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Abstract— We introduce a novel method for enforcing stabil-
ity on a decentralized control system. In contrast to previous
work, our approach allows for the use of a wide variety of
simple control laws, while still providing for a formal proof
of stability. Our motivating example uses a simple geometric
switching function coupled with PD control that has an intuitive
interpretation as a virtual spring mesh. Building on this
example, we show a general proof technique that applies to
a large class of decentralized control systems. Furthermore,
we describe additional cases that illustrate how our technique
can be applied to useful systems that are straightforward to
implement.

I. INTRODUCTION

We have developed a novel method for enforcing stabil-
ity on a decentralized control system. Many decentralized
control algorithms are modeled after phenomena observed in
nature, such as the flocking behavior of birds or the schooling
behavior of fish [1], [2]. Others are based on simulated
physical systems, such as cellular automata in crystals [3]
or biological cells. Common to these approaches are simple
local control laws implemented on each agent, and designed
in such a way that desirable global behaviors emerge. The
control laws are typically based on interactions between a
given agent, the environment, and a set of nearby agents
determined by a proximity graph of some kind.

Proofs of stability have been produced for such systems
(e.g., [4], [5]), but typically these proofs impose constraints
on the dynamics of the system and the proximity graph. For
example, the results in [4] apply only to a specific potential
function on the unit-disk graph, and the results in [5] are for
another particular potential function on a Voronoi graph. The
difficulty with this is that the stability results do not leave
much room for task specification–tasks must be framed in
terms of what can be achieved in a stable manner and are
therefore often limited to stable area coverage or “flocking”
through a series of obstacles. Moreover, the task specifica-
tion will likely change over time, thus introducing discrete
changes into the equations of motion. Lastly, heuristics of
various sorts are often helpful for various tasks, such as
collision avoidance and other safety-critical elements of the
task specification. The key point is that the control should not
dictate the task specification, or it should at least minimize
its effect. To this end, we explore a more general method of
proving stability with an eye towards ease of implementation,
genericity of proximity graphs to which it is applicable, and
provable stability.

Traditional approaches to stability of hybrid switching
systems typically require that one find a common Lyapunov
function for all possible hybrid states of the system [6].
This is often an intractable problem for systems with large
numbers of hybrid states. It is no coincidence that coordi-
nated control systems are such systems, having as many as
(n−1)! states for n agents. Dwell-time analysis, such as that
found in [7], seeks to provide stability for a more general
class of systems by imposing restrictions on the (global)
switching rate. Our work builds upon these initial results.
However, it is not clear how to apply this type of analysis
to a distributed system, where each agent has access to only
local information. This is part of what is considered here,
and we show how to use a consensus algorithm as part of the
hysteresis-generating function to decentralize the approach.

Our work seeks to take advantage of the intuition be-
hind dwell-time analysis and produce a general technique
for proving stability using only local information. We are
motivated by a desire to construct a distributed system where
we choose the proximity graph based on desired topological
properties, and then adapt the resulting switching function to
gain provable stability.

Throughout this paper, our motivating example will be the
switching function that produces a Gabriel graph, which we
describe in more detail in [8] and [9]. This Gabriel graph
switching function is described briefly in Section III. Section
IV details the generalized result that applies to a large class of
systems, including our motivating example. Sections VI and
VII present additional examples of common situations where
our technique may be put to use. We end with a discussion
of some of the strengths and weaknesses of our approach as
well as future work.

II. RELATED WORK

There is a significant body of previous work dealing with
coordination of small teams of robots, e.g.[10], [11], [12],
[13], [14], [15]. More recently, there has been research into
behavior-based and virtual-physics based control of large
teams of robots[16], [17], [18], [19], [20], [21]. The work
most closely related to our own is summarized below.

A. Behavior-based Control
Fully distributed control based upon simple local behaviors

has been used in several contexts. Much of this research
is based on the intuition gained from observing behaviors



such as flocking in animals. In flocking situations, animals
seem to draw most of their behavioral cues from the nearby
flockmates. Using this observation as a basis, Brooks[16] has
investigated behavior-based control extensively; Werger[17]
later described the design principles of such systems. Balch
and Hybinette[3] suggested the use of “attachment sites” that
mimic the geometry of crystals; this is used to create forma-
tions with large numbers of robots. A variety of projects
have made use of “swarm robotics,” e.g., [22] and [23],
to carry out simple tasks such as light tracking. Gage[18]
investigated the use of robot swarms to provide blanket,
barrier, or sweep coverage of an area. Several researches
have used models based on the interactions of ants within
a colony[24], [23], [25]. These approaches generally seek
to define simple local behaviors that lead to large-scale
properties that are beneficial in a particular application.

B. Virtual Physics
Distributed control based on virtual physics (also called

“artificial physics” or “physicomimetics”) has also been
investigated, although not in the manner described here.
Howard, Mataric and Sukhatme[19] model robots as like
electric charges in order to cause uniform deployment into an
unknown enclosed area. Spears and Gordon[20], [21], [26]
use a more sophisticated model analogous to the gravita-
tional force, but make the force repulsive at close range.
Both of these models use switching functions based on a
threshold distance. McLurkin[27] used a partially-connected
interaction graph with a physics model similar to that of
compressed springs to produce uniform deployment within
a limited indoor environment. These works provide useful
heuristic algorithms, but unlike our work, they do not attempt
to show any provable properties of the resulting formations.

C. Switched Systems
Jadbabaie and colleagues used algebraic graph theory to

show stability for switched networks using nearby-neighbor
rules[28], [29], [2]. Hespanha and Morse used dwell-time
analysis to show stability in linear systems with arbitrary
switching that is slow on the average[30], [7], [31]. Bullo
and colleagues showed stability in a switched system using
Voronoi neighbors[5]. Our work expands this prior work
by allowing for more flexibility and a clear method of
implementation in a distributed system.

III. MOTIVATING EXAMPLE: VIRTUAL PHYSICS SPRING
MESH

In previous work [8], [9], we analyzed a distributed control
system that was essentially a virtual physics model that
looked like a spring mesh system. In this example, each agent
is treated as a particle in a simulated system, with virtual
springs acting between specific pairs of agents. The appeal
of this control law is partially its conceptual simplicity and
ease of implementation.

For a fixed set of springs, the control law for each agent
is

ẍ = u (1)

u =
[

∑

i∈C

ks(li − l0)v̂i

]

− kdẋ (2)

where x represents the Cartesian coordinates describing the
agent’s position, ẍ is the agent’s acceleration, ẋ is the agent’s
velocity, C is the set of springs connected to this agent, li
is the length of the ith spring, and v̂i is the unit vector from
this agent to the agent on the other end of the ith spring.
Control constants are the natural spring length (l0), the spring
stiffness (ks), and the damping coefficient (kd). Lastly, we
require that the system be symmetric–if an agent a has a
spring connected to agent b, then agent b must have a spring
connected to agent a.

It is straightforward to show that such a system is stable
in the absence of switching; that is, when springs are neither
created nor destroyed (see [8]). However, it is useful to
allow the creation and destruction of springs. In particular,
when any sort of proximity graph is changing dynamically
as the time evolution proceeds, springs will be created and
destroyed.

Let R be the set of agents. Let the sensor graph GS be
a graph where R is the vertex set, and there is an edge
between two vertices r1 and r2 ∈ R iff agents r1 and r2 can
both sense each other. Let the control graph GC be a graph
where R is the vertex set, and there is an edge between two
vertices r1 and r2 ∈ R iff agents r1 and r2 are interacting for
control purposes. To simplify notation, we will understand
S to be the edge set of GS and C to be the edge set of
GC . C (and therefore GC) will be defined by a time-varying
switching function σ, which we will describe in terms of a
graph construction algorithm. Note that C is necessarily a
subset of S.

In our prior work, we introduced a switching function
that creates a Gabriel graph GC [32], [33], [34] that dictates
which data is incorporated into the control laws. In particular,
it dictates C. With this switching function, there is a spring
between agents A and B if and only if for all other agents
Z, the interior angle 6 AZB is acute. Equivalently, there is a
spring between agents A and B if there are no other agents
within the circle with diameter AB. This switching function
uniquely determines C based on the agents’ positions.

The Gabriel graph switching function provides many ad-
vantages; chief among these is provable connectivity of the
graph [33]. The Gabriel graph is also well-suited to providing
uniform coverage of an area, as it creates a mesh of acute
triangles. It is a planar graph [33], so it does not suffer
from high edge density when the agents are close together.
However, it depends on springs being created with nonzero
potential energy, which complicates any proof of stability, as
energy may be added to the system as the topology changes.

In order to prove stability in the presence of time-varying
topology, we modify the switching algorithm in a manner
inspired by dwell-time analysis. It has been shown in several
cases that if all members of a given class of linear systems are
stable, then arbitrary switching among those systems results
in a stable hybrid system, provided that the switching rate
is “slow-on-the-average” [7]. Essentially, the proof shows
that the rate of decrease of the Lyapunov function due to



the dissipation is greater than the rate of increase of the
Lyapunov function due to switching, as long as the average
dwell time between switches is sufficiently long.

In our approach, instead of computing a limit on the
switching frequency explicitly, we use a notion of a global
“energy reserve” to create the same limiting effect on the
switching rate. (The idea behind this name is that if a switch
will increase the value of the Lyapunov function, there must
be enough energy in reserve to compensate.) We find this
approach intuitive and more straightforward to implement
in our distributed system, in which switching events are
detected locally. Although a global quantity such as this
should make one nervous, we will see that a local estimate
of this quantity based on a zero sum consensus algorithm is
sufficient for stability purposes.

Consider a set of agents ri ∈ R. Let the time-varying
signal σ : t −→ G be the switching function for a Gabriel
graph G (i.e., σ determines the time evolution of G). Note
that σ is constant except for discrete changes at times t1...tn.
For any time interval τj = [tj ...tj+1], let Vσ(τj) be a global
potential function. It is shown in [8] that a function exists
with the following properties:

1) Vσ(τj) is positive-definite.
2) V̇σ(τj) is negative semi-definite.
3) V̈σ(τj) is bounded.

These conditions imply (via Barbalat’s lemma) that the
system is stable during the intervals between switches. We
define the overall potential function Vσ(t) to be equal to
Vσ(τj) on the interval [tj ...tj+1], for all j. We will generalize
this in Section IV.

Since it is possible to evaluate the potential associated
with every spring at any time, each agent may maintain an
estimate of the current potential of all springs connected to
that agent. We will call this value Ui.

Ui =
∑

h∈Ci

1

2
ks(li,h − l0)

2 (3)

where Ci is the set of springs connected to agent i, and
li,h represents the length of the spring from agent i to
agent h. Whenever a switch occurs, the value of Ui may
instantaneously change according to the potential created or
destroyed by springs coming into and out of existence. Define
the quantity si such that:

si(t) =
1

2

(

lim
t→t̃+

Ui − lim
t→t̃−

Ui

)

(4)

This quantity captures the instantaneous change in poten-
tial due to the spring switching. The factor of 1/2 is present
because each spring connects to two agents, and thus will
be counted twice. It is thus easy to show that the following
equality holds:

∑

i∈R

si = lim
t→t̃+

(Vσ(t)) − lim
t→t̃−

(Vσ(t)) (5)

Additionally, let
di = −kdẋi

T
ẋi (6)

where xi represents the position of agent i. The quantity di

represents the rate of energy dissipated by damping at agent
i. It is a direct consequence of the static stability proof in [8]
that on any interval between switches, the following holds:

∑

i∈R

di = V̇σ(τj). (7)

This is clear if we recall the fact that the virtual physics
is based on a spring mesh system, where all the energy
dissipation is due to damping, and the total energy damped
is the sum of the energy damped at each node of the mesh.

At this point, each agent can quantify its own contribution
to the amount of energy that is being damped out of the
system, as well as the amount that is being created or
destroyed by switching. Intuitively, we would like the former
to be of greater magnitude than the latter when averaged over
all agents for some length of time.

This can be accomplished by maintaining a local energy
reserve Ei at each agent (the local reserve will be related
to a consensus-based global reserve in Section V). Ei is
initialized to an arbitrary nonnegative value. As energy is
damped out of the system, a fraction of that energy is added
to the reserve. When a switch occurs, the energy created by
the switch is removed from the reserve. As long as the energy
reserve is not allowed to drop indefinitely, the system will be
stable. This inspired us to create the modified Gabriel graph
switching function σ′(t), which is identical to σ(t), except
that a agent i may not create a spring if that operation would
cause Ei < 0.

Notice that preventing the creation of a spring requires
the cooperation of two agents (one on each end), since the
properties of Vσ(τj) given above depend on symmetry in
the springs (that is GC must be an undirected graph). Thus,
spring creation is prohibited when either agent has Ei < 0.

A stability proof specific to a spring mesh with the
modified Gabriel graph switching function is given in [8].
However, the underlying concept does not rely on that par-
ticular switching function, or on the spring mesh dynamics.
The following section generalizes the proof in [8] to a broad
class of systems, of which the Gabriel graph is a member.

IV. GENERAL RESULT

Consider a set of agents R and a time-varying switching
signal σ(t) that is constant except for discrete changes at
times t1....tn. Assume that the state for each agent i is
x ∈ M , the governing equations are ẋ = f(x), and that the
switching function changes f over time, σ : (x, t) −→ f .
We assume the following properties:

A1 For each time interval [tj ...tj+1] (we will call this
interval τj), there exists a global potential function
Vσ(τj) such that Vσ(τj) is positive-definite, V̇σ(τj)

is negative semi-definite, and V̈σ(τj) is bounded. We
define the overall potential function Vσ(t) to be equal
to Vσ(τj) on the interval [tj ...tj+1], for all j.

A2 At every time t, each agent i can determine a quantity
di such that ḋi is bounded,

∑

i∈R di ≥ V̇σ(t) and di ≤



0. Note that V̇σ(t) is negative semi-definite, so di is
bounded above by zero and below by V̇σ(t).

A3 At every time t, let there be a quantity si for
each agent such that

∑

i∈R si = limt̃→t+(Vσ(t̃)) −
limt̃→t−(Vσ(t̃)). Each agent can determine an estimate
ŝi such that

∑

i∈R ŝi ≥
∑

i∈R si.
A4 A switch at time tj for which ŝi > 0 for any i ∈ R

may be prohibited at will, causing σ(τj) = σ(τj−1).
Property A1 implies that the system is stable in the

absence of switching. This is typically simple to verify using
standard Lyapunov function techniques.

Property A2 involves the agents’ local estimates of the
amount of energy that is being damped out of the system. If
Property A2 is satisfied, then the sum of the local estimates
does not collectively over-estimate the amount of damping
that occurs.

Property A3 involves the agents’ local estimates of the
potential created by switching. If Property A3 is satisfied,
then the sum of the local estimates does not collectively
under-estimate the actual potential created by a switch.

Property A4 captures the ability of the agents to delay or
prevent a switch when necessary to prevent destabilization.

If each of these properties is satisfied, then our method is
applicable and the system may be stabilized with a simple
modification to the switching function.

Associate with each agent i a value Ei which is defined as
the solution to a differential equation. Ei has an arbitrarily
chosen nonnegative initial value and evolves according to the
following:

Ėi(t) = −kedi(t) if si(t) = 0 (8)

Ei(t) = lim
t̃→t−

Ei(t̃) − si(t) otherwise (9)

where ke is a global constant, 0 < ke < 1. Ei represents
the local energy reserve. Notice that Ei is initialized to a
nonnegative value and then evolves according to Equation 8
as long as si is zero (that is, on intervals with no switches).
Whenever si 6= 0 (there is a switch), Ei is re-initialized to
the value given in Equation 9.

Each agent maintains a local estimate Êi, which is initially
greater than zero and evolves according to the following:

˙̂
Ei(t) = −kedi(t) if ŝi(t) = 0 (10)

Êi(t) = lim
t̃→t−

Ê(t̃) − ŝi(t) otherwise (11)

Let the global values E and Ê be defined such that

E =
∑

i∈R

Ei (12)

Ê =
∑

i∈R

Êi (13)

We will call E the global energy reserve.
This brings us to the simple change necessary to stabilize

the system. The modified switching function σ′ is identical to
σ, except for the added condition that any switch that would
cause Êi < 0 for any agent i is prohibited, as described in

Property A4. Note that the value of Êi cannot decrease in the
absence of switching, because di ≤ 0 for all i (see Property
A2). Also, this computation is decentralized; the agents only
need access to the local values Ei, di, and si.

The immediate consequence of modifying σ in this way
is that Ê ≥ 0, since it is the sum of all nonnegative terms. It
follows from equations 12 and 13 and the definitions of si

and ŝi (see Property A3) that E ≥ Ê. Thus if Ê ≥ 0, then
E ≥ 0 as well.

Theorem 4.1: In any system satisfying assumptions A1-
A4 and using the modified switching function σ′, all agents
eventually reach a state of unchanging potential. That is,
|Vσ′(t) − α| → 0 for some α ∈ R and, in particular,
V̇σ′(t) → 0.

For purposes of notational simplicity, we will take V

to denote Vσ′(t) for the remainder of this section unless
otherwise specified.

Proof: Our approach invokes Barbalat’s lemma, which
states that if f(t) is lower bounded, ḟ(t) is negative semi-
definite, and ḟ(t) is uniformly continuous (or equivalently,
f̈(t) is finite), then ḟ(t) approaches zero as t approaches
infinity. We will apply Barbalat’s lemma to a potential
function V

′, thereby showing that V̇′ goes to zero, which
implies that all agents reach a state of unchanging potential.

We will show stability of the system using the modified
potential function V

′, defined as:

V
′ = V + E (14)

Since V is positive-definite (by Property A1) and E > 0,
it is clear that V

′ ≥ 0.
Differentiating, we see that on any interval on which there

are no switches:
V̇′ = V̇ + Ė (15)

Substituting for Ė:

V̇′ = V̇ +
∑

i∈R

−kedi (16)

To handle switches, we must look back to the definition
in Property A3:

lim
t̃→t+

V(t̃) = lim
t̃→t−

V(t̃) +
∑

i∈R

si(t) (17)

Thus, at any instant t when a switch occurs (that is, when
any si 6= 0),

lim
t̃→t+

V
′(t̃) = lim

t̃→t−
V(t̃) +

∑

i∈R

si(t) + E(t) (18)

Substituting for E from Equation 9,

lim
t̃→t+

V
′(t̃) = lim

t̃→t−
V(t) +

∑

i∈R

si(t) + lim
t̃→t−

E(t̃)−
∑

i∈R

si(t)

(19)
which simplifies in the following way:

lim
t̃→t+

V
′(t̃) = lim

t̃→t−
V(t) + lim

t̃→t−
E(t̃) (20)

lim
t̃→t+

V
′(t̃) = lim

t̃→t−
V

′(t̃) (21)



Thus, the discontinuity in V
′ has been removed, as the limits

from both sides are the same. Since switches have no effect
whatsoever on V

′, Equation 16 holds true at all times.
Since V̇ is negative definite (see Property A1), 0 < ke <

1, and V̇ <
∑

i∈R kedi < 0 (see Property A2), it must be
the case that V̇′ is negative semi-definite.

Because V̈ is bounded (Property A1) and ḋi is bounded
for all i (Property A2), we also know V̈′ is bounded.

We now have sufficient information to satisfy Barbalat’s
lemma. We know V

′ is lower bounded by zero, V̇′ is
negative semi-definite, and V̈′ is bounded, so Barbalat’s
lemma implies that V̇′ → 0 as t → ∞. It follows directly
that V̇σ′(t) → 0 as t → ∞.

Note that in the proof of Theorem 4.1 we are effectively
changing both where the switch in σ is allowed to occur and
potentially which switches are allowed to occur.

V. ENERGY RESERVE CONSENSUS

Although the decision to prohibit a switch is made by each
agent based on its local energy reserve, it is desirable to
allow switches to occur whenever the global energy reserve
is sufficiently large. That is, we do not want to prevent a
switch due to low energy reserves in one part of the system,
when there are sufficient energy reserves unused somewhere
else. Thus, we need some mechanism for sharing information
about the energy reserve levels between agents.

We will take advantage of the average-consensus algo-
rithm described by Olfati-Saber and Murray [35]. This algo-
rithm allows a distributed set of agents to reach a consensus
on a common global value, while sharing information only
with their local neighbors. If an agent i has a set of neighbors
Si which it can sense,

ūi =
∑

l∈Si

(El − Ei) (22)

We then replace Equations 8 and 10 with the following:

Ėi = −kedi + ūi (23)
˙̂

Ei = −kedi + ūi (24)

Note that Equations 9 and 11 remain unchanged. We require
that the neighbor relation is symmetric (if a ∈ Sb, then
b ∈ Sa). This symmetry provides the following zero-sum
property:

∑

i∈R

ūi = 0 (25)

Note that

Ė =
∑

i∈R

Ėi =
∑

i∈R

−kedi + ūi =
∑

i∈R

−kedi

because of the zero-sum property. Hence, Equation 16 re-
mains unchanged. Since Equation 9 is also unchanged, the
result in Equations 19 through 21 also stands as before. The
system does evolve differently, as the times when we must
prohibit a switch have changed due to the differing local
values of E, but it still meets all the conditions necessary for

the proof in Section IV because the global behavior of E still
has the required properties. However, as described in [35],
all of the local energy reserves will now converge to a single
value, provided the sensing graph is connected. If the sensing
graph is not connected, then each partition will converge
to its own value. This is not ideal from a performance
standpoint, but does not affect the stability property of the
system.

The consensus function given here is just one example of
a valid consensus function. In fact, any consensus algorithm
with the zero-sum property described in Equation 25 is
acceptable. The consensus on E is independent of the normal
control of the system, although a faster consensus will
improve performance in terms of convergence rate. What we
have shown is the following:

Corollary 5.1: In any system satisfying assumptions A1-
A4 where Eqs.(22)-(24) replace Eqs.8 and 10, all agents
eventually reach a state of unchanging potential.

VI. EXAMPLE: NEAREST NEIGHBORS

One common switching function is the nearest-neighbors
function, in which agents interact with all neighbors within
some threshold distance. While proofs of stability for specific
systems using nearest-neighbor rules exist (e.g. [2]), these
proofs typically do not generalize. Our technique applies to
a broad class of systems using nearest neighbor rules. For
example, consider the system with the following control law:

ẍi = ui (26)

ui =
[

∑

j∈Ni

∇P (xi,xj)
]

− kdẋi (27)

where Ni is the set of neighboring agents within some
threshold distance of agent i and P is some continuous, con-
servative function representing the potential between agents.
“Conservative” here is used in the sense of a conservative
field–the integral over any two paths with the same endpoints
is the same. ∇P is the gradient of P with respect to x.

For each interval τj between switches, let the potential
function be:

Vσ(τj) =
∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi

]

(28)

Since P is conservative, it can be shown that:

V̇σ(τj) =
∑

i∈R

−kdẋ
T
i ẋi (29)

Thus, this definition of Vσ(τj) satisfies Property A1.
The damping term makes it easy to satisfy Property A2;

we simply let:
di = −kdẋi

T
ẋi (30)

Since we can evaluate P at any point, satisfying Property
A3 is also straightforward. We define si such that:

si =
∑

j∈N
+

i

P (xi,xj) −
∑

j∈N
−

i

P (xi,xj) (31)



where N+
i represents the limit of Ni from the right, and N−

i

represents the limit of Ni from the left.
Property A4 is true because agents may agree not to

interact with each other at will. Having met all the conditions,
we apply our technique to construct a stable system with a
modified switching function.

We have shown the following.
Corollary 6.1: With the nearest neighbor graph topology

from (27) where σ′ is substituted as described in Section IV,
all agents eventually reach a state of unchanging potential.

VII. EXAMPLE: TARGET TRACKING

Consider a system in which there are potentials between
the agents as well as between the agents and targets in the
environment. For example, one might model agents as posi-
tive charges and targets as negative charges (similar to [19]),
so that the agents normally disperse but are attracted to target
areas. It may be the case that targets can appear, disappear,
change position, and/or change characteristics in such a way
as to inject large amounts of energy into the system. Our
technique can be applied to prevent destabilization of the
system due to target behavior.

For example, let R be a set of agents and T a set of targets,
each of which may appear and disappear arbitrarily. Let the
control law for agent i be the following:

ẍi = ui (32)

ui =
[

∑

j∈R

∇PR(xi,xj)
]

+
[

∑

k∈T

∇PT (xi,xk)
]

−kdẋi (33)

where PR is the potential function acting between the agents,
and PT is the potential function acting between agents and
targets.

If there are no restrictions on the appearance of targets,
then targets may inject an arbitrary amount of energy into the
system. This is not desirable, as the continued appearance
of targets, or the appearing and disappearing of a few
targets in an unfortunate pattern, could destabilize the system
and/or cause collisions between the agents. Modifying the
switching function according to our technique will remove
this problem.

Recalling section IV, Property A1 is met because the
potential functions are conservative and the system is damped
(a proof of this is omitted for brevity, but is fairly straight-
forward). We can meet Property A2 with the following
reasonable choice:

di = −kdẋi
T
ẋi (34)

Property A3 is met because we can evaluate the potential
functions PR and PT at any point. Thus, we can assign si =
PT (xi,xk) when target k appears, and si = −PT (xi,xk)
when target k disappears.

Property A4 is met because si > 0 only when a target
appears, and agents may elect not to track a given target if
necessary.

Fig. 1. Agents mapping a complex diffuse target

Fig. 2. Agents mapping multiple diffuse targets

Since each of the properties are satisfied, our technique
may be applied. With our modified switching function, if the
target pattern is ever such that the system would destabilize,
then the agents will ignore the targets that would have caused
destabilization to occur.

Further examples of target tracking are shown in Figures 1
and 2. In these cases, the targets are diffuse and represented
by an intensity map. These simulations use the spring-
mesh control law and Gabriel graph switching function from
Section III, but with adaptive spring lengths so that the
density of agents increases with the target intensity.

Figure 2 shows an interesting emergent property of the
Gabriel graph algorithm. There are groups of agents tracking
each target, and there are also some agents spread between
the target areas to maintain connectivity. This is a useful
formation, as it allows most of the available agents to be used
for target tracking, but reserves some agents to maintain a
communications path. The “division of labor” in this example
is not explicit; it emerges as a result of the Gabriel graph
switching function.
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Fig. 3. Fraction of links prevented

The combination of changing spring parameters and
switching would normally be difficult to analyze. However,
by applying our technique, it is possible to decouple the
analysis of varying spring parameters from that of varying
topology. As long as the system is stable in the absence of
switching, we can ensure that the switching function does
not introduce any instability.

VIII. COLLISION AVOIDANCE

For some systems, using the modified switching function
may have implications for collision avoidance. If its energy
reserve is depleted, an agent may not allow a switch that is
necessary in order to prevent a collision.

In such situations, it may be necessary to destroy an
existing link or take other action in order to gain sufficient
energy reserves to prevent the collision. The design of a
switching function that guarantees the ability to do this is
not obvious, and is an open area for future work.

IX. HOW OFTEN DOES σ′ PLAY A ROLE?

Since modifying the switching function affects the behav-
ior of the system, it is important to know just how often
links are really prevented by insufficient energy reserves.
One might expect that with conservative gains and damping,
the energy recovered from damping will generally be great
enough to cover the energy needs of switching. Only when
operating with high gains and relatively little damping would
one expect the energy reserve to truly come into play.

This is in fact what occurs. Figure 3 shows the fraction of
links prevented by insufficient energy reserves for a test case
with 32 robots using the modified Gabriel graph switching
function. When the damping constant (kd) is high and the
spring constant (ks) is low, no links are prevented. Only
when the gain is relatively high and the damping constant is
relatively low are there a large number of links prevented.
This result is highly intuitive–when we “push the envelope,”
with higher gains, we are taking greater risks with stability.
The modified switching function comes into play more and
more as we push the system towards higher performance.

Fig. 4. Target tracking experiment: the green robot (upper left) is the target.
The remaining robots implement the control algorithm from Section III.

X. HARDWARE EXPERIMENTATION

To verify the applicability of our results to real-world
systems, we have implemented the system described in
Section III in hardware. Our experimental platform is based
on the Roomba robotic vacuum cleaner manufactured by
iRobot. Each Roomba is outfitted with a controller board
designed by the authors; this provides communication and
implements the control algorithm on-board. A snapshot of
one experiment is shown in Figure 4. In this experiment, six
robots using the algorithm described in Section III track a
single target, implemented by a seventh robot.

A detailed description of our hardware experiments can
be found in [36].

XI. CONCLUSIONS

In this paper we have introduced an approach to coop-
erative control that focuses on monitoring the admissible
changes in network graph topology according to a stability
criterion. This method can be distributed across a network
of agents by additionally using consensus algorithms like
those found in [35]. This leads to a very flexible method
of guaranteeing stability for arbitrary network graphs and
explicitly avoids any instabilities due to the graph topology
switching.

We did not consider collision avoidance or noise in this
work, though the latter is largely addressed by the basic
results of [7] on noise and external disturbances. Collision
avoidance is the subject of continuing work. However, in
simulation network links are always made in time to avoid
collisions, so we believe our method will extend to this with
guarantees on collision avoidance.

Finally, the basic results presented here have consequences
for symbolic, linguistic, and grammatical control [37], [38].
Given a finite set of symbols, each corresponding to a stable
process, Theorem 4.1 implies that so long as each symbol
can “hold” its action in accordance with Eqs.(22)-(24), then
any string of symbols will result in a stable system.
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