
Geometric Derived Information Spaces in Manipulation with
Mechanical Contact

Todd D. Murphey

Abstract— This paper describes methods applicable to the
modeling and control of mechanical contact, particularly those
that experience uncertain stick/slip phenomena. Geometric
kinematic reductions are used to show how to reduce a system’s
description from a second-order dynamic model with frictional
disturbances coming from a function space to a first-order
model with frictional disturbances coming from a space of finite
automata over a finite set. As a result, modeling for purposes of
control in the resulting derived information space is made more
straight-forward by getting rid of some dependencies on low-
level mechanics (in particular, the details of friction modeling).
Moreover, the online estimation of the uncertain variables in the
derived information space has reduced sensing requirements.
Results are illustrated using an actuator array model.

I. INTRODUCTION

It is traditional in robotics to view problems of manipu-
lation, motion planning, and control in one of two extreme
lights. First, if a system is kinematic, the system description
is simplified from a second-order system with forces and
inertias to a first-order system that consists of velocities
and constraints. Then motion plans and control laws (if
necessary) are designed for this kinematic system. It is
important to note that in order toimplementthis plan based
on kinematics, a backstepping algorithm is employed, either
explicitly in an “inner-loop-outer-loop” control architecture,
or implicitly by purchasing motor controllers (or other ap-
propriate devices) that provide the inner loop control. In the
end, the advantages of using kinematic structures include
both lessened computational burden (due to the computation
in a lower-dimensional space) and increased robustness to
some classes of uncertainty (due to robustness properties of
the backstepping, inner-loop controller).

If, however, there is some reason that a kinematic analysis
is inappropriate, then one often reverts to a more complex
set of modeling choices. In particular, in multi-point con-
tact many phenomena are introduced, including soft-contact
models [2], elaborate models of frictional interfaces [15],
and the inclusion of dynamic effects such as inertial terms
and generalized forces. Nevertheless, it is not clear that the
introduction of these additional modeling techniques helps
for the purpose of control, motion planning, etcetera. In
particular, the task description typically does not include
these effects, so one should only incorporate them in the
representation in use for planning and control if they are
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actually necessary for task completion (which they typically
are not).

From a design perspective (as opposed to a simulation
perspective), it is thus desirable to, if necessary, introduce
elements to a model that provide the full complexity of pos-
sible behavior of the system without introducing too much
new information (thereby decreasing the applicability of the
model). This is related toinformation spaces[8], which
originated in the computer science community and were then
formalized in a control abstraction context in [16] and related
works. In this paper, notions of an information spaceI and
an associated (in some sense smaller) derived information
spaceIder, along with their desired properties, play a central
role. In particular, we are interested in understanding when
planning and control problems can be successfully posed in
a smaller, more tractable space.

This paper shows how notions of kinematic reducibility
can allow one to recast a dynamic system that has frictional
effects belonging to a function space into a first-order system
that has frictional effects that form a finite automaton over
a finite set. This provides a representation of friction that
is simultaneously more simple and less naive (in the sense
that one no longer needs to knowwhich friction law is
governing the dynamic equations of motion for purposes of
implementation).

The basic thesis of this paper is that kinematic systems are
useful not so much because of their first-order representation
of a system, but rather because they arise naturally from
a canonical choice of derived information spaceIder. This
derived information space allows one to get rid of most (but
not all) of the information about the frictional interactions.
The key contribution of this paper is the presentation of a
methodology for creating a derived information spaceIder

based on geometric principles. In particular, the goal is to
create a reduced space that preserves both trajectories and
stability, so that any plan or controller inIder will have a
stable implementation inI. Surprisingly, orthogonal actuator
arrays (the example we dicuss) arealwayskinematic. This is
true even if all contact points are slipping against the surface
of a manipulated object, so long as the frictional interaction
is strictly dissipative.

This paper is organized as follows. Section II describes
micro-mechanical scratch drive actuators that motivate the
present work. Section III discusses information spaces and
why one may wish to solve problems in a derived information
space. Section IV discusses modeling of multi-point contact
systems using the constrained affine connection and Sec-
tion V discusses some straight-forward results in kinematic



Fig. 1. Scratch Drive Actuators (SDA) (Figure taken from [10]). SDAs are
chips covered with a large number of actuators along with the gold tether
than is used to send voltages down to the SDAs. The figure illustrates the
motion that an SDA goes through when moving. Despite being able to drive
SDA actuators quite reliable, the individual forces are difficult to model
accurately.

reduction for systems with external forces. Because control
and estimation are occurring directly in the derived informa-
tion space, Section VI discusses the method employed for
estimating discrete variables inIder. Section VII discusses
the application of the tools presented to actuator arrays.

II. M OTIVATION : MECHANICAL CONTACT SYSTEMS

A system consisting of many points of contact typically
exhibits stick/slip phenomenon due to the point contacts
moving in kinematically incompatible manners. This manner
of motion is calledoverconstrained motionbecause not all
of the constraints can be satisfied.

Consider the example in Fig. 1. Scratch drive actuators
(SDA) are characterized by being able to produce large
deflections (on the order of 500µm), relatively large forces
(on the order of 100µN), with high precision step sizes (on
the order of 30 nm). They can be arrayed on chips with as
few as ten SDA actuators on a chip. Despite the fact that
these devices were first developed over ten years ago [1],
only recently has any formal work been done on modeling
and control for these devices [10].

If one applies a voltage to an SDA, it responds by
contracting. After the voltage is set back to zero, the actuator
relaxes. During a sequence of such pulses, the actuator
experiences intermittent nonslip contact with the underlying
insulating layer, allowing it to move in a manner similar to an
inchworm. The stepping motion begins with the free end of
the SDA electrostatically loaded until the threshold voltage
is reached, at which point it flattens out against the insulating
layer. This process is illustrated in Fig. 1.

Modeling these devices depends heavily on the particulars
of the brushing geometry, plate thickness, insulator proper-
ties, and the plate Young’s modulus. An in-depth analysis of
such a device was performed in [10]. The main important
result of that analysis is that one can drive the actuators at a
desired velocity, despite considerable uncertainty in the force
characteristics. Hence, SDAs are most naturally described in
terms of kinematic relationships, at least when considered
individually. Solving for the forces is difficult here as well,
as at the micro-scale they are typically not well defined
using traditional friction models. Hence, it is desirable for

any control strategy to not require this modeling and to take
advantage of being able to reliably drive these actuators at a
desired velocity.

III. I NFORMATION SPACES INMECHANICAL CONTACT

The notion of an information spaceI and an associated
derived informationIder will be helpful in a discussion of
mechanical contact. In particular, achoiceof Ider has pro-
found implications for both analysis, problem decomposition,
and implementation of control in systems with mechanical
contact.

Sensors (and the underlying dynamics of the physical
system) induce what is termed aninformation space[8].
Typically, an information space,I, consists of the time
history of measurements and the control history of actions.
That is, the information space isI = (y(t), u(t)) where
y(t) is the history of discrete measurements (or, possibly,
the continuous space of measurements), andu(t) is similarly
the history of inputs. Additionally, one can choose a smaller
information space that retains only the critical information
in I, and is therefore simpler, but more of an abstraction;
this is called thederived information spaceIder. The derived
information spaceIder depends on task specification and the
associated sensing needs: different tasks will have a differing
subset of critical information coming fromI. Hence,Ider =
(ỹ(t), ũ(t)) whereỹ(t) andũ(t) are the set of measurements
and inputs after they have been manipulated in some way to
reduce their complexity.

Given a “low-level” information spaceI and a “high-
level” derived information spaceIder, one can compute a
plan in the latter and implement it in the former. Hence, such
a plan is a mappingπ : Ider → I (whereπ ∈ Π, the space
of all such mappings). Again, depending on the needs of the
problemIder may have different structure. For a planning
problem,Ider may be a path in the configuration, or simply
a set of waypoints. For control, one may wish to design
a controller inIder and have it maintain its stability when
implemented inI. In each case, the mappingπ : Ider → I
needs to implement commands without violating stability and
other dynamic characteristics of the low-level space.

The information space underlying mechanical contact will
be of the formI = ((x(t), τ(t)), u(t)) with x(t) ∈ TQ, Q
the configuration manifold,TQ the tangent bundle,τ(t) ∈ V
whereV is a set of values the friction reaction forces can take
andτ ∈ Lr the space ofr integrable functions forr contacts
(this will be restricted slightly, sincef will correspond to a
friction law), andu(t) ∈ U whereU is the space of control
forces that can be applied to the system. Hence,I is simply
an estimate of the state along with an estimate of the friction
law and a corresponding control action. One would like to be
able to compute both planning and feedback laws in a simpler
space–one that does not require characterizingτ ∈ L.

It will be shown that a choice ofIder = ((q(t), σ(t)), ũ(t))
whereq ∈ Q, σ(t) ∈ Σ (Σ a finite set), and̃u(t) ∈ Ũ (veloc-
ity inputs for a kinematic system) is a derived information
space that preserves trajectories (in the sense that trajectories
in Ider always represent trajectories inI and every trajectory



in I has a representation inIder) if it is
(
(U ,D),U

)
-

reducible (defined shortly) and can be implemented in a
stable manner (in the sense that a stabilizing controller
designed inIder can be mapped to a stable controller in
I). Hence, in this settingπ is a backstepping controller that
implements kinematic inputs in the dynamic space.

IV. M ODELING AND ANALYSIS OF MULTIPLE POINT

CONTACT

The systems considered here are finite-dimensional simple
mechanical systems (as described for smooth systems in [3]).
That is, their equations of motion may be found using a
Lagrangian of the form kinetic energy minus potential energy
(L = K.E.−V ) along with a set of constraints on the system
of the formω(q)q̇ = 0, whereω(q) is a matrix representing
the configurationq dependent constraints. Moreover, there
may be external forces acting on the system. If one ignores
potential energy (as is appropriate for many planar systems
including the one described in Section II), such a system’s
dynamics may be represented as:

∇q̇ q̇ = uαYα, (1)

where the notationuαYα implies summation over theα.
In this expression,∇ is the constrained affine connection
encoding the free kinetic energy and any constraints on
the system. Moreover,u represents external forces (not
necessarily inputs) andY represents the associated vector
fields on the configuration manifoldQ (i.e., Y ∈ TqQ, the
tangent space atq ∈ Q). If one wishes to include potential
energy, it will show up as a vector field on the right-hand
side of the equation. A short description of this formulation
of mechanics may be found in the Appendix.

The systems of interest have two types of external
forces–those that correspond to inputs and those that corre-
spond to external disturbances. In the case of multiple point
contact, the external disturbance forces generally correspond
to reaction forces due to friction when a contact slips.
Therefore, it will be useful to write the dynamic equations as:
∇q̇ q̇ = uαYα + dβVβ so that a distinction between external
forces that can be controlled and those that cannot can be
made.

A. Standing Assumptions on Friction

Consider some of the standard friction models, seen in
Fig. 2. These of course include Coulomb friction (F =
FCsign(v) for FC > 0), but additionally include viscous
friction, stiction, and nonlinear versions, such as a better
representation of viscous friction. These are respectively
represented as

F =

 FV v + c v > 0
(−c, c) v = 0
FV v − c v < 0

F =

 FV v + c v > 0
(−c− δ, c + δ) v = 0

FV v − c v < 0

F =

 FV |v|δcsign(v) + c v > 0
(−c, c) v = 0

FV |v|δcsign(v)− c v < 0
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Fig. 2. Types of friction model, including (a) Coulomb friction, (b)
Coulomb plus viscous friction, (c) Coulomb/viscous stiction, and (d) Non-
linear smoothing of stiction.

for FV , c, δ > 0. These are seen in Fig. 2. Moreover, there
are many more types of friction model to choose from,
including dynamic models of friction like Dahl and LuGre
models [15] or even more heuristic models such as Pacejka’s
“Magic Tire Formula”–each with their own specialized area
of applicability. What one would like is an assumption on
friction that does not depend on any of these particular char-
acteristics. Although they are qualitatively similar to each
other, we would like to conservatively bound the class of
friction models and choose a derived information space that
is invariant with respect to the particular friction model. That
is, one would like to know that for any admissible friction
model and any parameters for those friction models, the
dynamic mappingπ : Ider → I is a stable implementation
in I.

With this goal in mind, replace the family of curves seen in
Fig. 2 by the conservative estimation of those curves seen in
Fig. 3. In this figure, the friction law need only be dissipative.
That is,v > 0 ⇒ τ > 0 andv < 0 ⇒ τ < 0. If v = 0, then
τ ∈ R–that is, stiction (constraint) forces are allowed, and
frictional constraints are allowed. (This is the first time any
use for the constrained affine connection becomes apparent.)
The important thing to note is thatv 6= 0 ⇒ τ 6= 0–this
will be important later. In any case, the friction curve can be
any absolutely continuous curve that has all its values in the
grayed regions in Fig. 3.
(Ultimately τ will restricted slightly more for purposes of

stability analysis.) Hence, ifω(q)q̇ is the slipping velocity at
some point, we restrictτ in the following manner.

τ(ω(q)q̇) =

 τ(ω(q)q̇) > 0 if ω(q)q̇ > 0
τ(ω(q)q̇) < 0 if ω(q)q̇ < 0
τ(ω(q)q̇) ∈ R if ω(q)q̇ = 0

(2)

With this picture in mind, one can nowchoosean equiv-
alence class onτ ∈ L that will be familiar. In particular,
let us consider the casesω(q)q̇ = 0 (when the system is
constrained) andω(q)q̇ 6= 0 (when the system is sliding)
separately.That is, we arbitrarily choose to distinguish
betweenslippingfriction forces andconstraintfriction forces.



ω   (q)q

τ

.

Fig. 3. Friction is only assumed to be dissipative, so that any curve in the
grayed areas is a valid friction model. Clearly, this includes all the friction
models in Fig. 2 (shown again here) and more[15].

This canonical distinction is traditionally referred to as the
contact stateof a system.

In particular, whenω(q)q̇ = 0, the dynamics may still
be written as∇q̇ q̇ = uαYα, where∇ is now the constrained
affine connection andYα are appropriately projected onto the
distribution (see Appendix). Moreover, because the contact
state changes over time (as the contacts transition between
stick and slip), the constraints change over time. This implies
that∇ is not a single constrained affine connection, but rather
comes from a set of constrained affine connections∇σ, each
of which represents a different set of stick/slip states of the
mechanism. The same holds true forY σ andV σ. Hence, if
one indexes the set of possible stick/slip states byσ, one gets
second-order equations of motion of the following form:

∇σ
q̇ q̇ = uαY σ

α + dβV σ
β (3)

whereu are input forces andd are external forces. Reducing
Eq. (3) to a first-order description without friction and
retainingσ as the representation of frictional effects is the
focus of Section V and will create the derived information
spaceIder.

V. K INEMATIC REDUCTION WITH EXTERNAL FORCES

We now take a slight departure from discussing infor-
mation spaces directly and focus on kinematic reductions
[4], [6], [5], [9], [14], [3]. Smooth kinematic reductions take
systems of the form of Eq. (1) and convert them into systems
of the form

q̇ = uaXa. (4)

The affine connection formalism in Section IV is used to
describe mechanical systems because it is in the context of
this formalism that a useful technical connection between
2nd-order mechanical systems and1st-order kinematic sys-
tems has been made (found for smooth systems in [9] and
for nonsmooth systems in [14]). In particular, it would be
useful to be able to write Eq. (3) in the form:

q̇ = uaXσ
a , (5)

where u are velocity inputs instead of force inputs and
σ is allowed to switch the vector fieldsX discretely just
as it does in Eq. (3). What is shown here is that the

algebraic test of kinematic reducibility (in the presence of
switching inσ and external forcesdbVb) is that thesymmetric
product between two vector fieldsY σ

i and Y σ
j (defined by〈

Y σ
i : Y σ

j

〉
= ∇σ

Y σ
i

Y σ
j +∇σ

Y σ
j

Y σ
i for given i, j, σ) lie within

the distribution of the vector fields and that any reaction
forces lie within the span of the input vector fields. That is, a
system is kinematically reducible if and only if the following
conditions hold.〈

Y σ
i : Y σ

j

〉
∈ spanR{Yi|i = 1, . . . ,m} ∀ i, j, σ (6)

V σ
β ∈ spanR{Yi|i = 1, . . . ,m} ∀ β, σ. (7)

This result is the focus of the rest of this section.

A. Reduction for single model systems

Initially reduction for single model systems of the follow-
ing form is considered.

∇c′(t)c
′(t) ∈ ua(t)Ya(c(t)) + db(t)Vb(c(t)) (8)

In this equation∇ is the (possibly constrained) affine con-
nection associated with the Riemannian metricG, db is
a set of forces corresponding to external disturbances that
meet the assumptions in Section IV-A in Eq. (2),Vb is the
set of corresponding vector fields,ua is a set of forces
corresponding to control inputs, andYa are the associated
vector fields. Since the motivation here is not wanting to be
forced to rely on the correctness of one particular disturbance
force model (such as friction force modeling where there are
many possible choices of model), the termdbVb is assumed
to be set-valued for each indexb, as in Fig. 3. IfdbVb as
a set is not convex, then it is replaced by its convex hull
co{dbVb} so as to guarantee solutions exist in the Filippov
sense [7].

Now, given a system with set-valued disturbances such as
in Eq. (8), under what circumstances it can be reduced to a
system of the form in Eq. (1)? That is, when can one find
an equivalent system that does not include external distur-
bance forces. To make such an equivalence more rigorous,
we introduce some definitions, following the Appendix for
guidance.

Definition 5.1: Let Σs be a smooth control systeṁq =
f(q, u, d) on a smooth manifoldM . A (U ,D, T )-solution
to Σs is a triple (c, u, d), whereu : [0, T ] → Uinput ⊆ Rm,
d : [0, T ] → Udisturbance⊆ Rl, and c : [0, T ] → M satisfy
c′(t) = f(c(t), u(t), d(t)).
We now define the following notion of reduction, which
simply requires that solutions in the reduced space always
correspond directly to solutions in the original space.

Definition 5.2: Let ∇ be an affine connection onQ, and
let U be a family of control functions andD be a family
of disturbance functions. The system in Eq. (8) is(U ,D)-
reducible to the system in Eq. (1) if for each(U ,D, T )-
solution (η1, u1, d) of the Eq. (8) there exists a(U , T )-
solution (η2, u2) of Eq. (1) with η1(t) = η2(t);
Lastly, one would like to be rigorous about what it means
for a mechanical system with set-valued disturbances to be
reducible to a kinematic system, which leads to the following
definition.



Definition 5.3: Let ∇ be an affine connection onQ, and
let U andU be two families of control functions. The system
in Eq. (8) is

(
(U ,D),U

)
-reducibleto the system in Eq. (4)

if the following two conditions hold:
i) for each (U ,D, T )-solution (η, u, d) of the dynamic

Eq. (1) with initial conditionsη(0) in the distribution
Dkin, there exists a

(
U , T

)
-solution (γ, u) of the

kinematic Eq. (4) with the property thatγ = τQ ◦ η;
ii) for each

(
U , T

)
-solution (γ, u) of the kinematic

Eq. (4), there exists a(U ,D, T )-solution (η, u, d) of
the dynamic Eq. (1) with the property thatη(t) = γ′(t)
for almost everyt ∈ [0, T ].

With these definitions, we can state sufficient conditions
for (U ,D)-reducibility and for

(
(U ,D),U

)
-reducibility. In-

tuitively, this corresponds to being able to guarantee that any
solutions that include disturbances can be mapped directly
to a solution that has no disturbances.

Lemma 5.1:Assume one has a mechanical system of
the form in Eq. (8) with unbounded inputs and dissipative
friction forcesτ as in Eq.(2). Then the system in Eq. (8) is
(U ,D)-reducible to the mechanical system in Eq. (1) iff this
system satisfiesco{dbVb} ∈ spanR{Ya} for all b.
(The proof of this and other results in this paper are ommitted
for brevity.)

This means that all trajectories can be planned as if there
are no forces due to the termsdbVb. However, it is important
to note that the requirement thatua 6= 0 is satisfied precisely
because we do not allowτ 6= 0 for v 6= 0.

We are now interested in finding out when a multiple
model of the form in Eq.(3) is reducible to a system of the
form in Eq. (5).

Theorem 5.2:Equation (3) is
(
(U ,D),U

)
-reducible iff

Equation (3) is
(
(U ,D),U

)
-reducible for every constantσ

(i.e., Eqs. (6) and (7) hold for any choice ofσ).
To sum up, if a system of the form in Eq. (3) satisfies
the algebraic conditions in Eqs. (6) and (7), the system
can be represented as a kinematic system and planning and
control can take place inIder without any loss of trajectory
information.

B. Kinematic Reductions in Closed Loop

Everything discusses so far has implicitly relied on the
control being “open-loop.” However, if one is using a discrete
time controller (with one’s favorite continuation algorithm,
such as zero-order holds) the control is open loop in between
controller updates. It was already shown in [14] that

(
U ,U

)
-

reductions are not affected by occasional discontinuities.
By the exact same logic, the systems considered here are
reducible in discrete time closed-loop if they satisfy the
requirements to be reducible under the tests of Lemma 6.1

Lemma 5.3:A discrete-time closed loop system (where
ua are functions ofq and t) is

(
(U ,D),U

)
-reducible if it

satisfies the conditions in Lemma 6.1.
It is also important to note that the systems response to

disturbances (in closed-loop) is completely encoded in the
reduction as well, precisely because we included the uncer-
tainties in the description of the reduction. Hence, dynamic

ω

τ

   (q)qα
.

Fig. 4. An additional requirement is that the friction curve lie within
a sector nonlinearity that allows the use of a proportional controller in
implementation.

uncertainties in Eq. (1) become kinematic uncertainties in
Eq. (4). This way, closed-loop design in the kinematic
description are valid when implemented on the dynamic
system, along with a backstepping algorithm to control the
velocities of the actuators.

We need the planπ : Ider → I to be a stable implemen-
tation. We change the assumption onτ in Eq. (2) slightly by
requiring that the reaction force curve must lie in the grayed
area in Fig. 4, whereα > 0. Then a choice of backstepping
controller

ui = −K(vi − ui) + di (9)

provides a stable response because the grayed region is a
sector nonlinearity [17]. (This has already been used in the
analysis of multi-point contact in [11].) Also, note that the
use of a sector nonlinearity also allows us to take into account
dynamic shifts in normal force without any extra analysis.

VI. ESTIMATION IN Ider

If one wishes to design a plan or control of some sort in
Ider, then online estimation ofσ may be necessary. Suppose
for anyσ we have a stable estimator ofq ∈ Q such that there
is a quadratic Lyapunov functionVσ in the error of the state.
Then a reasonable estimate ofσ (which we will denoteσ̂)
could evolve according to

E(y) = arg min
σ
‖ỹσ − ỹ‖

where ỹσ is the expected output for eachσ and ỹ is
the measured output. However, this estimate may be poor
because it may not be stable asσ changes in time. Hence,
an adjustment is necessary to estimate bothq andσ in Ider.

In order to create a stable estimate ofσ, we first define
some useful notation. First, define
s(t) = lim

t̃→t−
Vσ(t̃)− lim

t̃→t+
Vσ(t̃). This is the discrete change

in the value of the Lyapunov function for the estimator that
occurs when there is a switch inσ. Next define

Ė(t) = −ked(t) if s(t) = 0
E(t) = limt̃→t− E(t̃)− s(t) otherwise

(10)

whered is a bounded conservative estimate of the stability
margin for all the estimators and whereke is a chosen



constant,0 < ke < 1. Note that E is initialized to a
nonnegative value and then evolves according to Equation 10
as long ass is zero (that is, on intervals with no switches).
Whenevers 6= 0 (there is a switch),E is re-initialized. Then
we use the following equation to estimateσ.

σ̂(t) =
{

E(ỹ(t)) if E > 0 for all i
limt̃→t− E(ỹ(t)) otherwise

(11)

Theorem 6.1:An estimate ofσ̂ using Eq. (11) is stable.
That is,|Vσ′(t)−α| → 0 for someα ∈ R and, in particular,
V̇σ′(t) → 0. Moreover,| ˆσ(t)−σ(t)| = 0 after a finite amount
of time if σ is constant.

VII. E XAMPLE

Note that if the contact state of a
(
(U ,D),U

)
-reducible

intermittent contact system is being driven by the frictional
interactions (such as the case of MEMS manipulation),the
effects of friction are completely encoded in theσ dynamics
in Ider. The advantage of this is that it takes a highly
nonlinear, nonsmooth phenomenon and encodes its effect as
a finite state machine. The example discussed here illustrates
how the prior results can allow one to neglect disturbance
forces in mechanical systems.

Consider Fig. 5. In this schematic we see a chip on an
insulating layer that is actuated by nine SDAs (discussed in
Section II). Each SDA is capable of moving in the direction
of its long axis and is in principle constrained to not move
sideways. If it does move sideways, a reaction force occurs
due to the sliding. Such a chip can be viewed as a micro-
scale vehicle capable of “driving” on the insulating layer
[10]. Now we ask whether such a chip can be represented
as a kinematic system.

SDA Chip

Insulating Layer

SDA

Fig. 5. Array of scratch drive actuators

Assume that the chip has massm and rotational inertia
J , so that when we write the coordinates of its body frame
relative to the world as(x, y, θ), G = m dx⊗ dx + m dy⊗
dy + J dθ ⊗ dθ. The information spaceI = (y, u) has
y ∈ TSE(2)×Lr, wherer is the number of actuators. The
derived information space will beIder = (ỹ, ũ) with ỹ ∈
SE(2)×Σ andΣ is a finite set that describes the total number
of kinematic states for the system. For simplicity, assume
that the SDA actuators are themselves of negligible mass
and that they form a point contact with the insulating layer.
Then, the equations of motion can be written as∇c′(t)c

′(t) =

uaYa+dbVb. In this equation theua correspond to each force
being produced by the SDAs and theYa transform these
forces into the body frame while respecting any constraints
imposed upon the system. Such constraints arise from no-slip
contact between the insulating layer and the actuators. Thedb

represent reaction forces due to slipping along the insulating
layer when such a constraint is violated. We now analyze
whether a planar array of alternately orthogonal actuators
(such as those seen in Fig. 5) is kinematic.

Proposition 7.1:An object manipulated by a planar array
of alternatively orthogonal actuators has dynamics that are
both (U ,D)-reducible and

(
(U ,D),U

)
-reducible.

Hence, an array of actuators manipulating an object is
always

(
(U ,D),U

)
-reducible to a kinematic system of the

form in Eq. (4). Moreover, as the contact states change, the
kinematic system will change. This means that the effects
of friction on the dynamics of the chip are now completely
encoded in the switching from one set ofkinematicequations
to another over time. This situation has well-defined control
strategies, as discussed next.

1) Stabilization of Manipulation Using Arrays of Actua-
tors: Consider a desired equilibrium point on an alternately
orthogonal array. It has contact actuators located at(2i +
1, 2j + 1) with i, j ∈ N. Their angles are alternatelyπ2
and −π

2 . We will denote the velocities of these actuators
by u(2i+1,2j+1) and the applied force byu(2i+1,2j+1). The
system is

(
(U ,D),U

)
-reducible by Prop. 7.1, so long as the

contact interfaces aredissipativewhen slipping is occurring
(i.e., the reaction force is nonzero and in the opposite
direction of the slipping). Additionally, all the nontrivial,
non-overconstrained kinematics when the center of mass is
near(x, y) = (0, 0) are of one of the four forms in Table VII-
.1 [13], [12].

For each of the four models in Table VII-.1 a control law is
calculated from the Lyapunov functionk(x2+y2+θ2) (where
k is some constant to be chosen during implementation) by
solving V̇ = −V for u(2i+1,2j+1) subject to the constraint
that actuators with the same orientation have the same
velocity commandu. Hence, there are two unique inputs
u(1,1) andu(−1,1) in the kinematic description, and including
more does not help [13], [12]. Moreover, by virtue of the
design methodology, there is a common Lyapunov function.
This was shown to provide global stabilization to(0, 0, 0)
for the kinematic system in [13], [12].

Figure 6 shows three simulations of an actuator array near
a desired equilibrium. For each simulation, going from left
to right, theXY location of a manipulated object is shown,
the orientationθ, the evolution ofσ, and the response of
the actuator at(1, 1) in the dynamic simulation as it tracks
u(1,1). The four actuators near the equilibrium dominate the
motion, and the rest are kinematically constrained to match
the speeds ofu(1,1) andu(−1,1). We useE from Eq.(11) to
estimateσ and Eq. (9) to implement the commandsui,j (i.e.,
the mappingπ : Ider → I) with a control gain ofK = 10
for three different friction laws–Coulomb friction, viscous
friction, and stiction, as in Section IV-A. All the responses
have an initial condition of(x0, y0, θ0) = (0.5, 2, π

2 ) and the



TABLE I

ORTHOGONAL ACTUATOR ARRAYS (LIKE THOSE SEEN INFIG. 5 AND FIG. 5) HAVE ALL KINEMATIC STATES , MANY OF WHICH ARE REDUNDANT. THIS

FIGURE SHOWS THE FOUR DISTINCT EQUATIONS OF MOTION THAT CAN OCCUR. NOTE THAT SO LONG ASu(1,1) (= u(−1,−1)) AND u(−1,1)

(= u(1,−1)) ARE NONZERO, THE FOUR STATES CAN BE DISTINGUISHED FROM STATE OUTPUT. IN FACT, JUST OBSERVATION OFθ IS SUFFICIENT FOR

DISTINGUISHING THE STATES. MOREOVER, THIS SYSTEM CAN BE STABILIZED TO THE ORIGIN USING THE CONTROL LAW SHOWN AND AN ESTIMATE

OF σ [12].

σ Equations of Motion Control Law

σ = 1 q̇ =

24 −1
−1

0

35 u(1,1) +

24 1
−1

1

35 u(−1,1)
u(1,1) =

−kθ (θ+x−y)+k (θ2+x2+y2)
x+y

u(−1,1) = −kθ

σ = 2 q̇ =

24 −1
−1
−1

35 u(1,1) +

24 1
−1

0

35 u(−1,1)

u(1,1) = kθ

u(−1,1) =
kθ (θ+x+y)−k (θ2+x2+y2)

x−y

σ = 3 q̇ =

24 −1
−1

0

35 u(1,1) +

24 1
−1
−1

35 u(−1,1)
u(1,1) =

kθ (θ−x+y)+k (θ2+x2+y2)
x+y

u(−1,1) = kθ

σ = 4 q̇ =

24 −1
−1

1

35 u(1,1) +

24 1
−1

0

35 u(−1,1)

u(1,1) = −kθ

u(−1,1) =
−kθ (−θ+x+y)−k (θ2+x2+y2)

x−y

goal is to stabilize to the origin(0, 0, 0). All responses are
qualitatively similar despite the differences in friction law in
the actual implementation.

The key is that despite changes in the characteristics of
friction, the controller computed inIder (which only needs
to estimateσ) performs well (and similarly to the macro-
scale experimental work in [13]). This is because all possible
σ yield kinematic equations of motion that can be stably
implemented using Eq. (9).

Lastly, note thatσ does not change very quickly in this
setting. Moreover, looking at the kinematic equations of mo-
tion, we see thatσ can be estimated based onθ measurements
alone (so long asu1 6= u2 and u1, u2 6= 0). In this case
sensingθ at 10 Hz would be more than sufficient for purposes
of capturing theσ changes. So ifd in Eq. (10) is large
enough, we can estimateσ using Eq. (11). In comparison
to directly identifyingτ ∈ L, which often requires sampling
rates at 1 KHz or more, this is clearly superior from a sensing
perspective.

VIII. C ONCLUSIONS

This paper considers the use of derived information spaces
that arise from the canonical distinction between slipping
frictional forces and nonslipping frictional forces. Geometric
kinematic reductions play a central role in why this choice is
effective in generating useful descriptions of a system, even
when a system experiences stick/slip phenomena (which are
typically thought of as being dynamic). Both planning and
stabilization can be computed in the derived information
space, and then implemented in the underlying dynamic
space through the use of a stable plan, typically just a
backstepping controller in the context of the work presented
here. These techniques are illustrated on an two example
simulation–an actuator array. Lastly, the derived information
space has more limited sensing requirements, both in terms
of spatial resolution and temporal resolution.

One of the most pressing areas of future work is un-
derstanding the effect ofπ−1 : I → Ider on noise and

other uncertainties that are naturally represented inI. This
is because noisy observations inI potentially add uncertainty
to the estimate inIder, but they do not have to. How to treat
this analytically is the subject of ongoing research. Lastly,
experimental versions of the example in Section VII is under
development in the author’s laboratory.
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APPENDIX

In discussing kinematic reductions, we follow [3], [4]. A
simple mechanical control systemconsists of a manifoldQ
of dimensionn, a Riemannian metricG that defines the
kinetic energy, a set of constraints represented as a constraint
distributionD, and a set of external forces. Associated with a
Riemannian metricG are what are calledChristoffel symbols.

Definition 1.1: The Christoffel symbolsassociated with
the metricG are

GΓi
jk =

1
2
Gil

(
∂Gjl

∂qk
+

∂Gkl

∂qj
− ∂Gjk

∂ql

)
(12)

where summation over repeated indices is implied used un-
less otherwise stated, and upper indices indicate the inverse.
Also associated with the Riemannian metric is theaffine
connection, which assigns to a pair of vector fieldsX andY
another vector field∇XY . This is referred to as thecovariant
derivativeof Y with respect toX.

Definition 1.2: In coordinates, the covariant derivative of
Y with respect toX is

G∇XY =
(

∂Y i

∂qj
Xj + Γi

jkXjY k

)
∂

∂qj
(13)

With this, the Euler-Lagrange equations can be written as
G∇c′(t)c

′(t) = ua(t)Ya(c(t)) (14)

where t 7→ c(t) is a path onQ and c′(t) = d
dtc(t) [3],

[4]. In this equationG∇ is the constrained affine connection

associated with the Riemannian metric (kinetic energy)G
andYa are force vector fields associated with forcesua. In
coordinates this is written as:

q̈i + GΓi
jk q̇j q̇k = uα Y i

α. (15)

Constrained systems, those control systems whose trajec-
tories must lie in some distributionD, can also be described
by Eq. (14). However, the affine connection must be modified
in order to incorporate the constraints. LetD be a distribution
onQ and letD⊥ denote theG-orthogonal complement ofD.
Moreover, letP : TQ → TQ be aG-orthogonal projection
operator ontoD and letP ′ : TQ → TQ be aG-orthogonal
projection ontoD⊥. Lastly, letA(q) be any invertible(1, 1)
tensor field onQ and letB(q) be its inverse. Then, the Euler-
Lagrange equations can be written as Eq. (15) where the
Chrisoffel symbols are:

AΓi
jk = GΓi

jk + Bi
l

∂(AP ′)l
j

∂qk + Bi
l
GΓl

km(AP ′)m
j −Bi

l
GΓm

kj(AP ′)l
m

where, again,A(q) is any invertible (1, 1) tensor onQ. In
order to add forces, we must ensure the forces comply with
the constraints. Hence, the final equations of motion are:

G∇c′(t)c
′(t) = ua(t)PjY

j
a (c(t)) (16)

or in coordinates:

q̈i + AΓi
jkq̇j q̇k = uα PjY

i
α. (17)

Therefore, simple mechanical control systemsall can be
represented using an affine connection. For more details and
examples worked out in detail, refer to Bullo and Lewis [3].


