systemsin a
piecewise sense. In simple mechanical systems, the La-
grangian takes the formL = K.E. − V . Assume that
Q is ann-dimensional configuration manifold, andG is
a Riemannian metric onQ defining the kinetic energy.
Since many of the applications of interest are systems
with no potential energy, let us simplify to the case where
L = K.E. (i.e., V = 0). Denote byvq elements in the
tangent space ofQ atq, TqQ. With zero potential energy,
the system Lagrangian takes the formL = 1

2g(vq, vq).
Definition .2: TheChristoffel symbolsfor the Levi-

Civita connectiong∇ (associated with the metricG) are

Γi
jk =

1
2
Gil

(
∂Gjl

∂qk
+
∂Gkl

∂qj
− ∂Gjk

∂ql

)
(17)

where summation over repeated indices is implied used
unless otherwise stated, and upper indices indicate the in-
verse.

Definition .3: In coordinates, thecovariant deriva-
tiveof Y with respect toX is

G∇XY =
(
∂Y i

∂qj
Xj + Γi

jkX
jY k

)
∂

∂qj
(18)

Definition .4: The symmetric productbetween two
vector fieldsX andY is defined to be

〈X : Y 〉 =G ∇XY +G ∇Y X (19)

With these definitions in mind, we can quickly summarize
appropriate notions of dynamic and kinematic mechanical
systems. Given a metricG on the manifoldQ and inputs
ua, it is possible to show that the Euler-Lagrange dynam-
ical equations can be written in the form:

G∇c′(t)c
′(t) = ua(t)Ya(c(t)) (20)

wheret→ c(t) is a path onQ andc′(t) = d
dtc(t). On the

other hand, given input velocitiesuα, kinematicequations
can be written in the form:

q̇(t) = uα(t)Xα(q(t)) (21)

Theorem VIII.1 relates Eq (20) to Eq (21). As noted in
Lewis [23], the symmetric product plays a similar role in
establishing

(
U ,U

)
reducibility to the Lie bracket in es-

tablishing integrability. Some other things to note about
kinematic reducibility include the following. First, all
fully actuated systems are automatically kinematically re-
ducible because their dynamic input vector fields are al-
ways closed under symmetric products. For instance, the
forward kinematics of a robotic manipulator are kine-
matic whether moving in air (where the kinematic ap-
proximation is obvious) or in a viscous fluid of some

sort. Also, kinematic reducibility is not the same thing as
the “quasistatic” assumption commonly made in robotics.
This is because kinematic reducibility only requires that
there be a complete correspondence between dynamic
motions and kinematic motions, whereas “quasistatic” as-
sumptions, when formalized at all, typically require that
the system be moving slowly in some sense. As noted
in [39], the quasistatic case can only be equated to New-
ton’s laws when the friction is Coulombic, but we note
that here kinematic motions are independent of friction
model. This fact seems to have reasonably deep implica-
tions for friction compensation, and will be the topic of
future study.
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