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Abstract: In this paper we describe methods applicable to the modeling and con-
trol of mechanical manipulation problems, including those that experience uncertain
stick/slip phenomena. Manipulation in unstructured environments often includes
uncertainty arising from various environmental factors and intrinsic modeling un-
certainty. This reality leads to the need for algorithms that are not sensitive to
uncertainty, or at least not sensitive to the uncertainty we can neither model nor
estimate. The particular contribution of this work is to point out that the use of an
abstraction, in this case a kinematic reduction, not only reduces the computational
complexity but additionally simplifies the representation of uncertainty in a system.
Moreover, this simplified representation may be directly used in a stabilizing control
law. The end result of this is two-fold. First, modeling for purposes of control is made
more straight-forward by getting rid of some dependencies on low-level mechanics
(in particular, the details of friction modeling). Second, the online estimation of the
relevant uncertain variables is much more elegant and easily implementable than
the online estimation of the full model and its associated uncertainties.

1 Introduction

It is traditional in robotics to view problems of manipulation, motion plan-
ning, and control in one of two extreme lights. First, if a system is kinematic (a
word which for now we leave not specifically defined), we simplify the system
description from a second-order system with forces and inertias to a first-order
system that consists of velocities and constraints. Then motion plans and con-
trol laws (if necessary) are designed for this kinematic system. It is important
to note that in order to implement this design based on kinematics, a back-
stepping algorithm is employed, either explicitly in an “inner-loop-outer-loop”
control architecture, or implicitly by purchasing motor controllers (or other
appropriate devices) that provide the inner loop control. In the end, the ad-
vantages of using kinematic structures include both lessened computational
burden (due to the computation in a lower-dimensional space) and increased
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robustness to some classes of uncertainty (due to robustness properties of the
backstepping, inner-loop controller).

If, however, there is some reason that a kinematic analysis is inappropriate,
then we often revert to a more complex set of modeling choices. In particular,
in multi-point contact many phenomena are introduced, including soft-contact
models [2], elaborate models of frictional interfaces [17], and the inclusion of
dynamic effects such as inertial terms and generalized forces. Nevertheless, it
is not clear that the introduction of these additional modeling techniques helps
for the purpose of control, motion planning, etcetera. In fact, it is often the
case that this hurts our ability to successfully design control strategies. Not
only does the introduction of these effects make problems computationally
more complex, it also decreases robustness by introducing assumptions that
are often not satisfied by the environment or, worse, may only sometimes be
satisfied by the environment. Hence, we can be faced with a situation where
our modeling assumptions are occasionally correct, but not reliably so.

From a design perspective (as opposed to a simulation perspective), it is
thus desirable to, if necessary, introduce elements to a model that provide the
full complexity of possible behavior of the system without introducing too
much new information (thereby decreasing the applicability of the model).
This is related to the idea of abstraction, which originated in the computer
science community [10] and was then made formal in a control context in [18]
and related works. In this paper, we focus on a particular type of abstraction
that formalizes the idea of a system being kinematic, appropriately termed
kinematic reducibility. However, this is merely the setting for the present work.
Our main focus is to discuss what types of representation of uncertainty should
be used in the abstracted setting.

Consider the conceptual block diagram in Fig.1. The blocks on the right-
hand-side are familiar–these four blocks represent a traditional backstepping
algorithm using “virtual inputs.” In the case of a kinematic vehicle, we ab-
stract the true dynamics of the vehicle to a kinematic representation where
the abstracted inputs are now velocities and the input vector fields are vec-
tors that satisfy the kinematic constraints. Then a backstepper is used that
takes these velocities as reference signals for a lower-level controller. It is use-
ful to point out that doing so assumes that this low-level controller is robust
to any uncertainties (coming from terrain, parametric uncertainty, etcetera).
In the context of Fig.1, this means that the reduction to the kinematic sys-
tem induces a formal reduction of the uncertainty. In this case, there is no
representation of uncertainty whatsoever in the abstract description of the
system–all the robustness is built into the backstepping algorithm. What we
will see is that this same abstraction in multi-point contact systems again
reduces the representation of uncertainty, but not to the point that there is
no uncertainty at all in the reduced equations. Instead, there is an abstracted
uncertainty which corresponds to the hybrid, discrete-valued state that rep-
resents the contact state (whether any given contact is in contact or out of
contact and, if in contact, whether it is slipping or sticking) of the system. It is
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Fig. 1. Conceptual block diagram for reduction of both the physical model and
uncertainty

this reduced representation of uncertainty we will use in designing controllers
for these systems. The practical advantage of this approach is that the reduced
representation of uncertainty makes some aspects of analysis more simple and
that it can make estimation less costly both in terms of computation and
bandwidth requirements.

Our previous work [15] (first presented at WAFR 2002 [14]) in this area
showed that some manipulation surfaces cannot stabilize an object with-
out feedback, and then showed that by using the Power Dissipation Method
(PDM) to model the system one can design a stabilizing controller that works
surprisingly well experimentally. The weaknesses of this work were primar-
ily that it was unclear why the power dissipation method would adequately
capture the dynamics, and it was moreover unclear why a feedback controller
could be designed in this context. The former issue was cleared up when we
showed in [16] that the power dissipation method is actually a class of kine-
matic reductions, in the sense of the work by Lewis et al [3, 4]. The latter
issue, that of understanding why we can do control design using a heuristic
modeling technique, has only recently become clear, and this paper is intended
to explain why and when controller design may occur in these traditionally
heuristic settings.

The key contribution of this paper is that we present a methodology for
combining kinematic reductions with stabilizing controllers that only use a
reduced representation of uncertainty in their estimators. When possible, this
allows one to use a reduced model for computational simplicity while not los-
ing any of the behavior of which the system is capable. We present an example
of multiple point manipulation as an example, but point out that the tech-
nique of uncertainty abstraction is potentially much more broadly applicable
than just what is discussed here. This paper is organized as follows. Section 2
described an example system that motivates the present work. Section 3 dis-
cusses modeling of multi-point contact systems using Lagrangian mechanics
and the constrained affine connection. Although the use of the constrained
affine connection description of the mechanics is absolutely equivalent to the
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Fig. 2. An 8 degree-of-freedom four “finger” manipulator that manipulates ob-
jects it supports. The fingers are constrained, so stick/slip transitions between the
actuator end-effectors and the manipulated object must occur when the actuators
move. The present paper presents simulations of this device (the picture on the right
with a “see-through” box supported and manipulated by four arms is the graphical
representation we use in simulations).

more traditional approach using a Lagrangian and generalized coordinates, we
use it because it gives a precise statement of a test for kinematic reducibility, as
discussed in Section 3.1. Section 4 discusses stability results relevant to these
systems, and Section 5 gives, for purpose of illustration, a quick introduction
to how one applies these results to the example in Section 2 .

2 Motivation: Multi-point Manipulation

A manipulation system consisting of many points of contact typically exhibits
stick/slip phenomenon due to the point contacts moving in kinematically in-
compatible manners. We call this manner of manipulation overconstrained
manipulation because not all of the constraints can be satisfied. Naturally,
uncertainty due to overconstraint can sometimes be mitigated by having back-
drivable actuators, soft contacts, and by other mechanical means [11], but
these approaches avoid the difficulties associated with stick/slip phenomenon
at the expense of losing information about the state of the mechanism. This, in
turn, leads either to degraded performance or to requiring additional sensors.
Consider the object in Fig. 2. It has eight degrees of freedom, all independently
actuated by a DC brushless motor. The motion of the tips of the “fingers”
can be constrained to be in a horizontal plane, so it can be used as a manip-
ulation surface. However, the force any given finger exerts is constrained on
a line–no finger can exert any “side-ways” force. In such cases friction forces
and intermittent contact play an important role in the overall system dynam-
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ics, leading to non-smooth dynamical system behavior. The question is how
to control the position and orientation of a supported object without being
sensitive to the details of how the frictional stick/slip interactions adversely
affect stability. This is addressed in Section 4 after discussing modeling issues
in Section 3.

3 Modeling and Analysis of Multiple Point Contact

We assume that the systems we are interested in are finite-dimensional simple
mechanical systems (as described for smooth systems in [3]). That is, their
equations of motion may be found using a Lagrangian of the form kinetic
energy minus potential energy (L = K.E.−V ) along with a set of constraints
on the system of the form ω(q)q̇ = 0, where ω(q) is a matrix representing
the configuration (q) dependent constraints. Moreover, there may be external
forces acting on the system. If we ignore potential energy (as is appropriate
for many planar systems including the one in Section 2), such a system’s
dynamics may be written down as: ∇q̇ q̇ = uαYα, where the notation uαYα
implies summation over the α. In this expression, ∇ is the constrained affine
connection encoding the free kinetic energy and the constraints, in our case
the nonslip constraints. Moreover, u represents external forces (not necessarily
inputs) and Y represents the associated vector fields on the configuration
manifold Q (i.e., Y ∈ TqQ, the tangent space at q ∈ Q). If we wish to include
potential energy, it will show up as a vector field on the right-hand side of the
equation.

The systems of interest have two types of external forces–those that cor-
respond to inputs and those that correspond to external disturbances. In the
case of multiple point contact, the external disturbance forces generally cor-
respond to reaction forces due to friction when a contact slips. Therefore, it
will be useful to write the dynamic equations as: ∇q̇ q̇ = uαYα + dβVβ so that
we can distinguish between the different types of external forces. (Note that
if a constraint is satisfied so that the contact is not slipping, there is still a
reaction force. In that case the reaction force is incorporated into the defi-
nition of of the constrained affine connection ∇ in a manner identical to the
constrained Euler-Lagrange equations).

Lastly, because the contact state changes over time (as the contacts tran-
sition between stick and slip), the constraints change over time. This implies
that ∇ is not a single constrained affine connection, but rather comes from
a set of constrained affine connections ∇σ, each of which represents a dif-
ferent set of stick/slip states of the mechanism. The same holds true for Y σ

and V σ. Hence, if we index the set of possible stick/slip states by σ, we get
second-order equations of motion of the following form:

∇σq̇ q̇ = uαY σα + dβV σβ (1)
where u are input forces and d are external forces. Equation (1) represents
the equations of motion for any multiple contact system or overconstrained
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system that experiences point contact with its environment. (Note that for
this equation to make sense, one must assume that the switching signal σ is
at least measurable, and often it is assumed that it is piecewise continuous.)
Lastly, it is important to point out that the representation ∇q̇ q̇ = uαYα is
neither more nor less than the Euler-Lagrange equations [3].

3.1 Kinematic Descriptions of Systems that Slip

We use the affine connection formalism to describe mechanical systems be-
cause it is in the context of this formalism that a useful technical connection
between 2nd-order mechanical systems and 1st-order kinematic systems has
been made (found for smooth systems in [9] and for nonsmooth systems in
[16]). In particular, it would be useful to be able to write Eq. (1) in the form:

q̇ = uaXσ
a , (2)

where u are velocity inputs instead of force inputs. Roughly speaking, a system
is kinematic if it can be written as a first order differential equation in q
without losing any information about what trajectories the system is capable
of producing. More precisely, this kinematic description is only useful if it
satisfies two requirements. First, for every solution of the dynamic system
in Eq. (1) there must exist a kinematic solution of the form in Eq. (2). In
the case of a vehicle, this corresponds to requiring that for every trajectory
of the vehicle there exists a corresponding path that can be obtained from
kinematic considerations alone. Secondly, for every kinematic solution there
must exist a dynamic solution that is equal to the kinematic solution coupled
with its time derivative (so that it lies in TQ). This means that there must
exist a dynamic solution for every feasible kinematic path. This way of viewing
smooth kinematic systems has been studied extensively, including [9]. Motion
planning has been studied using these concepts in [3, 4], but these works
were all intended for smooth systems. However, it was shown in [16] that the
kinematic reduction of a nonsmooth system of the form in Eq. (1) to one of
the form in Eq. (2) is equivalent to the reduction of each smooth model of the
multiple model system. The associated algebraic test of kinematic reducibility
is that the symmetric product between two vector fields Y σi and Y σj (defined
by
〈
Y σi : Y σj

〉
= ∇σY σ

i
Y σj +∇σY σ

j
Y σi for given i, j, σ) lie within the distribution

of the vector fields and that any reaction forces lie within the span of the
input vector fields. That is,〈

Y σi : Y σj
〉
∈ span{Yi|i = 1, . . . ,m} ∀ i, j, σ (3)

V σβ ∈ span{Yi|i = 1, . . . ,m} ∀ β, σ (4)

Notice that this need only hold for each σ, so the calculation is a purely
algebraic one, despite the fact that our system is nonsmooth. That is, even
with the nonunique solutions these systems can have, one may test for each
model independently (i.e., holding σ constant) whether a system is kinematic.
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3.2 Uncertainty Representations

The main point of this paper comes from noting that the contact state enters
solely in the σ dynamics in Eq. (1) and (2). Hence, the uncertainty for the full
dynamic system depends on both σ and other uncertainties that drive σ, such
as parametric uncertainties, choice of friction model governing the contact
interaction, etcetera. However, the uncertainty in the kinematic model only
includes σ, which means that the abstraction to the kinematic model reduces
the representation of the uncertainty to a hybrid, discrete-valued structure
(rather than a continuous one like that typically addressed in the robust
control community). It is important to note that because of this the only
assumption made regarding friction in a kinematic model is that it creates
stick/slip effects. In the context of this paper, no other assumptions are nec-
essary. However, when using such an abstraction, one must have confidence
that the backstepping algorithm employed is robust with respect to the un-
certainties that are left over, in our case model uncertainties and parametric
uncertainties. Fortunately, motor controllers are known to be quite robust
when following a desired reference velocity. Accordingly, we assume that we
can track a desired velocity for the rest of this paper, ignoring transient be-
havior and coupling. If for some reason asymptotic tracking is not achieved,
then an additional layer of analysis will be necessary. This reduced represen-
tation of uncertainty is what we will use in designing a stabilizing control
for a mechanical manipulation system, and the online estimation of σ will in
particular play a significant role in the stability results.

4 Stability Conditions

Now suppose we want to drive a (multiple-model, multi-point contact) me-
chanical system to a desired state. Then we have, for every choice of σ, a
smooth system that must be stabilized (since a perfectly valid choice of σ is
to have it be constant for all time). Moreover, because σ is uncertain, it must
be thought of as an exogenous disturbance (albeit a discrete-valued one). Now,
one could try to create a control law that is stable for all possible signals σ
(in fact, one would have to do so if σ is not observable), but this is often
impossible from a practical perspective. In fact, in the case of stabilizing the
SE(2) configuration of the object in Section 2, it is provably impossible [15].
Therefore, the question becomes one of estimation, the online estimation of
the contact state σ (the abstracted uncertain variable) based on available out-
puts and the incorporation of this estimate into the controller. This latter part
is important because the classical separation principle found in undergraduate
controls textbooks is not valid for nonlinear or nonsmooth systems.

First, we need to know that σ is observable (i.e., different models can be
distinguished based on available feedback). Although there are formal methods
for determining this (see [19]), we will see in Section 5 that it is occasionally
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possible to see that σ is observable by inspection. If it is observable, there
are generally two methods (and variations thereof) for determining the value
of σ at any given time. The first is to directly compare predicted velocities
(for every model indexed by σ) to the sensed velocity. This involves differ-
entiating outputs, but may be an acceptable approach if only one derivative
of the output is needed. (This is particularly true if the cardinality of values
σ can take is small. That is, if the total number of models is small, so the
models are relatively easy to distinguish from each other, then even with noisy
data we should be able to distinguish them.) If differentiating outputs is not
acceptable, then one may alternatively integrate the equations of motion for
every model and compare these to the measured output. Either choice is an
acceptable choice of estimator from a theoretical perspective because we are
only interested in distinguishing different models from each other.

The stability results that are useful for the problems of interest here are
from the adaptive control community, particularly multiple model adaptive
control [6, 1, 5]. Suppose that we have a family of plants indexed by p ∈ P,
all of which are stabilized by a control law with Lyapunov function Vp. (For
the moment, we ignore the design and implementation of these controllers.
We will revisit this in Section 5.) Switching between plants is governed by the
switching signal σ. In the case of a multiple contact system, σe encodes the
externally determined contact state of the system, that is, which contacts are
sticking and which are slipping. Moreover, σc encodes the current estimate of
σe, and particularly tells us which controller is being used at any given time.
Ideally, σc = σe, but there may be latencies that cause this not to be the case.
Such systems can be written as:

ẋ = Fσ(x,t)(x, t) σ(x, t) ∈ P (5)

where P is an index over the set of all admissible plants. We assume that the
Fp satisfy the following standard Lyapunov criteria; that there exist for all
p ∈ P differentiable functions Vp : Rn → R, positive constants λ0, γ and class
K∞ [8] functions α, α satisfying:

V̇p =
∂Vp
∂x

Fq ≤ −2λ0Vp for p = q, (6)

V̇p =
∂Vp
∂x

Fq ≤ 2λF ′Vp for p 6= q, (7)

α(‖x‖) ≤ Vp(x) ≤ α(‖x‖), (8)
Vp ≤ γVq, (9)

for all x ∈ Rn and p, q ∈ P. These are relatively standard requirements for
Lyapunov functions [8], except for the condition in Eq.(7) (which requires that
whenever the plant and the controller are not matched the resulting instability
is bounded by some growth rate λF ′).

Switching signals σ are assumed to be a piecewise continuous (and there-
fore measurable) function coming from a family of functions S. We say that
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Eq.(5) is uniformly exponentially stable over S if there exist positive constants
c and λ such that for any σ ∈ S we have

‖Φσ(t, τ)‖ ≤ ce−λ(t−τ) ∀t ≥ τ ≥ 0.

Here Φσ(t, τ) denotes the flow (given σ) of Eq.(5). For such a system we say
that λ is its stability margin.

To characterize and distinguish different families of functions S, we employ
the following definitions (from [6]). Given σ ∈ S, we define Nσ(t, τ) to be
the (integer) number of switches or discontinuities in σ in the interval (t, τ).
Given two numbers τAD and N0, called the average dwell time and chatter
bound respectively, we say that Save[τAD, N0] is the set of all switching signals
satisfying Nσ(t, τ) ≤ N0 + t−τ

τAD
. Lastly, let Save[τAD, N0] be the set of all

switching signals for which Nσ(t, τ) ≤ N0 + τ−t
τAD

. We will assume for the
rest of the present work that switching signals σe (the external switching
determining the contact state) can be characterized in this way.

Assumption 4.1 Assume σe switching satisfies

Nσe(t, τ) ≤ Ne
0 +

t− τ
τeAD

for some Ne
0 > 0 and τeAD.

We can similarly require that the signal σc (the switching signal that dictates
the current controller) also satisfy dwell-time requirements (i.e., Nσc(t, τ) ≤
N c

0 + t−τ
τc
AD

) to ensure that the control switching does not destabilize the system.
It is well known that switching between a set of stable linear systems may

well yield an unstable system [7]. This means that even in the most moderate
case, where estimation of the contact state is perfect (i.e., σc = σe) and
there are no latencies in sensing or actuation, our multiple contact system
can in principle be destabilized by switching contact state. Our purpose in
this section is to apply some results from the theory of switching systems to
understand physically meaningful conditions that will guarantee stability for
a multiple model system (even those without a common Lyapunov function).
In particular, we will characterize such a condition in terms of the average
dwell time as it was described above.

Due to space considerations, proofs of the following theorems are not pre-
sented here and the reader is directed to the conference proceeding [13, 12]
where these technical results are presented in a theorem/proof format. First,
the following result from [6] will be helpful. It states that for a collection of
stable plants as Eq.(5) a bound on the average dwell time can be determined
such that the hybrid system is stable with any desired stability margin.

Lemma 1 ([6]). Given a system of the form in (10) such that all the Fp
satisfy Eqs. (6), (8), and (9) hold, there is a finite constant τ∗AD such that
Eq.(5) is uniformly exponentially stable over Save[τD, N0] with stability margin
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λ < λ0 for any average dwell time τAD ≥ τ∗AD and any chatter bound 0 < N0.

In particular, the average dwell time must satisfy τAD > log γ
2(λ−λ0) . Note that

if we have a common Lyapunov function, then γ = 1⇒ log γ = 0⇒ τAD = 0
satisfies the stability requirements. Hence, common Lyapunov functions are
highly desirable, if they can be found. A corollary of this result relevant to
the multiple point contact example is Corollary 1 (proven in [13]).

Corollary 1. If each contact state σe for a multi-point manipulation system is
stabilized with a quadratic Lyapunov function Vp, if σe ∈ Save[ log γ

2(λ−λ0) , N0] for
some N0, and if σc = σe (i.e., the observer is perfect), then Eq. (1) or Eq. (2)
(depending on whether the representation used is dynamic or kinematic) is
exponentially stable with stability margin λ.

Note that this result, and the results that follow, are equally applicable to both
dynamic and kinematic systems. What does Corollary 1 mean for a multiple
model system where there are external signals determining the switching, such
as is the case in a multiple contact system? It means that so long as there are
no latencies, no errors in estimation, and no noise in the sensors, the multiple
model system is stable so long as the external switching signals σe are kept
sufficiently slow on the average. How slow depends on how the controllers for
each plant are designed and, more importantly, how they are related to each
other. The closer γ can be kept to 1 (i.e., the closer we are to having a common
Lyapunov function), the more quickly σe may switch without destabilizing the
system.

What happens if there are noise sources, latencies, and time delays causing
the controller switching σc to not coincide with the environmental switching
σe? Most of these issues are adequately addressed in [1, 5]. However, if σc 6= σe,
instabilities due to temporary mismatch between controllers and plants can
occur. The basic consequence of this is roughly that the longer the mismatch,
the slower the external switching must be in order to maintain stability. To
address this issue, assume we have equations of motion of the following form:

ẋ =
{
F ′qx on [ti, ti + dσ)
Fpx on [ti + dσ, ti+1) (10)

where (for each p) ẋ = Fp(x) is asymptotically stable and (for each q) ẋ = F ′q
is potentially unstable but has a bound on the rate of growth λF ′ . Note that
our example system in Section 2 satisfies these requirements because all the
Fp are stable by design.

It is now useful to state an extension of Thm. 1 (also proven in [13])
to accommodate dσ. The resulting trade-off is not surprising–the larger dσ
becomes, the more slowly σe is allowed to switch. In particular, if we can
bound dσ below by d∗ then we find that choosing

τeAD >
log γ

2 + 2λF ′dσ
(λ0 − λ)

(11)
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results in a stable system, as seen in the following Lemma.

Lemma 2. Given a system of the form in (10) such that all the Fp satisfy
Eqs. (6), (7), (8), and (9), there is a finite constant τ∗AD and a finite constant
d∗σ such that Eq.(10) is uniformly exponentially stable over Save[τAD, N0] with
stability margin λ, for any average dwell time τAD ≥ τ∗AD, any chatter bound
0 < N0, and any dσ ≤ d∗σ.

With this, one may prove the following corollary.

Corollary 2. If each contact state for a multi-point manipulation system is
stabilized with a quadratic Lyapunov function Vp, and if τeAD and dσ satisfy
Eq.(11), then for any N0 the state output is exponentially stable.

Proposition 2 indicates that if the contact states change slowly enough (i.e.,
τeAD is large) and the estimator is fast enough (i.e., dσ is small), then the
system is stable. Among other things, this means that one does not have to
concern oneself with the friction model to establish where switching occurs.
Instead, the contact states can change arbitrarily, so long as they do so suffi-
ciently slowly on the average and their effect is observable in the state output.

5 Example

Consider the eight degree of freedom manipulator in Fig. 2. This figure has
four point contact actuators (corresponding to the inputs u1, . . . , u4) located
at (1, 1), (−1, 1), (−1,−1), (1,−1) respectively (in the simulation), all oriented
towards the origin. For each contact there are two independent constraints,
a nonslip constraint in each direction tangent to the surface of the contact.
Hence, there are 22·4 = 28 = 256 possible combinations of stick and slip for
the four point contact system. If one uses a symbolic software package such as
Mathematica to compute the dynamic equations of motion for every possible
contact state as in Eq. (1), one can exhaustively verify that all possible models
are kinematic, so long as the contact interfaces are dissipative when slipping
is occurring (i.e., the reaction force is nonzero and in the opposite direction of
the slipping). This represents an extremely broad set of frictional interfaces,
and the statement is proven in a non-exhaustive manner in [12]. Additionally,
all the nontrivial, non-overconstrained kinematics are of one of the four forms
in Table 5. There do exist σe with trivial kinematics (i.e., actuator velocities
do not make the supported object move at all), however, and these correspond
to constraints with no actuation. An example of this is a table with wheels
that are all razor thin, so that spinning the wheels exerts very little force
against an object, but sliding orthogonally to the wheel is very difficult. In
such an example, no movement whatsoever occurs, and such a situation must
be either be avoided through mechanical design or avoided online, but this is
beyond the scope of what we discuss here.
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Table 1. The four actuator manipulation surface shown in Fig 2 has all kinematic
states, many of which are redundant. This figure shows the four distinct equations
of motion that can occur in different contact states. Note that so long as u1 (= −u3)
and u2 (= −u4) are nonzero, the four states can be distinguished from state output.
In fact, just observation of θ is sufficient for distinguishing the states. Moreover,
measurements of x and y are not helpful because the x and y dynamics are identical
in all four models.

Equations of Motion Control Law

q̇ =

[−1
−1

0

]
u1 +

[
1
−1

1

]
u2

u1 =
−kθ (θ+x−y)+k (θ2+x2+y2)

x+y

u2 = −kθ

q̇ =

[−1
−1
−1

]
u1 +

[
1
−1

0

]
u2

u1 = kθ

u2 =
kθ (θ+x+y)−k (θ2+x2+y2)

x−y

q̇ =

[−1
−1

0

]
u1 +

[
1
−1
−1

]
u2

u1 =
kθ (θ−x+y)+k (θ2+x2+y2)

x+y

u2 = kθ

q̇ =

[−1
−1

1

]
u1 +

[
1
−1

0

]
u2

u1 = −kθ
u2 =

−kθ (−θ+x+y)−k (θ2+x2+y2)
x−y

For each of the four models in Table 5 a control law is calculated from
the Lyapunov function k(x2 + y2 + θ2) by solving V̇ = −V for ui, where k
is some constant to be chosen during implementation. Moreover, by virtue of
the design methodology, there is a common Lyapunov function (i.e., γ = 1 in
Eq. (9)). Hence, chattering may occur (particularly near the planar origin),
but will not affect stability. Things to note include the following.

1. The system is not smoothly locally controllable (since there are two con-
stant input vector fields and three configuration variables to be con-
trolled). However, all of the states are stabilizable to the the origin of
SE(2).

2. Note that these control laws are not only nonlinear, they are not even
smooth. In fact, they have discontinuities at the origin.

3. The four models are distinguishable (e.g., based on state output, one can
distinguish each model from the next) given nonzero inputs. This will be
how we estimate σe in the simulations.

4. The four models are, in fact, distinguishable based entirely on θ output
(i.e., one may construct a “reduced-order” hybrid observer).

Figure 3 shows a simulation of the four actuator system using k = 1. We
simulate the kinematic system rather than the dynamic one, but we are cur-
rently making a dynamic simulation to explicitly incorporate various modeling
choices (particularly of friction) in the simulation. In either case, the control
design should be done at the kinematic level to allow for the abstraction of
uncertainty we are advocating. We use crossing from one quadrant to another
as the way to drive σe in the simulation (which is motivated by minimizing
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Fig. 3. Simulation of multi-point manipulation when σc = σe. The rectangle rep-
resents the center of the object which is actually in contact with all four of the
actuators (Nodes 1-4). The time history progresses from dark rectangles at time
0 to the light rectangles at time 10. The three plots are plots of the X,Y , and θ
coordinates against time.

the power dissipation, see [15]), but estimate σe online in the simulation. The
actuators can only push in one direction for a short amount of space before
reaching a kinematic singularity, so they are reset occasionally (this effect
shows up in the estimation of σe). The object is indicated by a rectangle,
but the reader should note that although the rectangle is illustrated as be-
ing small, the actual body it represents is in contact with all four actuators
at all times, which are denoted in the figure by Nodes 1-4. Their range of
motion is depicted by a dark line next to Node X. The initial condition is
{x0, y0, θ0} = {.5, 2, π2 }, and progress in time is denoted by the lightening of
the object. The three plots beneath the XY plot are X, Y , and θ versus time,
respectively. This, and the other simulations, were all done in Mathematica,
using Euler integration in order to avoid numerical singularities when crossing
contact state boundaries. In Fig. 3, the object is stabilized to (0, 0, 0) with no
difficulty (and did so reliably over many simulation runs not depicted here).
Moreover, this trajectory is qualitatively very similar to the trajectories found
experimentally in [15].

The simulation is structured as follows. Depending on which quadrant
the center of mass of the object is in, σe is chosen to be one of the four
models in Table 5. Then, all four models are integrated with respect to time
while applying an initial control value of u1 = 0, u2 = 0.1 (it doesn’t matter
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Fig. 4. Simulation of multi-point manipulation when σc 6= σe (i.e., the estimated
contact state is delayed). The object is only barely stabilized to the origin. (As in
Fig. 3, the three plots are plots of the X,Y , and θ coordinates against time.)

what this initial control is, so long as it is nonzero). Based on this, σe can
be immediately determined by looking at the evolution of θ. We did this
rather than directly comparing velocities so that we are not differentiating
the output. In any case, this then determines σc. Knowing σc, we ask the
actuator tips to follow the velocities ui based on the control laws in Table 5.
These are implemented with an inverse Jacobian, except for when the actuator
tip reaches one of its limits, in which case we reset it to the other end of its
range (the dark lines in the figure). We can add noise to the sensed state
variables and time delays to the estimated σc.

If σc is a bad estimate of σe, then performance degrades but stability is
not lost, as seen in Fig. 4, where a time delay of one tenth of a second is
introduced. (Note that the amount of time delay in a kinematic system is
scalable by virtue of changing the gain on the controller.) Adding a small
amount of noise to the sensed outputs has roughly the same effect as a small
time delay, as we would expect. If the time delay for a given gain is made
sufficiently large, the system becomes unstable. This indicates, at least in
simulation, that the interpretation and application of the stability theorems
in Section 4 are appropriate here, and that performance degrades reasonably
gracefully as σc becomes less and less of a good estimate of σe until eventually
the system destabilizes.
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6 Conclusions

In this paper we have described methods applicable to the modeling and con-
trol of mechanical manipulation problems, including those that experience
uncertain stick/slip phenomena. The particular contribution of this work is to
point out that the use of an abstraction, in this case a kinematic reduction,
not only reduces the computational complexity but additionally simplifies the
representation of uncertainty in a system. Moreover, this simplified represen-
tation may be directly used in a stabilizing control law. The end result of
this is two-fold. First, modeling for purposes of control is made more straight-
forward by getting rid of some dependencies on low-level mechanics (in par-
ticular, the details of friction modeling). Second, the online estimation of the
relevant uncertain variables is much more elegant and easily implementable
than the online estimation of the full model and its associated uncertainties.
For instance, online friction system identification is quite complex and is not
feasible for many applications. However, the presentation here assumes that
all feasible states for the system are indeed kinematically reducible. If they are
not, then one must switch back to a full analysis of the uncertainty. Moreover,
enumeration of the kinematic states can be computationally challenging be-
cause in principle the number of kinematic states can go up exponentially in
the number of contacts. We expect to be able to address this by more formally
using the discrete symmetry properties that allowed us to reduce to only four
states in Table 5.

We stabilize the system using techniques from multiple model adaptive
control as developed in [1, 5, 7]. We demonstrate in simulation that this tech-
nique works well in the context of a simple example (based on experimental
work seen in Fig. 2). Moreover, the model/controller presented in the con-
text of this example does not include any explicit model of friction, making
the proposed techniques applicable to cases where an unstructured environ-
ment makes it unlikely that one can model frictional interactions accurately.
Instead, one moves some of the robustness requirements to the backstepping
algorithm employed, hence reducing the uncertainty representation with which
the high-level controller must contend.

Ultimately, the analytical techniques presented here should be extended
to the more geometric setting of grasping and manipulation in the presence
of gravitational forces. In particular, examples where a common Lyapunov
does not exist should be examined in depth using the analytical techniques
developed here. In the meantime, these results will be implemented both in a
dynamic simulation environment we are developing and on a second generation
version of the experiment discussed in Section 2 and seen in Fig. 2.
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