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Abstract—This paper develops a formal connection between the Power Dissipation Method and Lagrangian me-
chanics, with specific application to robotic systems. Such a connection is necessary for understanding how some
of the successes in motion planning and stabilization for smooth kinematic robotic systems can be extended to
systems with frictional interactions and overconstrained systems. We establish this connection using the idea of a
multiple model system, and then show that multiple model systems arise naturally in a number of instances, in-
cluding those arising in cases traditionally addressed using the Power Dissipation Method. We then give necessary
and sufficient conditions for a dynamic multiple model systems to be reducible to a kinematic multiple model sys-
tem. We are particularly motivated by mechanical systems undergoing multiple intermittent frictional contacts,
such as distributed manipulators, overconstrained wheeled vehicles, and objects that are manipulated by grasping
or pushing. Examples illustrate how these results can provide insight into the analysis and control of physical
systems.

Index Terms—quasi-static analysis, dynamics, contact modeling, frictional contacts, kinematic reducibility, mod-
eling for control.
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The Power Dissipation Method and Kinematic
Reduclibility of Multiple Model Robotic
Systems

T.D. Murphey and J.W. Burdick

Abstract—This paper develops a formal connection be- formal conditions under which such reductions can be
tween the Power Dissipation Method and Lagrangian me- achieved formultiple model systemdn multiple model
chanics, with specific application to robotic systems. Such a systems (see Section IV) the system’s governing equa-

connection is necessary for understanding how some of the _. . .
successes in motion planning and stabilization for smooth tions switch between several possible models that de-

kinematic robotic systems can be extended to systems with SCribe the system’s evolution. This paper presents neces-
frictional interactions and overconstrained systems. We es- sary and sufficient conditions for a multiple model system

tablish this connection using the idea of a multiple model o pe kinematically reducible—i.e., tt¥&?-order dynam-
system, and then show that multiple model systems arise jo5| models can be reduced e -order kinematic models

naturally in a number of instances, including those arising . - .
in cases traditionally addressed using the Power Dissipation of the form in Definition IV.1. The necessary and suffi-

Method. We then give necessary and sufficient conditions Cient conditions for kinematic reducibility of smooth dy-
for a dynamic multiple model systems to be reducible to a namical systems were first developed by Lewis [23]. One

kinematic multiple model system. We are particularly moti-  of this paper’s contributions is the extension of kinematic

vated by mechanical systems undergoing multiple intermit- reducibility theory to the multiple model case.
tent frictional contacts, such as distributed manipulators,

overconstrained wheeled vehicles, and objects that are ma- . . . —
nipulated by grasping or pushing. Examples illustrate how While our kinematic reducibility results can be ap-

these results can provide insight into the analysis and control Plied to a large class of problems, we are parti_cularly
of physical systems. motivated by the multiple model systems that arise fre-

guently in robotics practice. The multiple model frame-
work has received an increasing amount of attention in the
|. INTRODUCTION control community recently [4], [19], [20], [18], so there

Many mechanical systems, though intrinsically se@re many control results available for our use. There-
ond order in their governing dynamics, can be adequatetye, understanding the connection between problems in
described by first order equations of motion. That ispbotics and the multiple model framework will be pro-
one can often propose a “quasi-static” or “kinematic” verductive. Examples of multiple model systems include
sion of the governing equations of motion for the purobotic systems involving intermittent mechanical con-
poses of system analysis or control design. The benects, such as distributed manipulators, overconstrained
fits of this simplification are numerous: the dimension oikheeled vehicles, and objects that are manipulated by
the state space drops by half, the control inputs go frograsping or pushing (see Section X). A number of similar
being force inputs to being velocity inputs (which are ofapproaches have been proposed or used to create quasi-
ten more easily realized in practice), and the governirggatic models of such systems. Most representative of
equations typically take a simpler form than the full dythese is the Power Dissipation Method (PDM) (see Sec-
namic model. Additionally, kinematic systems, althougtion V) introduced by Alexander and Maddocks [3] in
potentially nonlinear, do not typically involve drift terms.the context of overconstrained wheeled vehicles. Peshkin
There is a greater quality and quantity of nonlinear corlso used similar ideas in the study of pushed objects [39].
trol results available for driftless systems, as comparedBased on this method, one can develop first-order (or
systems with drift. See [3], [10], [16], [17], [22], [36], quasi-static) equations of motion for mechanical systems
[41] for just a few examples. that undergo intermittent sliding contacts. We show in

This paper has several inter-related goals. One 8&ction VII that solutions to the PDM are multiple model
the main technical goals of this paper is to determine tkgstems. We have used the PDM to model distributed

Thi k larael red by the National Sci Foundati manipulation systems that generate motion via frictional
is work was largely supported by the National Science Foundation . . .
(grant NSF9402726) through its Engineering Research Center (ER%‘?maCtS [34]’ [31]' The resultlng mUIt'pIe model deSCI‘Ip—

program. tions are very amenable to control analysis [33], [30],
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and the associated nonsmooth control laws worked well
in practice. See [34] for details.

As a second goal of this paper, we address a key
guestion: does the PDM produce models that are con-
sistent with a complete dynamic (Lagrangian) analysis?
The formalization of the PDM and the analysis of its rela-
tionship to Lagrangian analysis are the other main contri-
butions of this work. Formally, in Section VIII we show
that every solution to the power dissipation method is pre-
cisely a reduction of a solution to the Lagrangian formu-
lation. Moreover, this is true foall solutions, which is
important, as solutions are not unique in either the power
dissipation method nor are they unique in the Lagrangian
formulation (when nonsmooth interactions such as im-
pacts and friction are taken into consideration).

The paper is organized as follows. To motivate our
results, we first examine some examples of mechanisms
that naturally involve stick/slip phenomenon in Section Il
Then we briefly review the classical Lagrangian approach
in Section Il before covering the basic ideas of the multi-
ple model formalism in Section IV. We then specifically
address an example in Section VI using these ideas. In
Section VIl we cover characteristics of the power dissi-
pation method and we then move on to reduction theory
for multiple model systems in Section VIII. Section IX
relates solutions to the power dissipation method to so-
lutions to the Lagrangian analysis. We end in Section X
with a detailed look at several examples where we have
found our analysis practically useful.

Il. EXAMPLES

To show the potential breadth of applications for
our results, we summarize here four typical robotic and
physical systems to which our theory applies (Fig. 1):
a wheeled bicycle, the Rocky 7 prototype of the NASA
Mars rover family, a distributed manipulation system
whose function is to manipulate a planar object via roll- ) _ _
Side contacts, and a mult-fingered robotic hand. All % 1o, Here &¢ ) & boyle wih bath wneels drver, b e Mers
these systems are characterized by complex mechanigal developed at Caltech (see description below), and d) a hand capable
interactions involving contact mechanics and slip. Mor@f grasping objects
specifically, all of these systems can be modeled and an-
alyzed using the multiple-model framework developed in
this paper. methodology introduced in this paper and companion pa-

Consider the bicycle of Fig. 1(a) . For simplicity,Pers is well suited to analyze such systems.
we assume that the bicycle is constrained to move along The NASA Mars rover family members have six in-

a line, and that both wheels are actuated. (We will relependently driven wheels as well as two wheels inde-
peatedly return to this example, as it exhibits many gfendently steered. As discussed in [29] and reviewed in
the features that are relevant to our discussions). Applgection X, because this vehicle’s suspension is kinemat-
ing the exact same torque to both wheels is very diffically overconstrained, some of these wheels are always
cult task, and thus this bicycle would typically experiencslipping, and it can be difficult to predict which wheels
small amounts of slipping in practice. More interestinglyslip at any given moment. There is already an exten-
this slipping is likely to change over time due to variabilsive literature on wheeled vehicles, establishing control-
ity in contact friction characteristics, leading to a multipldability based on a Lie Algebra Rank Condition (LARC)
model, or hybrid, mechanical system. The multiple mod§21], [35], stability based on center manifold theory [41]
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and hybrid systems theory [18], motion planning basezhn provide simplification or insight.

on Voronoi diagrams [9], and rapidly exploring random

trees [10]. However, all of these methods assume thaf]||. BACKGROUND: LAGRANGIAN MODELS WITH
the vehicle motions are governed by smooth, kinematic FRICTIONAL CONTACTS

equations of motion. Because of the inherent and unpre-  1nis \work has been largely motivated by the problem

dictable switches in slipping, the governing dynamics atg mqqeling and controlling mechanical systems which
not smooth. Nevertheless, the methods developed in thig)erience multiple, possibly intermittent, contacts that

paper show that such vehicles are still kinematic SySteMgyolve friction, particularly Coulomb friction. Clearly,

albeit nonsmooth ones. Moreover, in related work, Wge contacts place constraints on the system’s evolving
have made progress on extending classical nonlinear cafistions. Constrained mechanical systems can be mod-
trol concepts, such as the LARC, to the domain of mulge yising conventional Lagrangian mechanics through
tiple model systems [32]. We will discuss this more ifne g6 of Lagrange multipliers. Consider a generic me-
Section X-B. o . chanical system with up te frictional contacts between

~ Distributed manipulation has received recent attefigid body surfaces, where the contacts can be intermit-
tion in the robotics community [6], [26]. Fig. 1(c) showsiently slide or stick. Such a system admits uf2topos-

a distributed manipulation test-bed developed by the aghle contact states which represent all possible permuta-
thors in which nine actuated wheels can be used t0 Mgsns of sliding and sticking. Lek(q, ) denote the sys-
nipulate planar objects set upon the manipulation Suem's Lagrangian (kinetic minus potential energy), where
face. All of t_hese wheels can be mdependently_ driven apde () denotes the configuration of the mechanical sys-
steered, giving the system 18 control inputs, with only them, () is its the configuration space, which is assumed
position and orientation of the manipulated object as thg pe ann-dimensional manifold. If the!® physical con-
output. Hence, this system is massively over-actuatqgct does not slip, the contact imposes a nonholonomic
The idea of many actuated devices interacting with anstraint on the mechanical system’s motion. This con-
object to achieve some desired manipulation goal is a@raint can be expressed in the fouy(g)¢ = 0. If the
pealing partially because of its scalability and the possi: contact slips, the Coulomb friction law states that

bl“ty Of using many inexpensive actuators I’athel’ thantﬁe tangentia| reaction force at that Contactﬁlg —
few expensive ones. Moreover, micro-electromechanicalllvi "uiF.N wherey;, FN, andv; are respectively the

. . . . v 7 1 1
system (MEMS) fabrication technologies potentially encqjjomb friction coefficient, normal force to the contact-
able distributed manipulation to be a leading candldaﬁe;g surface, and slipping velocity of the contact at ite

for micro-manipulation. We have shown in prior workeontact. Hence, the mechanical system’s overall equa-
how distributed manipulators that employ frictional congons of motion can described by:

tacts fall into the multiple-model domain [34]. The multi-

ple model kinematic reducibility theory developed in this d (9L 0L T TN
paper provides a simple but rigorous framework for thedt \ dg dq + Z F+ Z Ajw) (@) =T ()
design of stabilizing control laws that take into account es 2

the non-smooth effects of friction. We have used kingghere S is the slipping contact setthe {)\;} are unde-

matic reductions both to show the potential shortcomings;mined Lagrange multipliers, affdare the generalized
of control laws based on smooth idealizations and to exppjied forces. That ig; € S if the k" contact is slip-

plicitly compute stabilizing control laws that work wellping_ If thek'" contact is not slipping), corresponds to
experimentally (see [34]). the tangential reaction force that is needed to maintain the
Grasping and locomotion continue to be active aho-slip constraint at the*” contact. We generally assume
eas of robotics research. Current methods often use king-this work that the contact normal force§FN} are
matic models [16], [17] to represent the system dynamidgaown. If this is not the case, then additional Lagrange
yet grasping implicitly contains many of the previouslymultipliers may typically be added to solve for these nor-
mentioned difficulties. In particular, although stick/slipnal forces. Note that this description involves a choice
phenomena occur in a grasping problem, there are nfitcoordinates. The equivalent, coordinate independent,
very convincing ways to show that the kinematic methrepresentation is the formalism in which we address these
ods typically used for grasping are robust with respect fsroblems, and is briefly reviewed in the Appendix.
the variation in stick and slip states for a given contact. There are two primary practical problems with the
The analytical methods presented here create a methegjrangian modeling approach. First, one must solve for
for analyzing these difficulties without resorting to dythe Lagrange multipliers—a tedious task that often leads
namic, second order analysis. to complex equations. Second, an additional (and often
In Section X we will revisit these examples in ordesensitive) analysis is necessary to determine which con-
to show how the kinematic reduction theory of this papdacts are slipping at any given instant. Consequently, the
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practical need to analyze such systems in a tractable wggvern the switching behavior may not be precisely char-
motivates the use of quasi-static or kinematic approxacterized, we make no assumptions about the nature of
mations, and in particular the Power Dissipation Methaithe switching functions, except that they are measurable.
that is reviewed in the Section V. A natural questioi long term goal of our work is to develop systematic
arises when using quasistatic analysis: what is the retaethods for analyzing control systems with the type of
tionship between the equations of motion predicted bybrid (and therefore nonsmooth) structure seen in Defi-
guasi-static analysis and those generated by Lagrangration IV.1.

analysis? Moreover, can the quasistatic equations prop- To distinguish between the overall control system
erly predict the motions of the true system? The nesnd the smooth control systems that comprise it, we de-
section briefly reviews the concept of a multiple-modédine theindividual control systemt be the smooth con-
system, which is the appropriate mathematical setting forol systems making up the multiple model system, com-
this question in the case of intermittent frictional contactgrising of¢ = gius +- - - + grug - - - + gn 'y, fOr gr. = ga,

We describe a method for finding quasistatic equations fofr somec;. A system will be termed anultiple model
motion in Section V and we answer these questions &ffine system if it has the forng = fo(q) + fi(q)u1 +
Section IX. f2(@)ug + -+ + fm(q)um, where the vector field(q)

(or “drift term”) is also selected from a set of analytic
IV. BACKGROUND: MULTIPLE MODEL SYSTEMS vector fieldsgo,

We use the formalism of multiple model systemsto  \, overviEwW OF THE POWER DISSIPATION
address kinematic reducibility of systems involving fric- METHODOLOGY
tional and intermittent contact.

Definition IV.1: A control systemY evolving on a
smoothn-dimensional manifold¢, is said to be anul-
tiple model driftless affine system (MMD#)it can be
expressed in the form

This section reviews the basic concept behind the
Power Dissipation Method (PDM), which we will for-
malize in Section VII. Ley; again denote a system con-
figuration. The relative motions between moving objects
at a point contact can be written in the fotndq)qg. |If

. C_ o w(q)g = 0, then the contact point is not slipping, while if
Br 4= Ll@ut fal@uz b F fu(@)un (2) wgq;q # 0, thenw(q)q describes the contact point’s slip-
whereq € Q. For anyq andt, the vector fieldf; assumes Ping velocity. Thepower dissipation functiomeasures
avalue in a finite set of vector fieldg; € {ga,|a; € I;}, he object’s total frictional energy dissipation due to con-
with I; an index set. The vector fields,, are assumed tact slippage. _ _
to be analytic in(g, ¢) for all o;, and the controls; € R Definition V.1: Consider a mechanical systers,
are piecewise constant and bounded foriaMoreover, (Which consists of a single rigid body or a set of rigid

letting o; denote the “switching signals” associated wittp0dies) that maintains frictional contacts, where some
f; or all of the contacts may be slipping. Théssipationor

QxR — N Friction Functionalfor n-contact states that are governed
by Coulomb friction is defined to be

ag; .
(q7 t) — 4

theo; are measurable ify, t).

Definition 1V.1 implies that the control vector fields
may change, or switch, among a finite collection of vec-
tor fields, each representing a single smooth model inwtherew;(q)¢ describes the relative slipping velocity;
set of modelsP. An example of such a system is a veis the Coulomb friction coefficient, anl is the normal
hicle whose wheels can potentially skid. The systemferce at theit” contact.
governing dynamics will vary when the wheels slip or  The form of this function reflects the Coulomb fric-
do not slip. Such systems are intimately related to muion model, but it can easily be extended to different fric-
tiple model systems such as studied in [18]. Howeveipn models (see [37]) by replacing the linear teupiV;
we should emphasize that the “switching™riet like the with a more general state-dependent functioig). Ev-
switching phenomena found in [8], [25], [12], [44], orery slipping contact dissipates energy. Based on this ob-
as typically studied in the hybrid control systems literaservation, Alexander and Maddocks proposed the follow-
ture (e.g., [38], [5]). In these studies, the switching phéag axiom:
nomena is part of a control strategy to be implemented ir
the controller. In our case, the switching is induced byPower Dissipation Principle: A system’s motion
environmental factors, such as variations in the contac@ny given instant is the one that minimizBs(Eq. 3)
state between rigid bodies. Since the phenomena whicWith respect taj.

D= wl;|wi(g)q| 3
1=1
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The power dissipation methoi$ built upon this axiom. m% 1 2”% T
That is, the first order equations of motion generated by; = m 4 m T
:)haetizﬁstem are precisely the ones that minimize the dissi- ] o m | m |
. F - -
Remark V.1:Some insight into the relationship be- | /#m/ 9 JJF%
tween the motions predicted by the PDM and those giver{ ~ J; + J |t (1) 72
by the Lagrangian approach can be seen in the follow- % 0 J+mR® |
ing example. Consider a particle constrained to move [ g2 R - -
on a surface, with friction between the particle and the J?;ﬁ JHmR? 0
surface. Lagrangian analysis suggests that there are tWo~ | 75maz | T |0 (1) 72
possible contact states—one slipping and one not slipping. *@Ff U L 7 J
The PDM predicts that the particle will not slip. Hence, - FR4FRE T 0] o
it misses some of the contact states predicted by the La- _| _ gk, 1
grangian framework. However, the non-slip motions that? = %R T 7|t (1) 2
it does predict are consistent with a Lagrangian analysis. 7Fj £ | 0] L J
For overconstrained systems with control inputs, the
PDM leads to more interesting and useful results. When a TABLE |

configurationg can be decomposed into two componentsTHE LAGRANGIAN DYNAMICS OF THE PLANAR BICYCLE IN THE
q= (57 ’I”) (Where we refer te as the group Variable and FOUR POSSIBLE CONTACT STATES.J IS A WHEEL'S MOMENT OF
r as the shape variable), Eq. (3) implies that the PDM will 'NERTIA ABOUT ITS ROTATIONAL AXIS, m IS TOTAL BICYCLE
predicts givenr. In most cases of interest, the variable MASS, AND £ IS THE WHEEL RADIUS.

7 corresponds to the control inputs, while the varialsles

corresponds the system motion of interest.

contact slips. Consequently, thespace is divided into
VI. EXAMPLE: A TWO-WHEELED BICYCLE regions corresponding to different contact slipping states.
Consider the planar bicycle (Fig. 1(a)) which is conThe problem of contact state determination arises from

strained to move along a line. We will revisit this exampl&he inherently complicated dependencyobn the cur-
using the PDM formalism, but for now we treat it in thé'€nt state. For the planar bicycle model, the Lagrange
Lagrangian framework. Let = [, ¢1, ¢2]7, whereg, is multipliers assume the following values when model (A)
the front wheel angle), is the rear wheel angle, andde- holds:
notes the bicycle’s translation along the line. The down- 9

. J(Tl—TQ)—R mTy
ward normal force on each wheel depend upon the bicy; = 5
cle’s weight distribution, which is assumed to be known. R(R*m +2J)

Assume that each wheel is actuated, with torgtjeand Under the Coulomb friction model, the critical value

g o e a2 91 TS ©xamile ks he e, —
9 Eq. 9 grang P However, depending on the friction mode),,,, will take

ers, there are four different governing equations of motioopfferent values. This fact implies that the boundary of
(see Table 1), each corresponding to a different type ﬂt )

contact state. The analysis base_d on Lagrangian mech%ne details of the friction model. One of the purposes of
ics suggests that there doair possible contact states, cor-, . . ) ; )
) . . is paper is to provide a modeling foundation for control
responding to Eq. (A) where neither wheel slips, Eq. ( ) - -
. rategies that are not sensitive to the friction model, such
where the front wheel slips, Eq. (C) where the rear wheg

: ; as those we employ in [34].
slips, and Eq. (D) where both wheels slip. .
When theit" wheel slips, the tangential reaction Alexander and Maddocks showed tiatis convex

force at thei*” contact point is governed by the Coulom as e_lfunction ofj; therefore its_ I_ocal minima are global

o T iR N . minima [3]. Note that the minimum oP must occur
friction law: Fi' = —i=p il wherep; is the o 5 nondifferentiable point ab, since the function is
Coulomb friction coefficient, an@V is the normal force monotone everywhere else. By direct comparison of the
bearing down upon thé" wheel contact. When thé"  two nondifferentiable states, which correspond to one of
wheel does not slip, the tangential reaction force is giveéhe wheels not slipping, the minimum is associated with
by the Lagrange multiplienr;. The Coulomb friction whichever wheel is associated with a lower value:df.
model implies that the boundary between slipping andonsequently, the zero level set of the function
nonslipping states occurs at some value of the Lagrange

multiplier, denoted by\"°™. When)\; > A\r°™, thei'" U(q) = p1 N1 — paNo

J(mo — 1) — R?*m7y

Az = R(RZm + 2J)

(A)

(B)

(©)

(D)

ese regions is both terrain dependent and sensitive to
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determines the contact state of the bicycle. This deternfi-consisting ofn — m constraints, i.e.,
nation is nonunique whep; N1 = usNo. (This is also

true for the Lagrangian system.) This model has only two Wiy

states, making it simpler to analyze than the Lagrangian Vg = : qx = 0.
model. Additionally, the governing equations take the '

simplified form: Wik

m—n

& = Ru; (4) Thatis, at all points inQ the derivatives ofD> are non-

wherei indexes the wheel not slipping and theare ve- smooth. From Alexander and Maddocks, we have only a
PPing finite number of points to check in order to find the min-

locity inputs. : . . .
To compare the PDM method to Lagrangian anal ima of D. It is straightforward to show that these min

. X : . X Ima mustat leastoccur at points irQ. See, for instance,
sis, consider the bicycle example with torque inputs P e

0 ) .
: < <. <
both the front wheelV; and the back whedl/,. The Clarke [11]. ReordeQ so thatD(q;) < D(ge) < - <

: : . D(q,). Although Q is associated with at least one of the
PDM predicts two different contac;t s.tates CorreSpo.ndmrﬂinima achieved byD, it does not necessarily contain
to either the front or rear wheel slipping. In comparison . )

. . . 7 all of them. In fact, if more than one element gfis a
Lagrangian analysis predicts four possible contact Stat(rar%‘nimum then every element of the convex hull of these
Egs. (A) and (D) in Table | both imply that the inertial ’ Y

. , . .~ minima are also minima. Hence, if there is more than one
terms dominate the system's dynamics, thereby V'O|at”§%lution there are an infinite number of solutions.

the “quasi-static” assumption. Eq. (D) implies that the bi- " e - . o
cycle is skidding out of control. The physical conditions Proposition VII.1:1f ¢, and g, both minimize the

corresponding to Eq. (A) are unlikely to be found in ar(]j|53|pat|9n 'functlonal found in Definition V.1, then so
gesco{q1, gz}

actual system, as they imply that both contacts must be
y y mply Proof: AssumeD(q;) = D(g2) = a andd € [0, 1].

driven atexactlycompatible speeds. Moreover, this con:

tact state will be predicted by the PDM so long as the tw-lt;hen

wheels are driven at exactly the same speed—we will see n

later these conditions can be interpreted as a special @) (d¢1 + (1 — d)¢2) = ZuiﬂN |wi (6¢1 + (1 — 6)g2)|
=1

generate case. This leaves the second two contact states

represented by Egs. (B) and (C), which are the same as n _ n )
those found in Eq. (4) using the power dissipation model. < & Y # N [wi (1) + (1= 6) > Y |wi (42)| = a
This is an indication of how the quasi-static assumption i=1 =1

helps to simplify our problem, while yielding results thagA

are consistent with the contact state analysis of the La-,. . . N
X . " . . Then3 §’ such thaD (¢’ 1-¢’ t

grangian. With the additional analyses introduced beloﬁﬁiﬁ%ﬁ?n} by aennex(iesr:]i(i:on O?R <()(|5| eql;-rri] eofe)erf)olrS tﬁeieal

we can investigate the relationship between the mOt'oﬁ'ﬁe [15]. Thenj’ = 6'd+(1—&)j is at a point wherd® is

predicted by the Lagrangian method and the PDM in COMonsmooth in all its directional derivatives [3] (becalse
parable contact states. is monotone elsewhere). This implies that Q and that
D(¢') < D(¢1), thus violating our assumption thBX¢; )
VII. CHARACTERISTICS OF THEPDM is a minimum ofD. ThereforeD(q) (0¢: + (1 — 8)ga) =
a Vé € [0,1]. The proof for higher numbers gf having
In this section we formalize the Power DissipatiorRqual dissipation is by induction on this argument. B
Method and show that the PDM generically gives rise to  Thijs result formalizes the intuition that if the power
multiple model driftless affingystems, as described indissipated is equal for two velocities, then all possi-
IV.1. ble trajectories whose velocity lies in the convex hull of
Before proceeding, let us recall a few facts thahe g, will satisfy the minimum also. That is, in the non-
were already established by Alexander and Maddocks [generic case whe® does not have a unique minimum,
They showed that the dissipation function of Eq. 3 is cove can still bound the object’s motion. (We will see later
vex, so that its local minima are also its global minimahat these solutions correspond exactly to kinematic solu-
should they exist. They also show that if such a minimutijons of the Lagrangian dynamics.) Now{j;,i € J} is
exists, it must exist at a point of nondifferentiability Df g set of points on whictD is nondifferentiable, just not

ssume that is strictly less tharD(g;) somewhere in

due to the piecewise continuity &f. in all directions. It therefore still meets the criterion to be
Let Q = {w1,--- ,wn} and denote theonstraint a minimum [3]. Let us consider the extent to which the
1-forms Furthermore, leQ = {¢1,42,--- , 4} consist functionD having a unique minimum is generic. We de-

of the(, ~ )velocities that have the property thatis a note the function space of the coefficient of friction®y
kinematic solution to a non-overconstrained sul§gett  the function space of normal forces Iy.
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Proposition VI1.2: AssumeD : (U,=,N,TQ) — Moreover, we will see that the contact states predicted by
R is of the form in Definition V.1 and that the is mea- the PDM are(l/,U) reductions of a class of mechanical
surable inz andt. Then the dissipation function@ has control systems off'Q.
a unique minimum almost always (i.e., except on a setof Corollary VII.3 also implies that multiple model
measure zeforelative to the spac@/, =, N, TQ)) systems are a natural result of frictional interactions. Con-
Proof: Case 1:If ¢; is a unique minimum inQ, sequently, multiple model modeling and control tech-
then it is the unique global minimum since Alexander andiques should be developed for systems involving fric-
Maddocks showed that the minimum must occu@in  tional contact. In Section IX we will explore more for-
Case 2:If 3 ¢; andg, such that both are minima, thenmally the relationship between solutions to the PDM and
by Proposition VII.1, we know thato{q1, ¢»} also mini- solutions to the Lagrangian dynamics.
mizes theD. However, this situation can only occur when

the parametergu;, N; €U x N x = are chosen to
P i, 9’“’“) VIIlI. KINEMATIC REDUCIBILITY FOR MULTIPLE

satisfy the constrair®(¢;) = - - - = D(¢,). This implies
that the constraint is only satisfied on a set of measure 0 MODEL SysTEMS
in the spacé/ x N x Z. [ ] This section introduces the formal tools and results

That is, the PDM will almost always lead to a uniquéequired to relate solutions arising from the power dis-
set of governing equations. The reader should note tigpation method to solutions arising from the full La-
the proof of Proposition VII.2 is only useful if we have al-grangian analysis. A rigorous understanding of the
ready foundQ, and moreover for a high number of state®DM'’s properties and its relationship to conventional La-
it may be computationally expensive to find the minigrangian mechanical analysis has heretofore been miss-
mum of ©.2 Also note that in the non-overconstrainedng. We structure our analysis of this issue in two steps. In
case ofn — m constraints, the dissipation method leadte previous section we developed a more formal mathe-
to the classical kinematic solution in the sense of th®atical framework for the PDM. In particular, we showed
Appendix. Proposition VII.2 allows us to now state whathat the PDM leads generically to multiple model sys-
we mean by the dissipation functional leading genericaltgms. This section introduces kinematic reducibility the-
to an MMDA system. A direct consequence of Propospry for multiple model systems. We then use our multi-
tion VI1.2 is the following Corollary. model reduction theory to formally study the relationship

Corollary VII.3: The multivalued magrF : TQQ — between the properties of the PDM solutions and those of
TQ implicitly defined byD(§) = min(D) is single val- the associated Lagrangian models (in Section IX.2).
ued almost everywhere.

Corollary VII._3> |mpll_es that we can generically €X"A. Review of Kinematic Reducibility for Smooth Systems
pect the power dissipation method to lead to a unique ) ) ) ) )
and well defined set of first-order governing equations— Ve briefly review the relevant notions of kinematic
it will almost never lead to an indeterminate system. Thigduction here, without going into details of the under-
makes rigorous the comment made in [3] referring to tH¥ing formalism. For some of these details, refer to the
physical expectation of continually switching back andPPendix and to [23]. First we start with what we mean
forth between the dominance of one wheel or anothdly @ solution to a control system. In the following,
rather than staying in an indeterminate state. See [1§]the configuration space afdy is its tangent bundle.
for a discussion of implicitly defined multivalued mapsMoreover, if {X;} are kinematic vector fields ang; }
Corollary VII.3 additionally establishes a relationship be2re dynamic vector fields (see the Appendix for notational
tween solutions that minimiz® and MMDA systems. details), we let thelistributions Dy, and Dy, be de-

fined by Dy, = span{X;} and Dy, = span{Y;}.
Lintuitively, sets of measure can be as sparse as disjoint poin;s in Definition VIII.1: Let &, be a smooth control sys-
acving on Smocth terain. I s ambient Eucidean space. 2 vehiclel@Md = f(¢,u) onQ and letu € U C R™. A (U, T)-
always constrained to a set of measure 0, yet that set is precisely whggdutionto X is a pair(c, u), wherew : [0, T] — U and

the interesting dynamics occur. On the other hand, sets of measurg Q[O T] —Q satisfyc’(t) — f(c(t) u(t))

can represent arbitrary algebraic relationships between parameters gnd ' . . ; .

the state space. Unless there is some reason to believe that these @g_now can define what it means for a mechanical system
tionships are necessarily satisfied, we can feel physically motivated@f the form in Eq. (20) to bél{/, /) reducible to Eq. (21).
asserting they will not occur in practice. This is the case that we akeet .

considering, and therefore we feel that the ensuing results do imply the Q@

genericity we assert. Nevertheless, whether or not these sets are impor- TQ TQ - Q

tant in the analysis is physical assumptigmot a mathematical result. (11 q) — q

For a reference on measure theory, see [2]. e

2This problem, thus stated, bears more than a passing resemblancgénote the tangent bundle projection.

the simplex method found in LP theory and techniques from that theory L . . .
can be applied to the problem of finding the minimum of the funcfion Definition VII1.2: Let V be an affine connection on

in the presence of high numbers of contact states. Q (see the Appendix), and lét andl{ be two families
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of control functions. The system in Eq. (20) (iyﬂ)- amount of time (making the switching signal piecewise
reducibleto the system in Eq. (21) (also in the Appendixontinuous), the resulting solution is also kinematically
if the following two conditions hold: reducible.

i ) for each (U, T)-solution (n,«) of the dynamic Lemma VIII.2: Let X be a multiple model system
Eqg. (20) with initial conditions;(0) in the distri- whose switching signat is piecewise constant. Then,
bution Dy, there exists g2/, T)-solution (y,@) is (U, U) reducible iff the individual model components
of the kinematic Eq. (21) with the property thats,.... -, are all(i/,U) reducible.

y=T100M; Proof: Sinceo is piecewise constant, switches a
ii ) for each (i, T)-solution (v, u) of the kinematic countable number of times. Therefore, let the times when
Eq. (21), there exists &4, 7 )-solution (n,u) of o changesits value be denotgd, ¢, - - - , } foriin some
the dynamic Eq. (20) with the property thatt) = index setl. Then on the intervalt;, t;1), ¥ is (U, U)
~'(t) for almost every € [0, T1. reducible, making i{/, /) reducible almost alway.It
Condition i) says that for every solution of a dynamic sygherefore satisfies the requirements of Definition VIII.2.
tem there must exist a kinematic solution that is the pro- u

jection of the dynamic system. In the case of a vehicle, We will use this lemma to prove Theorem VIil.4,
this corresponds to requiring that for evergjectoryof ~which says that solutions to the differential inclusion de-
the vehicle there exists a correspondpeghthat can be fined by multiple model systems are kinematically re-
obtained from kinematic considerations alone. Conditiog#ucible if and only if the individual models are kinemat-
i) says that every kinematic solution must be the integrégally reducible. Before proving that this is true, we will
of a dynamic solution. For a vehicle, this means that thefeed the following result from Filippov [14].

must exist a dynamic solution for every feasible kinematic =~ Theorem VIIl.3—Filippov [14]:Letf : @ x R —
path. We should point out here that this is related to ti#Q be a compact, set-valued map and{lét} be a se-
classes of admissible inputs. Because kinematic inpwsence of solutions to the differential inclusion

must be essentially integrals of dynamic inputs, they must

be absolutely continuous if the dynamic inputs are mea- qgef(tq) (5)
surable. Otherwise, infinite forces would be required (see
[23]). such thatlim &; — ®. Then® is also a solution to

11— 00

Let x> (D) denote those”> vector fields taking Eq. (5).
values in a distributiorD. The following theorem states Note that solutions to the differential inclusidnare in
the local test for Eq. (20) to b€l/,U) reducible to general not unique, meaning that there is often an infinite

Eqg. (21). . ~ family of solutions. This theorem says that for a compact
Theorem VIIl.1—Lewis [23]Let V be an affine differential inclusion, a converging sequence of solutions
connection, and leYy, ..., Y,, and Xy, ..., X7 be vec- converges to a solution. Theorem VII1.3 will be used sev-

tor fields on a manifold). The control system in Eq.. (20) eral times in the proof of Theorem VII1.4. Roughly speak-
is (U,U) reducibleto a system of the form in Eq. (21) if ing, piecewise continuoug/, /) reducible solutions of

and only if the following two conditions hold: the multiple model mechanical system can be used as ap-
i) spanr{X1(q),..., Xm(q)} = proximations to flows of elements iy wheref assumes
spang{Y1(q),...,Ym(q)} for each ¢ € @ the form of the right half side of Eq. (6). Theorem VII1.3
(in particular,;mm = m) can then be used to show that their kinematic counterparts

i) (X:Y) € x®(Dgyn) for every X, Y € onTQ mustalso converge to an element of the differen-
X*°(Dgyn) Where(-, -} is the symmetric product of tial inclusion defined od’Q. This brings us to our main
vector fields, defined in the Appendix. result.

This theorem says that if the input distributions of boththe Theorem VIIl.4:A multiple model systemX is

kinematic system and the dynamic system are the saféé /) reducible iff the individual dynamical models

and the dynamic system is closed under symmetric prots,,... o, are all(i/,u) reducible.

ucts, then the system is kinematic. Proof: First note that it is obviously necessary that
all the individual models bé/,u/)-reducible in order for

B. Main Result on Reducibilty of Multiple Model Sysh o oo 9 MUlipie model sysiem to be reducible. O

toms erwise, a valid so ution to a multiple model system is t e

smooth, non-reducible solution of one of the models in

We now consider the problem of whether or nofhe set of models. To show sufficiency, we must show

a dynamic multiple model system is kinematically rethat when the individual models ar@/,i{) reducible,
ducible to an MMDA system. Lemma VIII.2 states that

if switches in system dynamics are separated by a smafiThat s, it is reducible everywhere except for a set of measure 0.
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the MMDA system satisfies pari$ andii) of Defini- Eq. (8) onT'Q which is absolutely continuous for every
tion VIII.2. We show this in two steps. The first stepn. This is due to the fact that we assume that the switch-
constructs kinematic solutions given dynamic ones, afy is measurable and the forces are measurable and that
the second step constructs dynamic solutions given kirtee Lebesgue integral of measurable signals is absolutely
matic ones. continuous. Lastly, it converges to the flow of the se-

lection s(Y) as . That is, by applying Theo-
() A multiple model mechanical system has the form (ser%mI VIIT( ) asn — oo 'S, By appying

X X .3 to the Taylor expansion 6b”;” , we locall
the Appendix for notation) get y P dyn y
: tn _ Fs(Y)
UV (1) € u® Yale(t)) (6) A Ly = P
wherel € A c N is the index for a given modety; By assumption, we know that each segmefit >

is the metric appropriate to that mod€l,V is the affine ©f q’g’;n IS (u,u)-iedu0|ble. Therefore, for every choice
connection associated with the metéig, and'Y,, is the of n, <I>Z’;’n is (U,U)-reducible by Lemma VIII.2. These
vector field representing the force input corresponding tésults then yield us, for eaeh a corresponding map on
u® of the [*" model of the multiple model system. InQ:

coordinates, Eq. (6) is equivalent to

P ; ¢, def t,
g+ G’F;-kq]qk = u 'Y, (7) i (a) = 1o @y (a) =

1 t 2 t m t n 11
(@61 XIO®62 ZXWO~"O¢67" X:) (q) ( )

Set!y! = —GiT% g7k + u® Vi and Y' = co{!Y
I € A}, with co{-, -} denoting the convex hull. In [14] it where each®® ‘X% is the flow of equations that are

was shown that solutions to a discontinuous system coif)- - . . .
cide with solutions of a differential inclusion of the Con_&/l,u)-reducnons (as in Eq. (21)) from equations that

. X . X 5YE
vex hull of the discontinuous system. Applying this tcgel?zrate Iihe flor\]/@ I .(I)ty\rilorepver, f(rjonr*: Theol_rer_n
our systems of interest, we see that solutions toamultipYé ' we. now t atngr;o kin EXIStS and that its fimit
model system coincide with solutions to the differentidp a solution to

inclusiong® € Y?, or in vector notation: jeXx (12)

whereX = co{'X|l € L} and the{' X'} come from the
reduced equations in Eq. (21). Therefore, padf Defi-
nition VI11.2 is satisfied.

geyY. (8)

Eqg. (8) is a second order system @rthat we can easily

rewrite as a first order system i (see [23] for de- (jj) The analysis of this second condition uses the same
tails of this procedure). Then, for a given solutiif) essential steps as above, but begins with the solution to
of Eq. (8) rewritten as a first order system, we know thghe kinematic equations and works towards a dynamic
4® €Y. Therefore, we can choose a selection (an elgp|ution. Starting with the solutions from Eq. (21), we
ment) of Y, denoteds(Y) € Y, such that*(¥) locally know that for an individual model with indekwe have
approximates the flowp. BecauseY is convex, we can ' =y !X, or in vector form:
rewrite a selection o¥ as

q=u""'X,. (13)

s(Y) =6 'Y+82Y++86"Y (9
(Y) 1 2 ®) Therefore, this MMDA system can be associated with

m governing equations having the form of Eq. (12). Again,
for anyd; such that; > 0 andZéj = 1. Letus denote for any given solutiond of Eq. (12) we havel ¢ € X,
so we can choose a selectisfiX) such that®*X) lo-
cally approximates the flow for that solution. As before,
e construct a sequence of solutions convergingted) .
y construction, there exists®;, whose limit is*().
From Def VIII.2 we know we must show there exists
ann solution with

the composition of a flowb witjh itself n times by ®".
Thatis,®"(q) = ®odo--- Pod(q). In[28], it was shown
that we can choose the following map to approximate (i
the sense of pointwise convergence to a set) the flow
the selectiors(Y):
o4 () (@61 WL @t VE oo o yi)” () d e _
| (10) dt "
Each of the component flow#s’ ¥ contributing to the By our construction, we know that
flow <I>fl7;n(q) consists of a flow along @/4,%) reducible

. . . : tn X
mechanical system. Moreoveb,;" (q) is a solution of lim = 0 (go,1).
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From part(i) above, for every: and ‘I’?; there exists a Next we consider the case where we are given a met-

correspondingbg’;; such tha@fc’i’;(q) =190 (I)Z’:n(q)_ ric G for some mechanical system and a set of constraints

In the limit, ‘ described by one-forméw;}. What are sufficient con-
lim ¢ " = Y, ditions for the resulting system to kig/, /) reducible?
n—oo

' _ o . Lemma I1X.2 gives one sufficient condition which is in-
for some selection of the differential inclusion{Y). variant with respect to the metri, and is a simple corol-

Consequently®*(Y) is a solution to Eq. (8), again by lary to the work found in [24].
Theorem VII1.3. Taking the derivative of both sides, we  Lemma IX.2:Given a “constraint distribution”

get (after repeated application of the chain rule) Deon, € TQ which annihilates the constraintsy,}
d d d and an input distributionD ., if Dayn = Deon tﬂe
— 05X = — lim @} = lim — " mechanical system described B¢ = uY is (U,U)
dt dt n—oo n—oo dt reducible.
= lim &5 = Ps(Y) Proof: Denote byV the connection and by
n—oo T the constrained connection defined by the Lagrange-
so partii) is satisfied. This ends the proof. W dAlembert principle (see Lewis [23] for details of this

Notice that the proof of Theorem VIII.4 relied heav-construction). We know that
ily on specifically constructing a solution with the de-  _
sired properties based émownsolutions to the individ- VxY € Deon ¥ Y € Deon and X € T(M),
ual models comprising the multiple model system. Thignich implies
result shows that determining the kinematic properties of 7 o
the individual models in a multiple model system is suf- VxY +VyX € Deon VX, Y € Deon.
ficient for determining the kinematic properties of the e

tire system nfhis in turn implies by Theorem VIII.1 tha¥ 3¢ = Y is

(U,U) reducible. [ |
— Therefore,(U,U) reducibility of a multiple model
IX. THE PDM AND (U,U) REDUCIBILITY mechanical system is guaranteegardless of the met-
This section addresses the relationship between thie G when the constraint distribution is covered by the
models produced by the power dissipation methodolo@yput distribution. Moreover, we already know that the
and the kinematically reducible states of a generic mpewer dissipation model only admits solutions where this
chanical system. An informal restatement of this is thig true. This allows us to interpret the use of the power
question: does the PDM produce equations of motion thdissipation method. The power dissipation method is a
are kinematic reductions of Euler-Lagrange equationgy of choosing a more tractabdeibsebf contact states
First, we derive a result that will be shortly used to shofrom the full Lagrangian contact mechanics. In other
the relationship between PDM solutions and solutions ofords, when we make the “quasistatic” assumption, we
mechanical, second order, systems. are merely restricting our attention t&/,2/) reducible
Proposition IX.1: Given a configuration manifol@ systems. Moreover, when the reaction forces due to fric-
and a set of constraints’(¢) which span the cotangenttion do not lie inDy;,,, then those contact states are not
spacel’; @, then the input distributio®y;,, (¢) minimiz-  (¢/,2/) reducible. However, we should be very clear that
ing D(q) will always satisfyDy;,(q) = Null(Qq¢)(¢) this only shows that the power dissipation method cap-
where Q,4:(¢) is the collection ofw;(q) which satisfy tures(i,) reducible states wheP.,,, = Dy;,. That
w'(q)¢ = 0for g € Dyip. is, the correspondence only goes one direction: all PDM
Proof: Suppose that this was not the case. Thasontact states are kinematic states, but not all kinematic
there would existy # 0 which minimizesD such that states can be predicted by the PDM. There are exam-
if w’ are the constraints which are satisfied, there ples of mechanical systems which gté,2/) reducible
Null{w’} andv ¢ Dy, This implies that for the choice by virtue of properties of the metri¢. For examples of
of u¥ = 0 Vk, v still minimizes D. However, because such systems, see Lewis [23].

the {w’} spanT*Q, 0 is the unique minimizer since D is In summary, we have shown is the following.
convex ing. This contradicts the assumption thatz 0 Theorem 1X.3:Given a configuration manifold)
and is a minimizer o. B with tangent spacd'@Q and constraints represented by

This result roughly corresponds to the intuition thabne-formsw?, then all solutions to the PDM ar@/(, ()
the minimum dissipation in any unactuated direction ireductions of solutions to the Euler-Lagrange equations
to not move at all in that direction. We should commerdgn T'Q constrained by a subset o} .
that this can still lead to a solution of no motion in the ~ We should also remark on the relationship between
group variables—if the unactuated constraints dominat&heorem VIII.1 (reduction for smooth systems) and The-
the motion, then the actuators will all slip. orem VIII.4 (reduction for multiple model systems). In
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the smooth case(/,U/) reducibility is equivalent to 1) No slipping: When both wheels do not slip, the
geodesic invariance (for details, see Lewis [23]). Howsystem must satisfy; = ¢». This, in turn, implies that

ever, in the nonsmooth case there is no well defined nitie constraint distribution is 1-dimensional, spanned by
tion of geodesic invariance because the metric changes
over time. Nevertheless, we were able to extend the no- R— 4+ — 4+ =
tion of (4, 24) reducibility relatively easily. Therefore, the Ox ~ 0¢1 Oz

concept of(t/, /) reducibility is in some sense more genyoreover, one can readily compute that the orthogonal
eral than that of geodesic invariance. complement o is

span _Lg+£ _ig_Fi
X. EXAMPLES p mROx ' 9’ mROx Oy [

To illustrate hqw the results presented in th|s_ Pap&h . associated input vector fields are
are useful, and point towards more general applications
of theories developed here, we now revisit the examples v 1 R o o o
from Section Il First, we come back to the bicycle ex-  *1 =2 = 5777 22 | "5+ 557+ 557
ample to illustrate all of the theory details. We study the _ _
bicycle example in detail as illustration, and then quicklnd the equations of motion are therefore:
summarize several applications in other related work. For - N )
instance, we show how this analysis helps to establish §=Yiu +You".

controllability characteristics for the Mars rover familylt is easy to see tha;, Ya) — 0, so this is a kinematic
1,12, — Y,

l()ftyehlclesl and s:/?/bmtydatr;lglys,ls ;‘pr dls.mbufq ;nc?mpus'ystem (that is, it is reducible to Eq. 4).
ation problems. We end this section with & briet discus- 2) One wheel slipping:n the case where one wheel

sion O.f how the methqd presented here can be app“edsﬁ?ps, we may assume without loss of generality that the
grasping and locomotion.

slipping wheel is wheel number 1. In this case, the con-
straint distribution is

A. Bicycle 0 o 0
. . span{R—l—,}.
Now, we return to the bicycle example of Section |1 Oz O¢1 O

in detail. Assume that the bicycle is constrained to move :
) : ; ! . reover, one can readily compute that the orthogonal
on a line. Using the mechanics formulation as described_

in the Appendix, the configuration space{is ¢, ¢2} € complement of) is
R x S?, and the Riemannian metric describing the kinetic J 0O o

energy is “Ror + Er

G = (m+2J)dz @ dz + Jdp, @ dpy + Jdps @ ¢o.  TO compute the reaction force due to the other wheel slip-
ping, note that such a reaction force can be considered

The two non-rolling constraints are an external force, and can therefore be added to the right
hand side of Eq. (20) with the associated control assum-
i —Rp1 =0 & —Rbo=0 ing constant unity valua® = 1. The associated input

vector fields and external force vector fields are

__ 1 el d o
Y1 =5 (R% Tag T %)
wi =dr — Rdp1  ws = dz — Rdgs Yy =129

and the constraint covectors can be written as

— J 09
E— B o | RF' o _ RF o
As inputs, we have — J+mR? oz J+mR? d¢1 J  O¢2

and the equations of motion are therefore:
Fl=dg, F?=dg,. a

j=Yiu' +You? + E.
Now, for each combination of slipping and no slipping
of the wheels, we have a set of equations to solve fdfo determine whether this system is kinematically re-
Therefore, we have four sets of equations to solve. Morducible or not, we first note thdl7, Y>) is again identi-
over, because the Christoffel symbdﬂﬁ are all identi- cally zero. Moreover, note that although Theorem VIII.1
cally zero for this problem, the equations depend entiretioes not directly address the case of external forces, we
on the input forces and external forces due to friction. can by direct inspection of Definition VIII.2 see that if
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E ¢ span{Y;} then the system cannot in general be resystem has six nonholonomic constraints (one associated
ducible. However, ifE € span{Y;} and the{Y;} satisfy with each wheel having both a no roll constraint and a no
the conditions for reducibility, then the system is automasideways slip constraint). Therefore, there 2fe= 64
ically reducible because the external forces are “coveredbssible models governing the dynamics of the vehicle.
by the inputs. Therefore, we need only check thdies For this reason, we do not relate all the calculations for
in the span oft; andYs. Indeed,E € span{Y7,Y>} for this vehicle. However, it is easy to show, using a sym-
this example. Therefore, this system is kinematically réolic mathematics package such\dathematicathat this
ducible. Note that this property does not depend on tlsgstem also has a subset of kinematic solutions, and that
particular description of the reaction force, and is morghese solutions correspond to the the solutions to the PDM
over myanant with respect to the reaction forces dlf'ferfor this system. There only exi tg —20 kinematic solu-
entiability.

3) Both wheels slipping: When both wheels slip, tions for this system. Such a correspondence is important
there are no constraints to enforce. In this case, the cdigcause the power dissipation method is very straight for-
straint distribution is identically zero and the orthogonavard to solve and these solutions can be used for both
complement is trivially the entire tangent space. Moresontrollability analysis and for purposes of motion plan-
over, we can compute the reaction force due to the wheeigig (we have carried out this analysis in [32], [33]).

slipping to bew, (F{*) andw, (Ff). The associated input In [32], [33] we showed that this system’s control-
vector fields and external vector fields are lability properties can be analyzed using a set-valued ex-
19 tension of the Lie bracket (the prerequisite calculation for
Y= ?671 understanding controllability using the classical Lie Al-
2= Jas gebra Rank Condition (LARC)) that arises naturally in
E— Fi+FF 9 RFf 9 RFY 9

MMDA analysis. Controllability is important for systems

m ox J2 O¢ J2 O¢o X i X X X
like the Rocky 7 primarily because many motion planning
and the equations of motion are therefore: algorithms for vehicles are based on controllability prop-
) L ) erties. For instance, Rapidly Exploring Random Trees
§=Yiu +You" + F. (RRT) have been used with much success to develop mo-

tion planning strategies. However, the computational in-
tensity of these calculations is formidable, and recently
[10] showed that significant advantage can be taken by re-
ducing mechanical systems to kinematic ones when using
RRTs for motion planning. Work is currently underway
B. Simplified Mars Rover to extend RRTs to the multiple model systems of this pa-
per. See [28] for a preliminary motion planning that is
based on the MMDA structure found here.

We should comment on the relationship between
kinematic reducibility results and controllability results
which can be obtained for multiple model systems [32],
[33]. One of the intuitive aspects of Theorem VIIl.4 is
precisely that it is sufficient for each model to (@&, /)
reducible in order to guarantee that the multiple model
mechanical system i€/,2() reducible. That is, piece-
wise (U, U) reducibility is enough to guarante@/,i/)
reducibility across discontinuities. However, in the case

X of controllability, this no longer holds. An MMDA sys-

Fig. 2. Simplified Rocky 7. a) Is a cartoon of a six wheeled rover, angam can switch among individually Cont.r‘.)”able systems

b) is a cartoon of a simplification of the rover. In such a way as to destroy controllability [33]. Thus,
controllability of each model in an MMDA is not suffi-

Next we revisit the example of Fig. 1(b), whosecient for overall controllability.
geometry we simplify here for the sake of discussion. The fact that there is such a high number of models
This simplification has three wheels, with all three wheefer the Rocky 7 suggests the need for a reduction theory
driven. This model can be interpreted as a simplificatidior multiple model systems. Indeed, for a six-wheeled
of the Mars rover Rocky 7 vehicle, also seen in Fig. 1. Theystem like the actual Rocky 7, there &€ = 4096
three wheeled vehicle seen in the cartoon has a conffipssible models governing its dynamics, a completely un-
uration space consisting ¢f, y, 6, ¢, 1, ¢2, ¢3). This manageable number. For the three wheeled vehicle in the

In this case, it is clear thal ¢ span{Yy,Y2}. There-
fore this system (not surprisingly) is not kinematically re
ducible, at least for generie?.
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cartoon, 20 kinematic models is also perhaps an unreaigin in R? with a desired orientation af = 0. To do
sonably large number of models to analyze. In [33] wihis, we obtain feedback of the plexiglass’ configuration
did an adhoc reduction of this model which turned it inty affixing a piece of paper with a black triangle (also
a two model multiple model system (although it can bseen in the photo) whose right angle corner coincides
shown that no additional reduction is possible). Combimvith the plexiglass’ center of mass. Using this, we ob-
ing kinematic reduction with this multiple model reduc+tain the position and orientation of the plexiglass through
tion reduced the number of models fra®p6 to 2. There- visual feedback. Figure 3(b) is a cartoon of the experi-
fore, formally utilizing reductions (both discrete and conment, where the four arrows correspond to actuators and
tinuous) to reduce the dimensionality of the problem willhe regions denoted byVIl| ando-% will be important
be very useful, both for motion planning and estimatioim our subsequent description of the equations of motion
purposes. This will be a focus of future research. described by the PDM.

Note that this system thus described is overactuated
C. Distributed Manipulation with Changing Contacts because there are four inputs and only three outputs. As-
sume the coefficient of friction is the same for all four
driving actuators. In this case we can show that the model
switches as the center of mass moves across the array. In
fact, under these assumptions, the actuator wheel nearest
to the center of mass will have both its “rolling” constraint
and its “sideways” slip constraint satisfied. The actuator
wheel second closest to the center of mass will have one
of its two constraints satisfied. In the case of the wheels
shown in the figure, it will be the rolling constraint. For
details on this analysis, see [31]. Denote the actuator in-
put associated with the closest actuatorbynd the ac-
tuator input associated with the second closest actuator by
u;. Then these considerations lead to first order govern-
ing equations of motion of the form:

T
Y | = g1ui + gau; (14)
0
where
s =t 0
Vo U ;=) (0 + (=) €os(0;)
YARAN 9 € | G ) o) (15)
. J
S (z;—;) sin(0;)+(y; —y;) cos(6;)
5 .
4 %T[ 4 sin(60;)((xi—x;) cos(0i)+yi sin(8;))+cos(0;) cos(0;)y;
(w5 —wi) sin(05)+(yi —y; ) cos(0;)
i o . c — cos(6;) cos(0;)x;—sin(0;)(x; sin(0;)—(yi—y;) cos(6;))
Fig. 3. Photograph and cartoon of 4 cell distributed manipulator. 92 (zj—x;)sin(0;)+(y: —y;) cos(0;)
Figure 3(a) shows a photograph of a particular con- (s =23) $in(65)+(ys ~vs) cos(0s) (16)

figuration .of a di;trib_uted manipulation experiment af, these equations;, y;, andd; refer to the planar coor-
Caltech pictured in Fig. 1(c) which has been used prgjnates and orientation of thé* actuator. The set-valued
wouily to test algorithms for distributed manipulation,station of (15) and (16) refers to the fact that at a transi-
[34]" In the photograph we see four driving wheelgion petween actuatoisand;j being the two closest actu-
whose rims are oriented towards the origin. Each actyors to actuatork and! being the closest the kinematics
ator is a one degree of freedom actuator. We use a piggg discontinuous. Therefore, at these points we must al-
of plexiglass (for purposes of visualization) on top of thg,y multi-valued differentials in order to guarantee exis-
four wheels to represent a manipulated object. The whifgnce of solutions to the differential equation in (14). See
line seen in the photograph indicates the outline of t87] for more details. It should be noted that here the in-
plexiglass. The goal is to control the center of mass to thgy notation should be thought of as mappiig) pairs
4Video of these experiments can be found at the websit® eql_jations of motion in some neighborhood (not nec-
http://robotics.caltech.edw/murphey essarily small) around th&" and j** actuator. In each
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region! — VIII the kinematics are smooth, but when #@o analysis. Moreover, the fact that it allows us to com-
trajectory crosses a bounday.r, there is a discontinu- pute explicit controllers that work on a real experiment
ity in the kinematics. It is possible to obtain point stabiis an indication of its validity [34]. Nevertheless, there
lization to (x,y,0) = (0,0,0) from any initial condition are certainly important systems that must be treated in the
using discontinuous control laws based on the kinemdtdl Lagrangian mechanical framework, since even in the
ics and knowing the current model (see [27] for details axample of the planar bike there are important dynamic
this control design). Moreover, this stability is provablystates not accounted for in the PDM. This determination
exponential. However, there are many questions relevamitl in general have to be made by the control designer.
to this system which remain unanswered. In particular, Lastly, this work leaves several open questions to be
we are currently developing algorithms which do not reanswered. First of all, in the definition presented in this
quire any knowledge of the slipping state, and instead upaper the dissipation functional is only applicable to a fi-
an online estimation process based on hierarchical contnife number of contacts. However, in many pushing prob-
like that found in [4], [19], [20], [18]. lems the frictional interaction occurs at the interface be-
tween two continuous media. The example of the Mars
rover in Section X-B makes it clear that reduction the-
] ) o o ory (beyond kinematic reduction theory presented here)
We briefly give our vision of how the preceding ideag,qe s to be formally explored for multiple model systems.
can be related to both grasping and locomotion. Trgzngqy there is the question of external forces. Our use of
ditionally, analysis of grasping and locomotion has agjnematic reducibility in the example avoids the problems
sumed clean interactions between the robot and its &f}-gifferentiation of friction forces because the manifold
vironment. Moreover, kinematic analysis has proven igcture provides all the information we need. However,
be a very computationally and theoretically useful venugis cannot be expected in general, and there is a clear

for understanding many issues in both areas. HOWeVRLe tg extend the work in [23] to cases that generic reac-
in real robotic systems, interactions in contact are oftgy torces entering the equations of motion.
not clean, and we expect slipping to take place. Consider,

for example, the hand shown in Fig. 1. As the hand ma-
nipulates the ball, its fingers will slip against the surface.
However, we generally expect such motions to not inter- We assume the reader is familiar with the basic no-
fere with the stability of the motion. The analysis pretation and formalism of differential geometry and nonlin-
sented in this paper provides a forum for robustness anakr controllability theory. See [35], [40], [1], [7], [43] for
ysis as well as development of algorithms that explicitlynore details.

require slipping. The notion of (U, U)-reducibility formalizes what

is meant by kinematic reducibility. For mechanical sys-
tems, we consider inputs: [0,7] — R™ that are essen-

, ) . tially bounded and Lebesgue integrable. In Lewis [23], it
In this paper we derived conditions that are both negya5 assumed that inputs are absolutely continuous func-

essary and sufficient for a multiple model system 0 hg)ns  since piecewise continuity implies that instanta-

kinematically reducible. Such an understanding of & Sy§aous changes in system velocity are possible. In the
tem's kinematic motions is important for the purposes Qfresence of inertial effects, such changes can only occur
tasking and motion planning. The structure we describg,on, infinite forces are allowed. We keep this assumption
here is put to advantage in [34] in an application 1o digs the inputs. However, here state transitions are being
tributed manipulation and in [33] where we analyze thg,, ,yimatedwith piecewise continuous signals. This is

controllability properties of an example like that found iy o mmon approximation in many areas of physical mod-
Fig. 1. Moreover, it has future potential for greatly simé“ng [42]-, such as impacting bodies. Therefore, we only

plifying friction compensation problems in robotics. Th&equire that absolute continuity hold locally rather than
notion of kinematic reducibility we presented can be "&lobally.

lated to the Power Dissipation Method, a method for de-  pafinition .1: £ : [a,b — R™ is absolutely contin-
termining the quasistatic equations of motion for an ovefy, sif for eache > 0 3 ’5 > 0 such that for every finite
constrained system (see [3], [39]). We have been ableéBIIection{(ti, t;)}1<i<n Of non-overlapping intervals in
show that the solutions to the power dissipation methqg b] with the prope_rt)7that
correspond to kinematic solutions of multiple model sys-’

D. Relationship to Grasping and Locomotion

APPENDIX

XI. SOME FINAL REMARKS

tems. N N
We do not claim that the PDM is a better model than " |t; — t;| < & we have Y _||f(t;) — f(t:)] < e
the full Lagrangian setup, only that it is more tractable. Iti=1 i=1

produces first order equations of motion that are amenable
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This definition implies thaD f exists almost everywhere. sort. Also, kinematic reducibility is not the same thing as
Like Lewis [23], we restrict our attention to systemshe “quasistatic” assumption commonly made in robotics.
that can be modeled ample mechanical systenmsa This is because kinematic reducibility only requires that
piecewise sense. In simple mechanical systems, the lthere be a complete correspondence between dynamic
grangian takes the formi = K.E. — V. Assume that motions and kinematic motions, whereas “quasistatic” as-
Q is ann-dimensional configuration manifold, adis sumptions, when formalized at all, typically require that
a Riemannian metric o)) defining the kinetic energy. the system be moving slowly in some sense. As noted
Since many of the applications of interest are systens[39], the quasistatic case can only be equated to New-

with no potential energy, let us simplify to the case whern’s laws when the friction is Coulombic, but we note
L = K.E. (i.e.,,V = 0). Denote byv, elements in the that here kinematic motions are independent of friction
tangent space @ atq, 1,Q. With zero potential energy, model. This fact seems to have reasonably deep implica-

the system Lagrangian takes the foflm= %g(vq, Vg).
Definition .2: The Christoffel symbolgor the Levi-
Civita connectiorf V (associated with the metr@) are

i _1 il 8Gﬂ 0G 8ij
"= <3q’“ g T o

) a7

where summation over repeated indices is implied use[é]
unless otherwise stated, and upper indices indicate the i8]
verse.

Definition .3: In coordinates, theovariant deriva-
tive of Y with respect taX is

[4]
) S o 0
G % k

Definition .4: The symmetric producbetween two
vector fieldsX andY is defined to be

(5]

6]
(7]

8]
With these definitions in mind, we can quickly summarize
appropriate notions of dynamic and kinematic mechanicg$]
systems. Given a metrié on the manifold?) and inputs
u®, itis possible to show that the Euler-Lagrange dynangr
ical equations can be written in the form;

(X:Y)=9VxY +9VyX (19)

Vo€ (t) = u(t)Ya(c(t)) (20)

[11]

12
wheret — c(t) is a path orQ andc’(t) = %¢(t). On the 12

other hand, given input velocitieg', kinematicequations
can be written in the form:
[14]

4(t) = (1) Xa(q(t))
[15]

Theorem VIII.1 relates Eq (20) to Eq (21). As noted iEm]
Lewis [23], the symmetric product plays a similar role i
establishing(/, i) reducibility to the Lie bracket in es-
tablishing integrability. Some other things to note abolt’}
kinematic reducibility include the following. First, all
fully actuated systems are automatically kinematically réi8]
ducible because their dynamic input vector fields are al-
ways closed under symmetric products. For instance, the]
forward kinematics of a robotic manipulator are kine-
matic whether moving in air (where the kinematic ap-
proximation is obvious) or in a viscous fluid of some

(13]

(21)

tions for friction compensation, and will be the topic of
future study.

REFERENCES

R. Abraham, J.E. Marsden, and T.S. Ratiianifolds, Tensor
Analysis, and ApplicationsAddison—-Wesley, 1988.

M. Adams and V. Guillemin.Measure Theory and Probability
Birkhauser, 1996.

J.C. Alexander and J.H. Maddocks. On the kinematics of
wheeled vehiclesThe International Journal of Robotics Research
8(5):15-27, October 1989.

B.D.O. Anderson, T.S. Brinsmead, F. De Bruyne, J.P. Hespanha,
D. Liberzon, and A.S. Morse. Multiple model adaptive control.
I. finite controller coverings.George Zames Special Issue of the
Int. J. of Robust and Nonlinear Contrd0(11-12):909-929, Sep
2000.

E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pneuli. Effective
synthesis of switching controllers for linear systerRsoc. IEEE
88(7):1011-1025, July 2000.

K.F. Bdhringer and H. Choset, editorBistributed Manipulation
Kluwer, 2000.

W.M. Boothby. An Introduction to Differentiable Manifolds and
Riemannian GeometnAcademic Press, 1986.

M.S. Branicky. Multiple Lyapunov functions and other analysis
tools for switched and hybrid system$EEE Trans. Automatic
Control, 43(4):475-482, April 1998.

H. Choset and J.W. Burdick. Sensor-based exploration: The hier-
archical generalized voronoi grapfihe International Journal of
Robotics Resear¢i9(2):96-125, 2000.

P. Choudhury and K.M. Lynch. Algorithmic Foundations of
Robotics V chapter Trajectory Planning for Kinematically Con-
trollable Underactuated Mechanical Systems, pages 559-575.
Springer Tracts in Advanced Robotics 7. Springer-Verlag, 2004.
F.H. Clarke.Optimization and Nonsmooth Analys&lAM, 1990.
W.P. Dayawansa and C.F. Martin. A converse Lyapunov theorem
for a class of dynamical systems which undergo switchiidEE
Trans. Automatic Control4(4):751-760, Apr. 1999.

K. Deimling. Multivalued Differential Equations Walter de
Gruyter, 1992.

A.F. Filippov. Differential Equations with Discontinuous Right-
Hand SidesKluwer, 1988.

G.B. Folland. Real Analysis: Modern Techniques and Their Ap-
plications - Second EditiorWiley-Interscience, 1999.

B. Goodwine and J.W. Burdick. Controllability of kinematic con-
trol systems on stratified configuration spacéEEE Trans. on
Automatic Contrgl46(3):358-368, 2000.

B. Goodwine and J.W. Burdick. Controllability of kinematic con-
trol systems on stratified configuration spaces. (to appear) IEEE
Trans. on Automatic Control, 2000.

J.P. Hespanha, D. Liberzon, and A.S. Morse. Logic-based switch-
ing control of a nonholonomic system with parametric uncertainty.
Systems Control Le}t38:167-177, 1999.

J.P. Hespanha, D. Liberzon, A.S. Morse, B.D.O. Anderson, T.S.
Brinsmead, and Franky De Bruyne. Multiple model adaptive con-
trol, part 2: Switching. Int. J. of Robust and Nonlinear Control
Special Issue on Hybrid Systems in Contidl(5):479-496, April
2001.



MURPHEY AND BURDICK. PREPRINT. SUBMITTED TOQEEE TRANSACTIONS ON ROBOTICS

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]
(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

J.P. Hespanha and A. S. Morse. Stability of switched systems with
average dwell-time. IProc. IEEE Int. Conf. on Decision and
Control, 1999.

I. Kolmanovsky and N.H. McClamroch. Developments in non-
holonomic control problems.|[EEE Control Systems Magazine
pages 20-36, December 1995.

V. Kumar and J.F. Gardner. Kinematics of redundantly actuated
kinematic chains. IEEE Journal on Robotics and Automation
6(13):269-273, 1990.

A.D. Lewis. When is a mechanical control system kinematic? In
Proc. 38t" IEEE Conf. on Decision and Contrpbages 1162—
1167, Dec. 1999.

A.D. Lewis. Simple mechanical control systems with con-
straints. IEEE Transactions on Automatic Contral5(8):1420—
1436, 2000.

D. Liberzon and A.S. Morse. Basic problems in stability and de-
sign of switched systemdEEE Control System Magl9(5):59—
70, 1999.

J.E. Luntz, W. Messner, and H. Choset. Distributed manipula-
tion using discrete actuator arraydnt. J. Robotics Research
20(7):553-583, July 2001.

T. D. Murphey. Control of Multiple Model SystemdPhD thesis,
California Institute of Technology, May 2002.

T. D. Murphey and J. W. Burdick. Issues in controllability and mo-
tion planning for overconstrained wheeled vehiclesPtac. Int.
Conf. Math. Theory of Networks and Systems (MTR&)pignan,
France, 2000.

T. D. Murphey and J. W. Burdick. A controllability test and motion
planning primitives for overconstrained vehicles. Rroc. IEEE
Int. Conf. on Robotics and Automatiddeoul, Korea, 2001.

T. D. Murphey and J. W. Burdick. Global stability for distributed
systems with changing contact statesPhoc. IEEE Int. Conf. on
Intelligent Robots and Systentawaii, 2001.

T. D. Murphey and J. W. Burdick. On the stability and design
of distributed systems. IRroc. IEEE Int. Conf. on Robotics and
Automation Seoul, Korea, 2001.

T. D. Murphey and J. W. Burdick. A controllability test for multi-
ple model systems. IRroc. IEEE American Controls Conference
(ACC), Anchorage, Alaska, 2002.

T. D. Murphey and J. W. Burdick. Nonsmooth controllability and
an example. IfProc. IEEE Conf. on Decision and Control (CDC)
Washington D.C., 2002.

T.D. Murphey and J.W. Burdick. Feedback control for distributed
manipulation with changing contactSubmitted to International
Journal of Robotics Research003.

R.M. Murray, Z. Li, and S.S. SastnA Mathematical Introduction

to Robotic ManipulationCRC Press, 1994.

R.M. Murray and S.S. Sastry. Nonholonomic motion planning:
Steering using sinusoiddEEE Transactions on Automatic Con-
trol, 38:700-716, 1993.

H. Olsson, K.J. Astrom, C. Canudas de Wit, M. Gafvert, and
P. Lischinsky. Friction models and friction compensatioBu-
ropean Journal of Control4(3):176-195, 1998.

G.J. Pappas, G. Laffierier, and S. Sastry. Hierarchically consis-
tent control sytemslEEE Trans. Automatic Contrp#i5(6):1144—
1160, June 2000.

M. A. Peshkin and A. C. Sanderson. Minimization of energy in
quasistatic manipulatiolEEE Transactions on Robotics and Au-
tomation 5(1), February 1989.

S. Sastry. Nonlinear Systems: Analysis, Stability, and Control
Springer, 1999.

A.R. Teel, R.M. Murray, and G. Walsh. Nonholonomic control
systems: From steering to stabilization with sinusoitig. J. of
Control, 62(4):849-870, 1995.

A. van der Schaft and H. Schumach@n Introduction to Hybrid
Dynamical Systemsolume 251 ofLecture Notes in Control and
Information SciencesSpringer, 2000.

F.W. Warner. Foundations of Differentiable Manifolds and Lie
Groups Springer-Verlag, 1971.

M. Zefran and J.W. Burdick. Design of switching controllers for
systems with changing dynamic$roc. Conf. on Decision and
Control, 1998.

17



