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Abstract— This paper describes methods applicable to the actually necessary for task completion (which they typically
modeling and control of mechanical contact, particularly those gre not).
that experience uncertain stick/slip phenomena. Geometric From a design perspective (as opposed to a simulation

kinematic reductions are used to show how to reduce a system’s ti it is thus desirable to. if introd
description from a second-order dynamic model with frictional  PErSPECtive), it is thus desirable to, if necessary, introduce

disturbances coming from a function space to a first-order €lements to a model that provide the full complexity of pos-
model with frictional disturbances coming from a space of finite  sible behavior of the system without introducing too much
automata over a finite set. As a result, modeling for purposes of new information (thereby decreasing the applicability of the
cont_rol in the resulting d_erlve_d information space is made more model). This is related tanformation spaceg8], which
straight-forward by getting rid of some dependencies on low- . . . .
level mechanics (in particular, the details of friction modeling). orlglne}ted 'n the computer suepce Commu_nlty and were then
Moreover, the online estimation of the uncertain variables in the formalized in a control abstraction context in [16] and related
derived information space has reduced sensing requirements. works. In this paper, notions of an information sp&cand
Results are illustrated using an actuator array model. an associated (in some sense smaller) derived information
spacel,.-, along with their desired properties, play a central

l. INTRODUCTION role. In particular, we are interested in understanding when

It is traditional in robotics to view problems of manipu-Planning and control problems can be successfully posed in
lation, motion planning, and control in one of two extremed Smaller, more tractable space.
lights. First, if a system is kinematic, the system description This paper shows how notions of kinematic reducibility
is simplified from a second-order system with forces an§an allow one to recast a dynamic system that has frictional
inertias to a first-order system that consists of velocitiegffects belonging to a function space into a first-order system
and constraints. Then motion plans and control laws (#hat has frictional effects that form a finite automaton over
necessary) are designed for this kinematic system. It %flnlte set. This provides a representation of friction that
important to note that in order tonplementthis plan based is simultaneously more simple and less naive (in the sense
on kinematics, a backstepping algorithm is employed, eithéiat one no longer needs to knowhich friction law is
explicitly in an “inner-loop-outer-loop” control architecture, governing the dynamic equations of motion for purposes of
or implicitly by purchasing motor controllers (or other ap-implementation).
propriate devices) that provide the inner loop control. In the The basic thesis of this paper is that kinematic systems are
end, the advantages of using kinematic structures includeful not so much because of their first-order representation
both lessened computational burden (due to the computati6h & system, but rather because they arise naturally from
in a lower-dimensional space) and increased robustnessa&d-anonical choice of derived information spakg,. This
some classes of uncertainty (due to robustness propertiesdgfived information space allows one to get rid of most (but
the backstepping, inner-loop controller). not all) of the information about the frictional interactions.

If, however, there is some reason that a kinematic analysl$1¢ key contribution of this paper is the presentation of a
is inappropriate, then one often reverts to a more compléRethodology for creating a derived information spage.
set of modeling choices. In particular, in multi-point con-based on geometric principles. In particular, the goal is to
tact many phenomena are introduced, including soft-contagfeate a reduced space that preserves both trajectories and
models [2], elaborate models of frictional interfaces [15]Stability, so that any plan or controller ify., will have a
and the inclusion of dynamic effects such as inertial term&able implementation ii. Surprisingly, orthogonal actuator
and generalized forces. Nevertheless, it is not clear that tR&rays (the example we dicuss) afevayskinematic. This is
introduction of these additional modeling techniques helpgue even if all contact points are slipping against the surface
for the purpose of ControL motion p|anning, etcetera. |er a manipulated ObjeCt, SO |Ong as the frictional interaction
particular, the task description typically does not includés strictly dissipative.

these effects, so one should only incorporate them in the This paper is organized as follows. Section Il describes
representation in use for planning and control if they arlicro-mechanical scratch drive actuators that motivate the
present work. Section Il discusses information spaces and
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by the NSF under CAREER award CMS-0546430. space. Section IV discusses modeling of multi-point contact
Todd D. Murphey is with Faculty of Electrical and Computer . h ined aff . ds
Engineering, University of Colorado at Boulder, Boulder, CO, USASyStemS using the constrained aifine connection an ec-

murphey@colorado.edu tion V discusses some straight-forward results in kinematic



HROVOMAGE st s any control strategy to not require this modeling and to take
CTRIC . . .
P I advantage of being able to reliably drive these actuators at a
\ SUBSTRATE | desired velocity.
R T [1l. | NFORMATION SPACES INMECHANICAL CONTACT
i TR T The notion of_an mformatlon space f’;\nd an assqmated
derived informationZ,.,. will be helpful in a discussion of
STEPPING VOLTAGE . . .
W mechanical contact. In particular,choiceof Z,.,. has pro-
| o | iJi found implications for both analysis, problem decomposition,
—[ - stepsize and implementation of control in systems with mechanical
contact.

Fig. 1. Scratch Drive Actuators (SDA) (Figure taken from [10]). SDAs are nsor n h nderlvin nami f th hvsical
chips covered with a large number of actuators along with the gold tether Sensors (and the underlying dynamics of the physica

than is used to send voltages down to the SDAs. The figure illustrates tRYSteém) induce what is termed amformation Space[8_]-
motion that an SDA goes through when moving. Despite being able to driveypically, an information spaceZ, consists of the time

SDA actuators quite reliable, the individual forces are difficult to m°dehistory of measurements and the control history of actions.
accurately. : . . )

That is, the information space & = (y(t),u(t)) where
reduction for systems with external forces. Because contrg{¢) is the history of discrete measurements (or, possibly,
and estimation are occurring directly in the derived informathe continuous space of measurements),&mgis similarly
tion space, Section VI discusses the method employed fife history of inputs. Additionally, one can choose a smaller
estimating discrete variables ify.. Section VII discusses information space that retains only the critical information
the application of the tools presented to actuator arrays. in 7, and is therefore simpler, but more of an abstraction;
this is called thalerived information spacé,.,.. The derived
information spac€,., depends on task specification and the

A system consisting of many points of contact typicallyassociated sensing needs: different tasks will have a differing
exhibits stick/slip phenomenon due to the point contactsubset of critical information coming from. Hence Zy., =
moving in kinematically incompatible manners. This mannefg(¢), a(t)) whereg(t) anda(t) are the set of measurements
of motion is calledoverconstrained motiohecause not all and inputs after they have been manipulated in some way to
of the constraints can be satisfied. reduce their complexity.

Consider the example in Fig. 1. Scratch drive actuators Given a “low-level” information spac& and a “high-
(SDA) are characterized by being able to produce largevel” derived information spac&,.,., one can compute a
deflections (on the order of 50@m), relatively large forces plan in the latter and implement it in the former. Hence, such
(on the order of 10Q:N), with high precision step sizes (on a plan is a mapping : Z4., — Z (Wherer € II, the space
the order of 30 nm). They can be arrayed on chips with asf all such mappings). Again, depending on the needs of the
few as ten SDA actuators on a chip. Despite the fact thatroblemZ,.,. may have different structure. For a planning
these devices were first developed over ten years ago [bkoblem,Z,.,. may be a path in the configuration, or simply
only recently has any formal work been done on modeling set of waypoints. For control, one may wish to design
and control for these devices [10]. a controller inZ,.,. and have it maintain its stability when

If one applies a voltage to an SDA, it responds bymplemented inZ. In each case, the mapping: Zg4e, — Z
contracting. After the voltage is set back to zero, the actuataeeds to implement commands without violating stability and
relaxes. During a sequence of such pulses, the actuatither dynamic characteristics of the low-level space.
experiences intermittent nonslip contact with the underlying The information space underlying mechanical contact will
insulating layer, allowing it to move in a manner similar to arbe of the formZ = ((z(t), 7(t)), u(t)) with z(t) € TQ, Q
inchworm. The stepping motion begins with the free end ahe configuration manifold'@ the tangent bundle;(t) € V
the SDA electrostatically loaded until the threshold voltagevhereV is a set of values the friction reaction forces can take
is reached, at which point it flattens out against the insulatirgnd~ € £" the space of integrable functions for contacts
layer. This process is illustrated in Fig. 1. (this will be restricted slightly, sincg will correspond to a

Modeling these devices depends heavily on the particulafsction law), andu(t) € U whereU is the space of control
of the brushing geometry, plate thickness, insulator propeferces that can be applied to the system. Heficis, simply
ties, and the plate Young’'s modulus. An in-depth analysis @&n estimate of the state along with an estimate of the friction
such a device was performed in [10]. The main importariaw and a corresponding control action. One would like to be
result of that analysis is that one can drive the actuators ataéle to compute both planning and feedback laws in a simpler
desired velocity, despite considerable uncertainty in the forapace—one that does not require characterizimgL.
characteristics. Hence, SDAs are most naturally described inlt will be shown that a choice &f 4., = ((¢(¢), o (¢)), a(t))
terms of kinematic relationships, at least when considereshereq € Q, o(t) € = (2 a finite set), andi(t) € U (veloc-
individually. Solving for the forces is difficult here as well, ity inputs for a kinematic system) is a derived information
as at the micro-scale they are typically not well definedpace that preserves trajectories (in the sense that trajectories
using traditional friction models. Hence, it is desirable foin Z,., always represent trajectoriesinand every trajectory

Il. MOTIVATION: MECHANICAL CONTACT SYSTEMS



in Z has a representation i) if it is ((U,D),U)- @ T (0) T
reducible (defined shortly) and can be implemented in a _—
stable manner (in the sense that a stabilizing controller
designed inZ,.,. can be mapped to a stable controller in
7). Hence, in this setting is a backstepping controller that
implements kinematic inputs in the dynamic space. _——

C d
IV. MODELING AND ANALYSIS OF MULTIPLE POINT © @

CONTACT / /

The systems considered here are finite-dimensional simple
mechanical systems (as described for smooth systems in [3]).
That is, their equations of motion may be found using a / /\
Lagrangian of the form kinetic energy minus potential energy
(L = K.E.—V) along with a set of constraints on the systenfig. 2. Types of friction model, including (a) Coulomb friction, (b)
of the formw(q)g =0 wherew(q) is a matrix representing Coulomb plus viscous friction, (c) Coulomb/viscous stiction, and (d) Non-

. . ’ . linear smoothing of stiction.
the configurationg dependent constraints. Moreover, there
may be external forces acting on the system. If one ignores
potential energy (as is appropriate for many planar syste
including the one described in Section 1), such a syste
dynamics may be represented as:

w(@)g w(@)g

w(@)g

r?(?r Fy,c,d > 0. These are seen in Fig. 2. Moreover, there
M&re many more types of friction model to choose from,
including dynamic models of friction like Dahl and LuGre

Vi = uY,, 1) modgls [.15] or even more heu'ristic models such' as Pacejka’s

“Magic Tire Formula™—each with their own specialized area

where the notation:“Y,, implies summation over the. of applicability. What one would like is an assumption on
In this expressionV is the constrained affine connectionfriction that does not depend on any of these particular char-
encoding the free kinetic energy and any constraints adcteristics. Although they are qualitatively similar to each
the system. Moreovery represents external forces (notother, we would like to conservatively bound the class of
necessarily inputs) andf” represents the associated vectofriction models and choose a derived information space that
fields on the configuration manifol@ (i.e.,Y € T,Q, the is invariant with respect to the particular friction model. That
tangent space at € ). If one wishes to include potential is, one would like to know that for any admissible friction
energy, it will show up as a vector field on the right-handnodel and any parameters for those friction models, the
side of the equation. A short description of this formulatiordynamic mappingr : Z,.,. — Z is a stable implementation
of mechanics may be found in the Appendix. inZ.

The systems of interest have two types of external With this goal in mind, replace the family of curves seen in
forces—those that correspond to inputs and those that corfeg. 2 by the conservative estimation of those curves seen in
spond to external disturbances. In the case of multiple poiffig. 3. In this figure, the friction law need only be dissipative.
contact, the external disturbance forces generally correspomat is,v > 0= 7> 0 andv < 0= 7 < 0. If v = 0, then
to reaction forces due to friction when a contact slipsr ¢ R-that is, stiction (constraint) forces are allowed, and
Therefore, it will be useful to write the dynamic equations asfrictional constraints are allowed. (This is the first time any
V44 = u®Y, + d°Vj so that a distinction between externaluse for the constrained affine connection becomes apparent.)
forces that can be controlled and those that cannot can tfae important thing to note is that # 0 = 7 # 0O-this
made. will be important later. In any case, the friction curve can be
any absolutely continuous curve that has all its values in the
grayed regions in Fig. 3.

Consider some of the standard friction models, seen ifUItimately = will restricted slightly more for purposes of
Fig. 2. These of course include Coulomb frictiof’ (= stability analysis.) Hence, if(q)q is the slipping velocity at
Fesign(v) for Fo > 0), but additionally include viscous some point, we restrict in the following manner.
friction, stiction, and nonlinear versions, such as a better

A. Standing Assumptions on Friction

representation of viscous friction. These are respectively _ T(w(Q)‘?) >0 if w(g)g>0
represented as T(w(q)q) = T(w(g)g) <0 !f w(g)g <0 (2
T(w(g)q) e R if w(q)g=0
Fyv+c v>0 Fyv+c v >0 . o ] ] )
F= (—c,e) v=0 F={ (—c—6c+6) v=0 Withthis picture in mind, one can noshoosean equiv-
Fyv—c v<0 Fyv — ¢ v < o alence class om € £ that will be familiar. In particular,
let us consider the cases(q)¢ = 0 (when the system is
Fy|v|%sign(v) +¢ v >0 constrained) andv(q)g # 0 (when the system is sliding)
F= (—c,c) v=20 separately.That is, we arbitrarily choose to distinguish

Fy|v|%sign(v) —c v <0 betweerslippingfriction forces andconstrainfriction forces.



algebraic test of kinematic reducibility (in the presence of
switching ino and external forced’V4;) is that thesymmetric
product between two vector fieldy;” and Y (defined by
(Y7 :Y7) = VoY + Ve, Y7 for giveni, j, o) lie within

the distribution of the vector fields and that any reaction
forces lie within the span of the input vector fields. That is, a
system is kinematically reducible if and only if the following
conditions hold.

(Y7 :Y7) € spap{Yili=1,...,m} Vijo (6)
Vi € spaglYili=1,...,m} V B,0. (7)

This result is the focus of the rest of this section.
Fig. 3. Friction is only assumed to be dissipative, so that any curve in the

grayed areas is a valid friction model. Clearly, this includes all the frictionA. Reduction for single model systems
models in Fig. 2 (shown again here) and more[15]. . . .
Initially reduction for single model systems of the follow-
ing form is considered.

This canonical distinction is traditionally referred to as the Ve d (t) € u(t)Ya(e(t)) + d°(t)Vi(c(t)) (8)
contact stateof a system. ) i ] . i .

In particular, whenw(q)¢ = 0, the dynamics may still In th_|s equationV is th_e (p053|b_ly cons_tralned) affine con-
be written asv g = u®Y,,, whereV is now the constrained nection associated with the Riemannian meific d® is
affine connection antf,, are appropriately projected onto the@ set of forces co.rresp.onding_ to extemal disturbgnces that
distribution (see Appendix). Moreover, because the contaBieet the assumptions in Section IV-A in Eq. (2), is the
state changes over time (as the contacts transition betwe¥f Of corresponding vector fields," is a set of forces
stick and slip), the constraints change over time. This impligg2rresponding to control inputs, anq, are the associated
thatV is not a single constrained affine connection, but rath&4ector fields. Since the motivation here is not wanting to be
comes from a set of constrained affine connectigfiseach forced to rely on the correctness of one particular disturbance
of which represents a different set of stick/slip states of thiorce model (such as friction force modeling where there are
mechanism. The same holds true 6 andV°. Hence, if Many possible choices of model), the tedftV;, is assumed
one indexes the set of possible stick/slip states byne gets 0 be set-valued for each indéx as in Fig. 3. Ifd’V; as
second-order equations of motion of the following form: @ Set is not convex, then it is replaced by its convex hull

co{d"V;} so as to guarantee solutions exist in the Filippov
Viq=uYy +d'Vy (3)  sense [7].
whereu are input forces and are external forces. Reducing Now, given a system with set-valued disturbances such as
Eqg. (3) to a first-order description without friction andin Eq. (8), under what circumstances it can be reduced to a
retainingo as the representation of frictional effects is thesystem of the form in Eq. (1)? That is, when can one find
focus of Section V and will create the derived informatioran equivalent system that does not include external distur-
spaceZye,. bance forces. To make such an equivalence more rigorous,
we introduce some definitions, following the Appendix for
guidance.

We now take a slight departure from discussing infor- Definition 5.1: Let ¥, be a smooth control systeg =
mation spaces directly and focus on kinematic reductions(q, «,d) on a smooth manifoldv/. A (U, D, 7T )-solution
[4], [6], [3], [9], [14], [3]. Smooth kinematic reductions take to X, is a triple (c, u,d), wherew : [0,7] — Unput € R™,
systems of the form of Eqg. (1) and convert them into systems: [0, 7] — UsgisurbanceC RY, andc : [0,7] — M satisfy
of the form ¢(t) = fle(t), u(t), d(t)).

q=1u"Xg. (4) We now define the following notion of reduction, which
The affine connection formalism in Section IV is used toSimIOIy requirt_es that solutio_ns in_ the red_uged space always
describe mechanical systems because it is in the Comextc&rres_pp_nd d|reF:tIy to solutions In the ongm_al space.

. . . . Definition 5.2: Let V be an affine connection of, and
this formalism that a useful technical connection betweelr?at U be a family of control functions an® be a famil
2"d_order mechanical systems ané-order kinematic sys- . y ol . y
tems has been made (found for smooth systems in [9] ar?cfi disturbance functions. The system in Eq. (8)(# D)-

for nonsmooth systems in [14]). In particular, it would beredUCIbIeto the system in Eq. (1) if for eacti/, D, 7)-

useful to be able to write Eq. (3) in the form: solution (n, uy, d) of the Eq. (8) there e>$ists U, T)-
solution (19, ug) of Eq. (1) withn, (t) = n=2(t);
¢=u"Xy, (6) Lastly, one would like to be rigorous about what it means
where © are velocity inputs instead of force inputs andfor a mechanical system with set-valued disturbances to be
o is allowed to switch the vector fieldX discretely just reducible to a kinematic system, which leads to the following
as it does in Eq. (3). What is shown here is that theefinition.

V. KINEMATIC REDUCTION WITH EXTERNAL FORCES



Definition 5.3: Let V be an affine connection o, and
let/ andZ{ be two families of control functions. The system
in Eq. (8) is ((U, D), U)-reducibleto the system in Eq. (4)
if the following two conditions hold:

i) for each (U, D, T)-solution (n,u,d) of the dynamic
Eqg. (1) with initial conditionsy(0) in the distribution
Dyin, there exists a(lf,T)-solution (v,u) of the
kinematic Eq. (4) with the property that= 79 o ;

ii) for each (U, T)-solution (y,w) of the kinematic
Eqg. (4), there exists &/, D, T)-solution (n, u, d) of
the dynamic Eq. (1) with the property that) = ~/(¢)
for almost everyt € [0, 7.

With these definitions, we can state sufficient condition§i9- 4. An additional requirement is that the friction curve lie within
for (U, D)-reducibility and for((u D), ) reducibility. In- |m;S)(|eeCrtr$ern?:t?cilr?eamy that allows the use of a proportional controller in
tuitively, this corresponds to being able to guarantee that any

solutions that include disturbances can be mapped directly

to a solution that has no disturbances. uncertainties in Eq. (1) become kinematic uncertainties in

Lemma 5.1:Assume one has a mechanical system dEq. (4). This way, closed-loop design in the kinematic
the form in Eq. (8) with unbounded inputs and dissipativelescription are valid when implemented on the dynamic
friction forcest as in Eq.(2). Then the system in Eq. (8) issystem, along with a backstepping algorithm to control the
(U, D)-reducible to the mechanical system in Eq. (1) iff thisvelocities of the actuators.

system satisfieso{d"V,} € spanp{Y,} for all b. We need the plam : Z,., — Z to be a stable implemen-
(The proof of this and other results in this paper are ommitteghtion. We change the assumption-oim Eg. (2) slightly by
for brevity.) requiring that the reaction force curve must lie in the grayed

This means that all trajectories can be planned as if theggea in Fig. 4, wherex > 0. Then a choice of backstepping
are no forces due to the termdsl;,. However, it is important controller
to note that the requirement that # 0 is satisfied precisely u; = —K(v; — ;) + d; 9)
because we do not allow £ 0 for v # 0.

We are now interested in finding out when a multipleDrOVides a stable response because the grayed region is a

model of the form in Eq.(3) is reducible to a system of theector nonlinearity [17]. (This has already been used in the
form in Eq. (5) analysis of multi-point contact in [11].) Also, note that the
Theorerﬁ 5. 2' Equation (3) is (U, D),2f)-reducible iff use of a sector nonlinearity also allows us to take into account

Equation (3) is((, D), Uf)-reducible for every constant dynamic shifts in normal force without any extra analysis.

(i.e., Egs. (6) and (7) hold for any choice @}. VI. ESTIMATION IN Z e,
To sum up, if a system of the form in Eq. (3) satisfies
the algebraic conditions in Eqgs. (6) and (7), the system
can be represented as a kinematic system and planning
control can take place ifi;.,. without any loss of trajectory

If one wishes to design a plan or control of some sort in
-, then online estimation of may be necessary. Suppose

ﬁanya we have a stable estimator @& Q) such that there

is a quadratic Lyapunov functioV, in the error of the state.

information. Then a reasonable estimate ®of(which we will denotes)
B. Kinematic Reductions in Closed Loop could evolve according to
Everything discusses so far has implicitly relied on the E(y) = argmin || — 7|
o

control being “open-loop.” However, if one is using a discrete

time controller (with one’s favorite continuation algorithm,where g, is the expected output for eackh and § is
such as zero-order holds) the control is open loop in betwed#ine measured output. However, this estimate may be poor
controller updates. It was already shown in [14] tiidti{)-  because it may not be stable aschanges in time. Hence,
reductions are not affected by occasional discontinuitiean adjustment is necessary to estimate loimdo in Z,..

By the exact same logic, the systems considered here ardn order to create a stable estimategfwe first define
reducible in discrete time closed-loop if they satisfy thesome useful notation. First, define

requirements to be reducible under the tests of Lemma 6.4(t) = hm V,(t) — lim V,(f). This is the discrete change

Lemma 5.3:A discrete-time closed loop system (wherej the value of the ﬁyat\punov function for the estimator that
u® are functions ofg and¢) is (U, D),U)-reducible if it occurs when there is a switch in Next define
satisfies the conditions in Lemma 6.1. . .

It is also important to note that the systems response to B(t) = fk‘fd(t) = It s(t) - 0
disturbances (in closed-loop) is completely encoded in the BE(t) = lim;,- E(f) - s(t) otherwise
reduction as well, precisely because we included the uncewhered is a bounded conservative estimate of the stability
tainties in the description of the reduction. Hence, dynamimargin for all the estimators and whefe is a chosen

(10)



constant,0 < k. < 1. Note thatE is initialized to a u*Y,+d"V;. In this equation the® correspond to each force
nonnegative value and then evolves according to Equation b@ing produced by the SDAs and th§ transform these
as long ass is zero (that is, on intervals with no switches).forces into the body frame while respecting any constraints
Whenevers # 0 (there is a switch)F is re-initialized. Then imposed upon the system. Such constraints arise from no-slip
we use the following equation to estimate contact between the insulating layer and the actuatorsdThe
. : . represent reaction forces due to slipping along the insulating
a(t) = { F(y(t)) _ It B> Y for all i (11) layer when such a constraint is violated. We now analyze
im;_,,— E(g(t)) otherwise
whether a planar array of alternately orthogonal actuators
Theorem 6.1:An estimate ofé using Eq. (11) is stable. (such as those seen in Fig. 5) is kinematic.
That is,| V) —a| — 0 for somea € R and, in particular, Proposition 7.1: An object manipulated by a planar array

V,/(+) — 0. Moreover,|o(t)—o(t)| = 0 after a finite amount of alternatively orthogonal actuators has dynamics that are

of time if & is constant. both (U, D)-reducible and((i/, D), U)-reducible.
Hence, an array of actuators manipulating an object is
VIl. EXAMPLE always ((U, D),U)-reducible to a kinematic system of the

Note that if the contact state of @, D),U)-reducible form in Eq. (4). Moreover, as the contact states change, the

intermittent contact system is being driven by the frictionakinematic system will change. This means that the effects
interactions (such as the case of MEMS manipulatitm, of fr|ct|on.on the Qyn§m|cs of the chlp.are now completely
effects of friction are completely encoded in thelynamics ©€ncoded in the switching from one setlafiematicequations
in Zy... The advantage of this is that it takes a highlyto anot_her over_tlme. This situation has well-defined control
nonlinear, nonsmooth phenomenon and encodes its effect¥&tegies, as discussed next. _
a finite state machine. The example discussed here illustratedt) Stabilization of Manipulation Using Arrays of Actua-
how the prior results can allow one to neglect disturband@rs: Consider a desired equilibrium point on an alternately
forces in mechanical systems. orthogonal array. It has contact actuators located2at+
Consider Fig. 5. In this schematic we see a chip on ah2/ + 1) with i,j < N. Their angles are alternately
insulating layer that is actuated by nine SDAs (discussed f'd —%- We will denote the velocities of these actuators
Section Il). Each SDA is capable of moving in the directior?Y %(2i+12;+1) and the applied force by (si112;11). The
of its long axis and is in principle constrained to not moveYyStem '_S((UvD)’u)'r?dE'C'b]e by Prop. 7.1, so long as the
sideways. If it does move sideways, a reaction force occuf@ntact interfaces argissipativewhen slipping is occurring
due to the sliding. Such a chip can be viewed as a micrél-€- the reaction force is nonzero and in the opposite
scale vehicle capable of “driving” on the insulating |aye,d|rect|on of the slipping). Additionally, all the nontrivial,

[10]. Now we ask whether such a chip can be representd@n-overconstrained kinematics when the center of mass is
as a kinematic system. near(x,y) = (0,0) are of one of the four forms in Table VII-

A [13], [12].
For each of the four models in Table VII-.1 a control law is
calculated from the Lyapunov functidriz>+y>+62) (where
k is some constant to be chosen during implementation) by
solving V = —V for U(2i+1,2j+1) Subject to the constraint
that actuators with the same orientation have the same
velocity commandu. Hence, there are two unique inputs
U(1,1y andw_ py in the kinematic description, and including
more does not help [13], [12]. Moreover, by virtue of the
design methodology, there is a common Lyapunov function.
This was shown to provide global stabilization (@, 0,0)
for the kinematic system in [13], [12].
Fig. 5. Array of scratch drive actuators Figure 6 shows three simulations of an actuator array near
a desired equilibrium. For each simulation, going from left
Assume that the chip has mass and rotational inertia to right, the XY location of a manipulated object is shown,
J, so that when we write the coordinates of its body framéhe orientationd, the evolution ofs, and the response of
relative to the world a$z,y,0), G =m dz®dx+m dy® the actuator afl, 1) in the dynamic simulation as it tracks
dy +J df ® df. The information spacd = (y,u) has 7 1). The four actuators near the equilibrium dominate the
y € TSE(2) x L, wherer is the number of actuators. The motion, and the rest are kinematically constrained to match
derived information space will b&;., = (7,%) with j €  the speeds ofi(, ;) andu_; ;). We useE from Eq.(11) to
SE(2)xX andX is afinite set that describes the total numbeestimater and Eqg. (9) to implement the commarws; (i.e.,
of kinematic states for the system. For simplicity, assumie mappingr : Zy4.- — Z) with a control gain ofK = 10
that the SDA actuators are themselves of negligible massr three different friction laws—Coulomb friction, viscous
and that they form a point contact with the insulating layerriction, and stiction, as in Section IV-A. All the responses
Then, the equations of motion can be writterhas,c'(t) =  have an initial condition ofx¢, yo, 00) = (0.5,2, 7) and the

Insulating Layer



TABLE |

ORTHOGONAL ACTUATOR ARRAYS (LIKE THOSE SEEN INFIG. 5 AND FIG. 5) HAVE ALL KINEMATIC STATES, MANY OF WHICH ARE REDUNDANT. THIS
FIGURE SHOWS THE FOUR DISTINCT EQUATIONS OF MOTION THAT CAN OCCURNOTE THAT SO LONG AST(q,1) (= T(—1,—-1)) AND T(_1 1)
(=7(1,~1)) ARE NONZERQ, THE FOUR STATES CAN BE DISTINGUISHED FROM STATE OUTPUTN FACT, JUST OBSERVATION OFf IS SUFFICIENT FOR
DISTINGUISHING THE STATES MOREOVER THIS SYSTEM CAN BE STABILIZED TO THE ORIGIN USING THE CONTROL LAW SHOWN AND AN ESTIMATE

OF o [12].
o Equations of Motion Control Law
-1 1 _ kB (0+z—y)+k (0% +a?+y?)
o=1|¢=| -1 |Tay+| -1 |7 Ly v = Tty
0 1 U(-1,1) = —kb
—1 1 ﬂ(l,l) = k6
o=2|¢=| -1 [gan+ | -1 [%-1 _ kO (0+a+y)—k (02 +a>+y?)
-1 0 U(-1,1) = T—y
-1 1 _ _ kO (0—z+y)+k (92+12+y2)
c=3|4=| -1 |gan+ | -1 [Ty | OO T oy
0 -1 U(-1,1) = kb
) —1 1 H(l,l) = —k0O
o=4|q¢=| -1 jagy+| -1 |%-1 _ _ —kO (—0+aty)—k (02 +a>+y?)
1 0 U(-1,1) = T—y

goal is to stabilize to the origif0,0,0). All responses are other uncertainties that are naturally represented.ihis
qualitatively similar despite the differences in friction law inis because noisy observationgZippotentially add uncertainty

the actual implementation.

to the estimate i1 ..., but they do not have to. How to treat

The key is that despite changes in the characteristics tfis analytically is the subject of ongoing research. Lastly,
friction, the controller computed iff;.,. (which only needs experimental versions of the example in Section VIl is under
to estimates) performs well (and similarly to the macro- development in the author’s laboratory.

scale experimental work in [13]). This is because all possible
o yield kinematic equations of motion that can be stably
implemented using Eq. (9).

Lastly, note thato does not change very quickly in this
setting. Moreover, looking at the kinematic equations of mo-2]
tion, we see that can be estimated based ®measurements
alone (so long asi; # us andw;,u2 # 0). In this case
sensing at 10 Hz would be more than sufficient for purposes
of capturing theo changes. So ifd in Eq. (10) is large
enough, we can estimate using Eqg. (11). In comparison
to directly identifyingr € £, which often requires sampling [s]
rates at 1 KHz or more, this is clearly superior from a sensing
perspective. (6]

(1]

(4]

VIII. CONCLUSIONS

This paper considers the use of derived information space[g]
that arise from the canonical distinction between slippingis]
frictional forces and nonslipping frictional forces. Geometric (9]
kinematic reductions play a central role in why this choice is
effective in generating useful descriptions of a system, evero]
when a system experiences stick/slip phenomena (which are
typically thought of as being dynamic). Both planning ang;
stabilization can be computed in the derived information
space, and then implemented in the underlying dynamic
space through the use of a stable plan, typically just %2]
backstepping controller in the context of the work presenteds]
here. These techniques are illustrated on an two example
simulation—an actuator array. Lastly, the derived informatiop 4
space has more limited sensing requirements, both in terms
of spatial resolution and temporal resolution.

. . 15]

One of the most pressing areas of future work is un[-
derstanding the effect of~! : Z — ZI,, on noise and
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Fig. 6. Three simulations with different choices of friction model. From left to right, the plots areXtfietrajectory of an object supported by an
actuator array, the orientatighas a function of time, the kinematic stateas a function of time, and lastly the response of the actuatét,at) as it

tracks the desired velocity; ;). The simulations are for viscous friction (a-d), coulomb friction (e-h), and stiction friction (i-I). Parameters used were
m=1,J=5,us =11, ug =1, and K = 10 in Eq. (9).
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Gri -j -k i
APPENDIX ¢+ "¢ " = u Y,. (15)

In discussing kinematic reductions, we follow [3], [4]. A Constrained systems, those control systems whose trajec-
simple mechanical control systeconsists of a manifold)  tories must lie in some distributioP, can also be described
of dimensionn, a Riemannian metri€s that defines the py Eq. (14). However, the affine connection must be modified
kinetic energy, a set of constraints represented as a constraifibrder to incorporate the constraints. Li2ibe a distribution
distribution D, and a set of external forces. Associated with @n ) and letD+ denote the3-orthogonal complement db.
Riemannian metri¢; are what are calle@hristoffel symbols. Moreover, letP : TQ — TQ be aG-orthogonal projection
Definition 1.1: The Christoffel symbolsassociated with operator ontaD and letP’ : TQ — TQ be aG-orthogonal
the metricG are projection ontoD. Lastly, let A(q) be any invertiblg(1,1)
Gpi _ EG“ (8Gﬂ . oG B 5ij) (12) tensor field orQ gnd letB(q) be it_s inverse. Then, the Euler-
ik T 9 Lagrange equations can be written as Eq. (15) where the

OqF 0q’ g’ !
where summation over repeated indices is implied used uﬁ-h”SOﬁel symbols are:
i O(AP")!

less otherwise stated, and upper indices indicate the inverse: _ ¢ j iGN N iGm N}
Also associated with the R?epmannian metric is tiffine Pe) = OTiy + Bj =55 + Bi°T},,(AP")]" = Bi°T} (AP,
connectionwhich assigns to a pair of vector fieldsandY  where, again,A(q) is any invertible (1,1) tensor onQ. In
another vector field x Y. This is referred to as theovariant  order to add forces, we must ensure the forces comply with
derivativeof Y with respect toX. the constraints. Hence, the final equations of motion are:
Definition 1.2: In coordinates, the covariant derivative of

Y with respect toX is Vewd (t) = u () PY] (c(t)) (16)
G oy oo\ 0 or in coordinates:
— J % ivk ) Y
o Var = { gy X et Y ) ¢’ (%3) §' + AT dF = u* PY. (17)
With this, the Euler-Lagrange equations can be written as J Ihe
“ Therefore, simple mechanical control systeals can be
OV ey (1) = u (1) Yale(t)) (14) ¥ 4

represented using an affine connection. For more details and
wheret — c(t) is a path onQ and ¢’(t) = 4¢(t) [3], examples worked out in detail, refer to Bullo and Lewis [3].
[4]. In this equatiorf*V is the constrained affine connection



