
Motion Programs for Puppet Choreography and
Control

Magnus Egerstedt1, Todd Murphey2, and Jon Ludwig3

1 Georgia Institute of Technology, Electrical and Computer Engineering
Atlanta, GA 30323, USA
magnus@ece.gatech.edu

2 University of Colorado, Electrical and Computer Engineering
Boulder, CO 80309, USA
murphey@colorado.edu

3 The Center for Puppetry Arts, Atlanta, GA 30309, USA
jonludwig@puppet.org

Abstract. This paper presents a motion description language (MDLp)
for specifying and encoding autonomous puppetry plays in a manner that
is faithful to the way puppetry choreography is currently formulated. In
particular, MDLp is a formal language whose strings, when parsed by a
dynamical system (the puppet) produces optimized, hybrid control laws
corresponding to strings of motions, locations, and temporal durations
for each agent. The paper is concerned with the development of this lan-
guage as well as with an optimization engine for hybrid optimal control
of MDLp strings, and with the generation of motion primitives within
the “Imitate, Simplify, Exaggerate” puppetry paradigm.

1 Introduction

One of the main drivers behind the rapidly emerging abstraction-based approach
to control and software design is the ability to specify the desired system behavior
at a high-level of abstraction, without having to take the actual implementation
details into account [9,21]. In other words, the key idea is to be able to give
high-level specifications in some language such as linear temporal logic (LTL)
[17,22], Computation and Control Languages (CCL) [16], maneuver automata
[13], or Motion Description Languages (MDL) [4,10,14,20], and then be assured
that the transitions from high-level specifications to actual control signals are
achieved in a stable and correct manner.

In this paper we pursue this issue of abstraction-based control for a particular
application, namely autonomous puppetry, which apart from being a conceptual
oxymoron, presents a number of technical challenges. The ultimate objective is
to be able to input high-level descriptions of desired puppet motions, denoted
plays, and then go from such plays to actual control laws for implementing the
plays on autonomous marionette puppets, as shown in Figure 1.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 190–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Motion Programs for Puppet Choreography and Control 191

(a) (b)

Fig. 1. A Mathematica graphical representation of the mechanical system for au-
tonomous puppetry control (a), together with one of the marionettes used (b)

The control strategy that we will employ will be hybrid, for three distinct
reasons, namely:

1. Plays are naturally described as sequences of distinctive motions, which means
that the controller must switch between different modes of operation;

2. As the objective is to mimic human (or animal) behaviors, puppeteers typi-
cally work with a set of established motion primitives, such as “walk”, “run”,
“dance”, “hop” [11]; and

3. The marionette platform is in itself hybrid in that the strings (actuation
modalities) are in a number of different configurations during a play, includ-
ing “free”, “controlled”, “locked”, or “grouped” [15].

We will discuss these three hybrid aspects of the autonomous marionette project,
and the framework that we propose in this paper for formalizing high-level spec-
ifications for puppetry is based Motion Description Languages. Specifically, a
MDL is a string of pairs, each specifying what control law the system should be
executing and an interrupt condition corresponding to the termination of this
control law. The particular language that we propose is slightly more structured
than the standard MDL (or MDLe, where “e” stands for “extended”) and we
will call this language MDLp, with “p” meaning “puppetry”. In order for this
language to be successful, it is important that it is expressive enough to be able
to characterize actual puppet plays, and as such we draw inspiration from the
way such plays are staged by professional puppeteers.

As an example, consider a part of an actual play, as shown in Figure 2. The
play that this example comes from is the “Rainforest Adventures” - an original
puppet play staged at the Center for Puppetry Arts in Atlanta during 2005
[7,19]. It shows how the basic building blocks for a formal language for puppet
choreography can be derived from existing practices in puppeteering.

In fact, the standard way in which puppet plays are described is through
four parameters, namely temporal duration, agent, space, and motion (when?,



192 M. Egerstedt, T. Murphey, and J. Ludwig

counts

agents

location
SR = Stage Right
SL = Stage Left

movements

Original play
Center for Puppetry Arts
Atlanta, GA
By Jon Ludwig (artistic director)

Fig. 2. Rainforest Adventures: This figure is an original puppet choreography sheet
from the Center for Puppetry Arts in Atlanta [7]. It shows how the basic building
blocks for a formal language for puppet choreography can be derived from existing
practices in puppeteering.

who?, where?, and what?) [2,11]. Most plays are based on counts in that each
puppet motion is supposed to happen at a particular count. (This becomes even
more important if multiple puppets are acting simultaneously on stage or if
the play is set to music). At each specified count, a motion is initiated and/or
terminated. Following this standard practice, we, in the following sections, will
propose a formal language for describing such puppet plays, and the outline of
this paper is as follows: In Section 2, we recall the basic definitions of a Motion
Description Language and show how these definitions can be augmented to form
the MDLp, suitable for specifying puppet plays. We then, in Section 3, use the
Calculus of Variations for parsing MDLp strings in an optimal way in order
to produce effective control programs, deployable on the robot platform. The



Motion Programs for Puppet Choreography and Control 193

question of how to generate the motion primitives that constitute the building
blocks of MDLp is the focus of Section 4. In fact, professional puppeteers use an
expression, “Imitate, Simplify, Exaggerate”, to describe the basic steps in making
a puppet perform a given behavior [11]. First, imitate the behavior that one
observes, then simplify it down to its basic components, and finally exaggerate
the resulting behavior to convey the correct level of animation and emotional
content to the viewer, who is often quite distant from the stage. These three
steps have formal mathematical counterparts, which is the focus of Section 4,
followed by the conclusions, in Section 5.

2 Choreography

2.1 Motion Description Languages

As the complexity of many control systems increases, due both to the system
complexity (e.g. manufacturing systems, [6]) and the complexity of the environ-
ment in which the system is embedded (e.g. autonomous robots [1,18]), multi-
modal control has emerged as a useful design tool. The main idea is to define
different modes of operation, e.g. with respect to a particular task, operating
point, or data source. These modes are then combined according to some dis-
crete switching logic and one attempt to formalize this notion is through the
concept of a Motion Description Language (MDL) [4,10,14,20].

Each string in a MDL corresponds to a control program that can be operated
on by the control system. Slightly different versions of MDLs have been proposed,
but they all share the common feature that the individual atoms, concatenated
together to form the control program, can be characterized by control-interrupt
pairs. In other words, given a dynamical system

ẋ = f(x, u), x ∈ RN , u ∈ U
y = h(x), y ∈ Y,

together with a control program (k1, ξ1), . . . , (kz , ξz), where ki : Y → U and
ξi : Y → {0, 1}, the system operates on this program as ẋ = f(x, k1(h(x))) until
ξ1(h(x)) = 1. At this point the next pair is read and ẋ = f(x, k2(h(x))) until
ξ2(h(x)) = 1, and so on. (Note that the interrupts can also be time-triggered,
which can be incorporated by a simple augmentation of the state space.)

A number of results have been derived for such (and similar) systems, driven
by strings of symbolic inputs. For example, in [3], the set of reachable states was
characterized, while [12] investigated optimal control aspects of such systems. In
[8,14,20], the connection between MDLs and robotics was investigated.

2.2 Puppet Dynamics

Before we can establish a suitable formalism for motion control of autonomous
marionettes, an appropriate puppet model is needed. In fact, we let the puppet
be modeled using well-known Euler-Lagrange methods for articulated mechani-
cal systems [5]. Our puppet system is similar to a closed-chain of rigid bodies,



194 M. Egerstedt, T. Murphey, and J. Ludwig

but differs in that one of the linkages has no mass. This implies that one cannot
apply a force to the link or use the inertia of the link. In fact, by including
the parameters that define the string link (e.g., the location of the string end-
points) in the configuration, we get a globally degenerate inertia matrix and,
correspondingly, degenerate equations of motion. Associating a mass with the
string parameters to avoid this difficulty introduces other problems in that a
small mass yields stiff differential equations for the motion while a large mass
will unrealistically affect the dynamics of the system.

The solution is to treat the string as a constraint that indirectly applies to the
system inputs. Hence, we will treat the mechanical superstructure as a kinematic
system while we treat the puppet itself as a dynamic system. Thus, we are
modeling the puppet using a mixed dynamic-kinematic model.

The validity of such a partial kinematic reduction can be verified as follows
(under the assumption that the mechanical system controlling the puppet is
fully-actuated). The mechanical system, including both the puppet and the
mechanism controlling the puppet, can be described using the constrained Euler-
Lagrange equations with q = [qD, qK , qM ], where qM describes the configuration
of the mechanism, qK describes the configuration of the strings, and qD de-
scribes the configuration of the puppet. The equations of motion can be written
as: ∇̃q̇ q̇ = uiY i where ∇̃ is the constrained affine connection, ui are the m inputs,
and Yi are the associated input vector fields. (See [5] for a complete description
of this formalism.) In this context, a system is kinematically reducible (i.e, all
paths on the configuration manifold Q correspond to trajectories on TQ and
vice-versa) if 〈Yi, Yj〉 ∈ span{Yk | 1 ≤ k ≤ m} where 〈X, Y 〉 = ∇̃XY + ∇̃Y X .
Now, because the strings are massless, the inertia tensor is block diagonal in
[qD, qK ]. This allows us to address the constraints independently as constraints
between qD and qM so that

∇̃q̇M q̇M = uiY
i

∇̃q̇D q̇D = 0.

Because the mechanism controlling the puppet is assumed to be fully actuated,
the first equation for the mechanism dynamics trivially satisfies the condition
〈Yi, Yj〉 ∈ span{Yk | 1 ≤ k ≤ m} for kinematic reducibility. Hence, separat-
ing the kinematic reduction of the mechanism controlling the puppet from the
(not kinematically reducible) dynamics of the puppet is a mechanically valid
description of the system.

Lastly, the string constraints are actually inequality constraints. In fact, the
strings can go slack. This can be included by monitoring the Lagrange multipliers
enforcing the constraints and using projection operators to provide impulses that
release the constraint when the string goes slack and enforce them again when
the end of the string is reached.

2.3 MDLp

Now that we have a model of the puppet dynamics, we note that the general
MDL outlined in Section 2.1 does not lend itself to be directly applicable to



Motion Programs for Puppet Choreography and Control 195

the scenario described in Figure 2. In fact, what we will do in this section is
to augment the standard MDL formulation to include factors such as spatial
location. For this, assume that the play starts at time t0 and that it ends at
time tf . Moreover, let the temporal resolution (the length of each “count”) be
∆, and assume that (tf − t0)/∆ = M . Following this, the set of all times over
which the play is specified is T = {t0, t0 +∆, t0 + 2∆, . . . , t0 + M∆}.

Moreover, assume that the stage is divided into N different sections (typi-
cally this number is 6, namely LowerLeft, LowerCenter, LowerRight, MiddleLeft,
MiddleCenter, MiddleRight, UpperLeft, UpperCenter, UpperRight), whose pla-
nar center-of-gravity coordinates are given by r1, . . . , rN , with the set of regions
being given by R = {r1, . . . , rN}.

From the arguments in Section 2.2, we can assume that each puppet has a
dynamics given by

ẋi = f i(xi, ui), yi = πi(xi),

where the superscript i denotes agent i, and the output yi ∈ R2 is given by
a projection πi from X i to the plane. Now, given that we have constructed a
number of control laws κi

j , j = 1 . . . , Ci, corresponding to different moves that
puppet i can perform, with each control law being a function of xi (state), t
(time), and αi (a parameter characterizing certain aspects of the motion such
as speed, energy, or acceleration, as is the normal interpretation of the parame-
trization of biological motor programs), we can let the set of moves that puppet
i can perform be given by Ki = {κi

1, . . . , κ
i
Ci}. In fact, we will often use the

shorthand f i
j(xi, t, α) to denote the impact that control law κi

j has on puppet i
through f i(xi, κi

j(xi, t, α)).
As already pointed out, each instruction in the puppet play language is a

four-tuple designating when, who, where, and what the puppets should be doing.
In other words, we let the motion alphabet associated with puppet i be given by
Li = T × T × R × Ki. Each element in Li is thus given by (T0, T1, r, κ), where
the interpretation is that the motion should take place during the time interval
T1 − T0, largely in region r, while executing the control law κ.

For the reminder of this section, we will drop the explicit dependence on i,
and assume that we are concerned with a given, individual puppet. We can then
follow the standard notation in the formal language field and let L! denote the set
of all finite-length concatenations of elements in L (including the empty string),
and let puppet plays be given by words λ ∈ L!. In particular, if we let λ =
(t0, T1, r1, κ1), (T1, T2, r2, κ2), . . . , (Tp−1, Tp, rp, κp), then the puppet operates on
this string through

ẋ =






f1(x, t, α1), t ∈ [t0, T1)
f2(x, t, α2), t ∈ [T1, T2)

...
fp(x, t, αp), t ∈ [Tp−1, Tp].

This seems fairly natural, but two essential parameters have been left out.
First, the motion parameters α1, . . . , αp have not yet been specified. Moreover,



196 M. Egerstedt, T. Murphey, and J. Ludwig

the desired regions r1, . . . , rp have not been utilized in any way. In order to rem-
edy this, we need to construct not just a parser for puppet plays, as given above,
but also a compiler that selects the “best” parameters (as well as durations) for
the different moves so that the play is executed as efficiently as possible.

3 A Puppet Play Compiler

Consider the following optimal control problem:

min
τ,α1,α2

J(τ, α1, α2) =
∫ tf

0
L(x, t)dt+C1(α1)+C2(α2)+D(τ)+Ψ1(x(τ))+Ψ2(x(τ)),

where
ẋ =

{
f1(x, t, α1), t ∈ [0, τ)
f2(x, t, α2), t ∈ [τ, tf ]

x(0) = x0.

This optimal control problem is the atomic problem involving how to execute
the two-instruction play (0, T, r1, κ1), (T, tf , r2, κ2) under the following interpre-
tations

D(τ) = function that penalizes deviations fromT , e.g. (τ − T )2
Ci(αi)=function that measures how much energy it takes to use parameter αi

Ψi(x(τ or T ))= function that ensures that the projection π((x(τ)) is close to
r1and similarly for π(x(T ))

L(x, t) = function that may be used to ensure that a reference trajectory is
followed.

By forming the Lagrangian

J̃ =
∫ τ

0
(L + λ1(f1 − ẋ))dt +

∫ T

τ
(L + λ2(f2 − ẋ))dt + C1 + C2 + D + Ψ1 + Ψ2

and using a standard variational argument, with τ → τ+εθ, α1 → α+εa1, α2 →
α2 + εa2, we can obtain the corresponding variation in the trajectory as x(t) →
x(t) + εη(t), with η(0) = 0.

By letting J̃ε denote the Lagrangian from the variational system, we get that

lim
ε→0

J̃ε − J̃

ε
=

∫ τ

0

((
∂L

∂x
+ λ1

∂f1

∂x
+ λ̇1

)
η + λ1

∂f1

∂α1
a1

)
dt

+
∫ T

τ

((
∂L

∂x
+ λ2

∂f2

∂x
+ λ̇2

)
η + λ2

∂f2

∂α2
a2

)
dt

+
(

−λ1(τ) + λ2(τ) +
∂Ψ1

∂x

)
η(τ) +

(
−λ2(T ) +

∂Ψ2

∂x

)
η(T )

+
(
λ1(τ)(f1(x(τ)) − f2(x(τ)) +

∂D

∂τ
+
∂Ψ1

∂x
f2(x(τ))

)
θ

+
∂C1

∂α1
a1 +

∂C2

∂α2
a2.



Motion Programs for Puppet Choreography and Control 197

This gives us the optimality conditions as

∂J

∂τ
= λ(τ−)f1(x(τ)) − λ(τ+)f2(x(τ)) +

∂D

∂τ
∂J

∂α2
= ξ(τ+)

∂J

∂α1
= ξ(0),

where the costates λ and ξ satisfy the following discontinuous (backwards) dif-
ferential equations:

λ(T ) =
∂Ψ2

∂x
(x(T ))

λ̇ = −∂L
∂x

− λ∂f2

∂x
, t ∈ (τ, T )

λ(τ−) = λ(τ+) +
∂Ψ1

∂x
(x(τ))

λ̇ = −∂L
∂x

− λ∂f1

∂x
, t ∈ [0, τ)

ξ(T ) =
∂C2

∂α2

ξ̇ = −λ∂f2

∂x
, t ∈ (τ, T )

ξ(τ−) =
∂C1

∂α1

ξ̇ = λ
∂f1

∂x
, t ∈ [0, τ).

By a direct generalization to more than two modes, this construction allows
us to produce a compiler that takes plays and outputs strings of control modes
with an optimized temporal duration and mode-parametrization, as given in the
algorithm below:

Algorithm
Given (t0, T1, r1, κ1), (T1, T2, r2, κ2), . . . , (Tp−1, Tp, rp, κp)
Set τi(0) = Ti, i = 1, . . . , p − 1
Initialize αi(0), i = 1, . . . , p
Optimization (k = 0)
Repeat
Compute x(t) forwards using αi(k), τi(k)
Compute λ(t), ξ(t) backwards (including jumps)
Compute ∂J

∂τi
, ∂J

∂αi

Gradient Descent
Set τi(k + 1) = τi(k) − γ(k) ∂J

∂τi
(τi(k)), i = 1, . . . , p − 1

Set αi(k + 1) = αi(k) − .(k) ∂J
∂αi

(αi(k)), i = 1, . . . , p
Set k = k + 1

Until ‖∇J‖ ≤ δ



198 M. Egerstedt, T. Murphey, and J. Ludwig

An example of this proposed approach is shown in Figure 3, in which an oscil-
lator is switching between two modes - one slow (corresponding to walking) and
one fast (corresponding to running). The frequencies and dynamics associated
with the two modes are

ω1 = 5 α2
1

α2
1+10 + 5

ω1 = 10 α2
2

α2
2+10 + 10

ẋ =
[

0 −ω1,2
ω1,2 0

]
x

and the cost is

J(τ, α1, α2) =
∫ 3

0
0.1x(t)T x(t)dt + (τ − 2)2 + 0.1α2

1 + 0.2α2
2

+ (x(τ) − [−1, 0])T (x(τ) − [−1, 0]T ) + 5x(3)T x(3).

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

Optimal Transition Between Walking and Running

Walking

Running

Fig. 3. A simplified locomotion model in which walking and running are defined
through linear oscillators with different frequencies. The figure on the left depicts the
waveform of the two gaits, and the figure on the right is a snapshot of the animation
showing the result.

4 Motion and Caricature: “Imitate, Simplify,
Exaggerate”

A system with limited expressive powers, such as a marionette, needs to be
able to convey the proper emotions in such a way that a human audience un-
derstands what is being conveyed. As previously mentioned, puppeteers achieve
this through the three steps: Imitate, Simplify, and Exaggerate. We will make
these three steps formal in that human motion is being mimicked, after which
the resulting motions are projected onto the constrained space over which the
marionette operates (see Section 2.2), followed by a transformation of the re-
sulting motion in such a way that the “energy” of the original (non-projected)
motion is conserved.



Motion Programs for Puppet Choreography and Control 199

4.1 Conservation of Energy

The method we propose for achieving this is by studying the way professional
puppeteers actually control their puppets, as well as draw inspiration from
human-like motions, since if the puppet is a human marionette, we would typi-
cally like to be able to execute human-like motions. However, since marionettes
are constrained in such a way that they cannot be as expressive as human mo-
tions, we will first identify human motions (corresponding to the Imitate phase
in puppetry) project human motion down onto the space of available puppet mo-
tions (the Simplify phase) and then exaggerate these motions in order to make
them sufficiently expressive (the Exaggerate phase). Formally speaking, given a
desired trajectory z(t) ∈ Z that we would like the puppet (whose state is x(t) ∈
X, dim(X) ≤ dim(Z)) to follow, we define a projection-like mapping ρ : Z → X .
The Simplify-phase thus consists of trying to minimize expressions like

∫ T

0
L(x(t) − ρ(z(t)))dt,

subject to the puppet dynamics ẋ = f(x, u), with u being the control input, and
where T is the temporal duration of the movement.

Moreover, if TZ and TX are the tangent spaces associated with Z and X
respectively, we define the energy conservation cost through the mapping φ :
TX → TZ in the following manner

∫ T

0
E(φ(f(x(t), u(t)) − ż(t))dt,

and the combined Simplify-Exaggerate optimization problem becomes

min
u

∫ T

0
(L(x − ρ(z)) + E(φ(f(x, u)) − ż))dt.

As an example, consider the situation when the puppet dynamics is given by
the completely controllable linear control system

ẋ = Ax + Bu, x ∈ Rn

with z ∈ Rm, m ≥ n. Moreover, let the projection ρ be given by a linear
projection Pz and similarly let φ be given by a linear relation E(Ax+Bu). The
instantaneous cost thus becomes

L(x − ρ(z)) + E(φ(f(x, u)) − ż) =
1
2
(x − Pz)T Q(x − Pz)

+
1
2
(EAx + EBu − ż)T R(EAx + EBu − ż),

given positive definite weight matrices Q, R.



200 M. Egerstedt, T. Murphey, and J. Ludwig

Given free initial and final positions x(0) and x(T ), this is a standard LQ-
optimization problem that can be readily solved, and an example solution is
shown in Figure 4. In that example,

ż =




0 −1 0
1 0 0

−0.1 −0.4 −1



 z, z(0) =




1
1
1





ẋ =
[

0 −1.1
1.1 −0.1

]
x +

[
0
1

]
u

Q = I2, R = 0.01I3

P =
[

1 0 0
0 1 0

]
, E =




2/3 0
0 2/3

1/3 1/3





4.2 Conservation of “Emotive” Energy

In the previous discussion, energy was defined in terms of motion, but one can
easily picture a somewhat more esoteric yet perhaps more relevant notion of
emotive energy. In other words, the puppet is asked to capture a particular emo-
tive state through its motion. But, due to its constrained configuration space, a
direct mapping from human emotions to puppet emotions is not feasible. (Our
faces, for example, have many degrees of freedom, while the puppets’ have sig-
nificantly less.) The same approach as previously discussed would still apply, but

0.2
0.4

0.6
0.8

1
1.2

0.8

1

1.2

1.4

1.6

1.8
0

0.2

0.4

0.6

0.8

1

Optimal Projection vs Energy Conservation

z 3

x

Pz

z

Fig. 4. This figure shows a simple example in which an optimal trade-off between
tracking and energy-maintenance is achieved for linear systems. This method provides
the basic building-block for the Simplify-Exaggerate phases of the construction of basic
motion primitives.



Motion Programs for Puppet Choreography and Control 201

Fig. 5. Anger representation: The Mathematica stick-figure on the left depicts a nom-
inal allocation between body and face movements

with the difference that now emotive energy measures will have to be generated.
As a simple example, consider the stick-figure drawing in Figure 5. There the
idealized puppet is asked to express anger and by constraining either the facial
expressions or the body language, the emotive energy is maintained by either
exaggerating the body or the facial movements. In the middle figure, the stick-
figure has to work really hard to move its face, while in the right figure it has to
work hard to move its arms. Because of this, the middle figure has a more mild
facial expression but more dramatic body expression and the figure on the right
has a severe facial expression with almost no body expression. The middle and
right figures have been generated automatically (in Mathematica) from the left
figure by an optimization process similar to what was discussed in the previous
paragraphs.

5 Conclusions

In this paper we presented the motion description language MDLp, which is
a MDL that allows for slightly more structured instructions, making it useful
for specifying and encoding autonomous puppetry plays in a manner that is
faithful to standard puppetry choreography. In particular, MDLp is a formal
language whose strings, when parsed by a dynamical system, produces optimized,
hybrid control laws corresponding to strings of motions, locations, and temporal
durations for each agent. The paper is concerned with the development of this
language as well as with an optimization engine for hybrid optimal control of
MDLp strings, and with the generation of motion primitives within the “Imitate,
Simplify, Exaggerate” puppetry paradigm.

References

1. R.C. Arkin. Behavior Based Robotics. The MIT Press, Cambridge, MA, 1998.
2. B. Baird. The Art of the Puppet. Mcmillan Company, New York, 1965.
3. A. Bicchi, A. Marigo, and B. Piccoli. Encoding Steering Control with Symbols.

IEEE Conference on Decision and Control, Maui, Hawaii, Dec. 2003.



202 M. Egerstedt, T. Murphey, and J. Ludwig

4. R.W. Brockett. On the Computer Control of Movement. In the Proceedings of the
1988 IEEE Conference on Robotics and Automation, pp. 534–540, New York, April
1988.

5. F. Bullo and A.D. Lewis. Geometric Control of Mechanical Systems. Number 49
in Texts in Applied Mathematics. Springer-Verlag, 2004.

6. C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Norwell, MA, 1999.

7. Center for Puppetry Arts. http://www.puppet.org/.
8. M. Egerstedt. Motion Description Languages for Multi-Modal Control in Robotics.

In Control Problems in Robotics, Springer Tracts in Advanced Robotics , (A. Bicchi,
H. Cristensen and D. Prattichizzo Eds.), Springer-Verlag, pp. 75-90, Las Vegas, NV,
Dec. 2002.

9. M. Egerstedt and C.F. Martin. Conflict Resolution for Autonomous Vehicles: A
Case Study in Hierarchical Control Design. International Journal of Hybrid Sys-
tems, Vol. 2, No. 3, pp. 221-234, Sept. 2002.

10. M. Egerstedt and R.W. Brockett. Feedback Can Reduce the Specification Com-
plexity of Motor Programs. IEEE Transactions on Automatic Control, Vol. 48, No.
2, pp. 213–223, Feb. 2003.

11. L. Engler and C. Fijan. Making Puppets Come Alive. Taplinger Publishing Com-
pany, New York, 1973.

12. E. Frazzoli. Explicit Solutions for Optimal Maneuver-Based Motion Planning.
IEEE Conference on Decision and Control, Maui, Hawaii, Dec. 2003.

13. E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-Based Motion Planning for
Nonlinear Systems with Symmetries. IEEE Transactions on Robotics, Vol. 21, No.
6, pp. 1077–1091, Dec. 2005.

14. D. Hristu-Varsakelis, M. Egerstedt, and P.S. Krishnaprasad. On The Structural
Complexity of the Motion Description Language MDLe. IEEE Conference on De-
cision and Control, Maui, Hawaii, Dec. 2003.

15. E. Johnson and T. Murphey. Dynamic Modeling and Motion Planning for Mari-
onettes: Rigid Bodies Articulated by Massless Strings. Submitted to ICRA, 2007.

16. E. Klavins. A language for modeling and programming cooperative control systems.
In Proceedings of the International Conference on Robotics and Automation, 2004.

17. M. Kloetzer and C. Belta. Hierarchical Abstractions for Robotic Swarms. IEEE
International Conference on Robotics and Automation, Orlando, FL, 2006

18. D. Kortenkamp, R.P. Bonasso, and R. Murphy, Eds. Artificial Intelligence and
Mobile Robots. The MIT Press, Cambridge, MA, 1998.

19. J. Ludwig. Rainforest adventures. http://www.puppet.org/perform/rainforest.
shtml.

20. V. Manikonda, P.S. Krishnaprasad, and J. Hendler. Languages, Behaviors, Hybrid
Architectures and Motion Control. In Mathematical Control Theory, Eds. Willems
and Baillieul, pp. 199–226, Springer-Verlag, 1998.

21. G.J. Pappas, G. Laffierier, and S. Sastry. Hierarchically consistent control sytems.
IEEE Trans. Automatic Control, 45(6):1144–1160, June 2000.

22. P. Tabuada and G. Pappas. Linear Time Logic Control of Discrete-Time Linear
Systems. Accepted for publication in IEEE Transactions on Automatic Control.


	Introduction
	Choreography
	Motion Description Languages
	Puppet Dynamics
	MDLp

	A Puppet Play Compiler
	Motion and Caricature: ``Imitate, Simplify, Exaggerate"
	Conservation of Energy
	Conservation of ``Emotive" Energy

	Conclusions

