
Choreography for Marionettes: Imitation, Planning, and Control

Todd D. Murphey Magnus Egerstedt
Electrical and Computer Engineering Electrical and Computer Engineering

University of Colorado at Boulder Georgia Institute of Technology
Boulder, Colorado 80309 Atlanta, GA 30332
murphey@colorado.edu magnus@ece.gatech.edu

Abstract— This paper presents a project aimed at the creation
of fully automated marionettes for puppet plays, to be used in
stage plays at the Atlanta Center for Puppetry Arts. In fact,
marionettes are sophisticated and challenging mechanical sys-
tems, and therefore represent good test-beds for many current
issues in robotics, such as systematic modeling of relatively
high degree of freedom systems, semantics of high-level motion
planning and control, and numerical optimization techniques
for motion imitation and generation. This paper presents our
approach to these problems, and highlights how insights from
puppeteers can aid in the creation of a systematic framework
for modeling and control of these complex mechanical systems.

I. INTRODUCTION

A. Choreography as Abstraction
Marionettes are sophisticated mechanical systems, often

having 40-50 degrees of freedom, with highly nonlinear
constrained dynamics and degenerate Lagrangians (due to the
strings having nearly no mass). Moreover, there are typically
several of them on the stage simultaneously, often interacting
in intricate ways. Despite these nominal obstructions to
planning, control, and coordination, we know from watching
puppeteers that marionettes may be controlled to act out
complex plays as a form of storytelling and performance.
To achieve this, puppeteers use standardized choreographic
languages as well as systematic approaches to motion imi-
tation [2], [8].

In this paper, we discuss how it is possible to translate the
techniques and approaches employed by puppeteers into an
automatic framework, capable of mapping high-level chore-
ography into motion commands for the motors that control
the strings that suspend the puppets. This way of translating
high-level specifications to low-level control commands has
applications beyond puppeteering. Examples in which this
approach has proved useful include assembly of multi-agent
systems [17], task specifications for mobile robots [3], [22],
and mission-level control of UAVs [18].

As the puppetry plays as well as the marionettes them-
selves are highly complex, a hierarchy of interrelated tasks
is required to choreograph a mechanized play, seen in Fig.1.
Each level of this hierarchy depends in some way or another
on the levels below it, and sometimes on the levels above
it. Fortunately, if someone is describing how they might
enact a play, they naturally include many different levels of
abstraction in their description. In fact, as discussed shortly,
professional puppeteers explicitly discuss abstraction when
describing how they animate the puppets.

Currents/Voltages Applied to Motors

Choreography

Dynamic Models
Behaviors

Behavior Combination

Motion Planning

Caricature

Human Motion Capture

Feedback Control

Motor Commands Graphical Interface
Motor Controllers

Hardware Communications Movement in Physical World

Fig. 1. A hierarchy of capabilities needed to create a marionette play

The use of abstractions allows a puppetry story to be
“programmed” in terms of discrete components, tied together
by underlying controllers. This involves the construction of
a high-level motion description language that can then be
“compiled” (traditionally cognitively by a human puppeteer,
but in this case by a computer) into actual motion commands.
As an example, consider a “play” involving a marionette
that needs to switch between walking, hopping, dancing, and
jumping. The idea is that this play should be implemented
at a high level as a sequence of tokens, each containing the
description of an individual motion (possibly together with
additional information, such as the duration and location of
each motion.) The lower-level control code is then obtained
by “compiling” this sequence of tokens into a sequence
of control laws that are used for actually producing the
desired effect. The futility of doing this without abstraction
is evident. Assuming that each puppet is controlled with
a minimum of eight actuators, and that most puppet plays
have several puppets acting at any given time, hand tailoring
every movement is not a realistic solution to creating a play.
Instead, one needs a library of abstracted motions that one
can choose among when creating the play.

An ideal marionette platform is seen in Fig.2(a), while our
current implementations are seen in Fig.2(b) and Fig.2(c).
These platforms consist of independent computers to control
each marionette, each with an FPGA or microprocessor
controlling the motors. Hence, each marionette already have
many embedded processors all communicating with each
other. In order to implement choreography, each computer

will typically need to have a distribution of the choreography
of the play, and many behaviors will require synchronization
of all the processors running concurrently. As such, the need
for concurrency and questions involving synchronization,
parallelization, and embedded control design, are natural
issues in this setting. Fortunately, as we will discuss shortly,
traditional puppet choreography already systematically deals
with many of these basic issues.

(a)

(b) (c)

Fig. 2. (a) A Mathematica graphical representation of the mechanical
system we plan to eventually build; (b) a first-generation 3D experimental
puppet platform at the Georgia Institute of Technology that cannot translate
in the environment; (c) a first-generation 2D experimental puppet platform
at the University of Colorado that can translate in its environment.

B. Motion and Caricature: “Imitate, Simplify, Exaggerate”

The work presented in this paper is based on a collab-
oration between the authors and professional puppeteers at
the Atlanta Center for Puppetry Arts. In order to be able
to tap into the experience of the puppeteers, original scores
and screenplays have been obtained and analyzed in order
to arrive at a language for puppet plays that is expressive
enough to capture what the puppets should be doing. In
fact, the standard way in which puppet plays are described
is through four parameters, namely temporal duration, agent,
space, and motion (when?, who?, where?, and what?) [2], [8]
(called the choreographic arguments). Most plays are based
on “counts” in that each puppet motion is supposed to happen
at a particular count. (This becomes even more important if
multiple puppets are acting simultaneously on stage or if the
play is set to music). At each specified count, a motion is
initiated and/or terminated. Moreover, the stage is divided

Fig. 3. Rainforest Adventures: This figure is an original puppet choreog-
raphy sheet from the Center for Puppetry Arts in Atlanta. It shows how the
basic building blocks for a formal language for puppet choreography can
be derived from existing practices in puppeteering.

into discrete regions. Introducing this explicit granularity
into the choreography helps simplify the semantics of the
choreography and synchronize motion. In addition, it helps
with conflict resolution, such as the deadlock that can occur if
two puppets are supposed to be in the same place at the same
time. Following these standard practices in the traditional
puppet choreography, we, in this paper, propose a formal
language for describing puppet plays.

Professional puppeteers use an expression, “Imitate, Sim-
plify, Exaggerate,” to describe the basic steps in making
a puppet perform a given behavior [8]. First, imitate a
behavior that one observes, then simplify it down to its basic
components, and finally exaggerate the resulting behavior
to convey the same basic level of action and emotional
content to the viewer, who is often quite distant from the
stage. (In Figure 3, an original puppet choreography example
is shown; this is the play Rainforest Adventures, by Jon
Ludwig, Artistic Director at the Atlanta Center for Puppetry

Arts [9], and the play has been performed throughout the
Spring of 2006 in Atlanta [21].) These three stages have
formal mathematical counterparts, as discussed Section III.
All these stages require simulation, however, discussed next
in Section II.

II. SIMULATION AND BISIMULATION

We have already developed fast, stable simulators for
systems articulated by cables [15], based on variational
integrators [23], [14]. In this setting, the Lagrangian L(q, q̇)
defines an action A =

∫ tf

t0
L(q, q̇)dt that can be used

to derive the classical Euler-Lagrange equations. However,
it can also be discretized into a sum of integrals A =∑if

i=i0

∫ i∆t+∆t

i∆t
L(q, q̇)dt. Approximating the action integral

provides a direct means of computing the state evolution of
the system [23]. Moreover, numerical methods based on this
technique preserve energy and momentum characteristics.
We have used this approach to create faster-than-realtime
simulations that are physically accurate.

Despite the fact that we have a system that does not
admit ordinary differential equation analysis because of the
numerical calculations being prohibitively slow (and sensi-
tive to numerical error), we can simulate the system in a
context where the configuration space is kept small. This is
in contrast to standard techniques in fast animation where the
configuration space is typically SE(3)m for m rigid bodies
in the system. This small configuration space is what makes
optimal control possible.

Euler-Lagrange simulations are typically carried out by
symbolically deriving the equations of motion and numeri-
cally integrating the resulting differential equations. In [14],
we represent systems such as the marionette as an algebraic
graph G and then numerically calculate the equations of
motion directly based on elements of the graph. Although we
do not go into the details of how this construction works here,
this specification of complex mechanical systems allows
reasonably fast evaluation of the equations of motion while
keeping them in the generalized coordinates. We discuss the
two settings in which we compute numerical simulation next.

A. Continuous Lagrangian Dynamics

The Euler-Lagrange equations are convenient for control
theory applications, particularly for complex mechanical
systems where a Newton-Euler approach is difficult. Given
a mechanical system with configuration q, the dynamics are
described by the Euler-Lagrange equation, where the state
space should as small as possible for purposes of determining
controllability, observability, reducibility, and other control-
related analysis.

∂

∂t

∂L

∂q̇
− ∂L

∂q
= ~u(q, q̇, t) (1)

where ~u(q, q̇, t) are generalized forces applied to the system
expressed in the configuration coordinates. We can expand
this equation:

∂L

∂q̇∂q̇
q̈ +

∂L

∂q∂q̇
q̇ − ∂L

∂q
= ~u(q, q̇, t) (2)

If the operator ∂L
∂q̇∂q̇ is invertable, (2) can be solved to find

q̈:

q̈ =
(

∂L

∂q̇∂q̇

)−1 (
~u(q, q̇, t) +

∂L

∂q
− ∂L

∂q∂q̇
q̇

)
(3)

If all the terms in (3) can be computed numerically at
every time step, we can numerically integrate the equation
to simulate the system over a period of time. Using the
graph representation, we can compute (3) numerically [14].
Assuming that we can numerically evaluate ~u(q, q̇, t), these
equations allow us to calculate q̈ in (3) given t, q, and
dq without having to symbolically derive the equations of
motion. However, ordinary differential equation (ODE) rep-
resentations of a system can have bad energy characteristics
and moreover do not handle impacts and other forms of
contact in a transparent manner. Hence, other methods of
integrating the equations of motion are useful, as discussed
next.

B. Discrete Lagrangian Dynamics

There has recently been a great deal of research in novel
methods of numeric integration for mechanical systems that
do not depend on ODEs. A result of this research is a
class of integrators called variational integrators. It has been
proven that these integrators can perfectly conserve various
symmetries of mechanical systems, such as momentum, total
energy, and the symplectic form [20]. In discrete mechan-
ics, we find a sequence {(t0, q0), (t1, q1), . . . , (tn, qn)} that
approximates the actual trajectory of a mechanical system
(qk ≈ q(tk)). For simplicity, we assume a constant timestep
(tk+1 − tk = ∆t ∀ k), but in general, the timestep can be
varied to use adaptive timestepping algorithms.

The variational integrator is derived by defining the dis-
crete Lagrangian which approximates the action integral over
a short interval.

Ld (qk, qk+1) ≈
∫ tk+1

tk

L(q(τ), q̇(τ))dτ (4)

Using the discrete Lagrangian, the system’s action integral
is replaced with an action sum.

S(q([t0, tf]) =
∫ tf

t0

L(q(τ), q̇(τ))dτ

≈
n−1∑
k=0

Ld (qk, qk+1) (5)

Minimizing (5) with a discrete variational principle leads
to an implicit difference equation known as the discrete
Euler-Lagrange (DEL) equation1,

D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0 (6)

an analog of Eq. (1). A root-finding algorithm solves (6) to
find qk+1 and the process is iterated.

1Dnf(. . .) is the derivative of f(. . .) with respect to its n-th argument.
This is sometimes called a slot derivative

As an example, we consider a simple variational integrator
using a generalized midpoint approximate for the discrete
Lagrangian.

Ld(qk, qk+1) = L

(
qk + α (qk+1 − qk) ,

qk+1 − qk

∆t

)
∆t

(7)
where α ∈ [0, 1] is a constant and α = 1

2 leads to second
order accuracy [23]. A root-finding algorithm solves (6) to
find the next state and the process is then iterated. Forces
and constraints can also be represented using the graph
representation, just as they can be in the ODE setting. This
allows us to simulate an underactuated, constrained system
such as a marionette.

C. Bisimulation using kinematic reduction on graphs

Using lower dimensional characterizations of a physical
system that preserve the trajectory information (i.e., bisimu-
lations [3], [26], [27]) is appealing for several reasons. First,
it can reduce the computational complexity of calculations
by reducing the dimension of the state. Second, it can help
by abstracting certain components of a complex system,
which can be convenient for modeling and implementation
purposes. (For instance, a stepper motor is typically ab-
stracted as a first-order linear system in order to avoid the
complexities of the underlying nonsmooth phenomena in its
construction.) Third, it can improve robustness by using low-
level controllers to enforce the abstraction[25].

We used all three advantages in [15], where a mixed
kinematic-dynamic description of a marionette was used for
purpose of motion planning and simulation. The marionette
was assumed to be a dynamic subsystem while the mechan-
ical platform controlling it was assumed to be kinematic.
This allows us to simulate the marionette without having to
assume a particular dynamic structure of the platform. More-
over, since we are using motors with embeddded controllers,
abstracting their control to velocity inputs is feasible.

Fig. 4. The tree representation can handle the complex dynamics of a
marionette. For a movie of this example, see http://puppeteer.colorado.edu.

The key to generalizing this bisimulation strategy is that
the calculations must be done directly on the graph G that
describes the system, much as the simulations themselves

are being calculated directly on the graph. We know that
kinematic reducibility depends on the covariant derivative
∇, which can be used to describe the mechanics of simple
mechanical systems [4] using ∇̃q̇ q̇ = uiY

i where ∇̃ is the
constrained affine connection, ui are the m inputs, and Yi

are the associated input vector fields. In the unconstrained
case, it is defined by ∇XY =

(
∂Y i

∂qj Xj + Γi
jkXjY k

)
∂

∂qi ,
where the Christoffel symbols Γi

jk associated with the metric

g are Γi
jk = 1

2gil
(

∂gjl

∂qk + ∂gkl

∂qj − ∂gjk

∂ql

)
where summation

over repeated indices is implied, and upper indices indicate
the inverse. which amounts to taking partial derivatives of
the vector fields and the kinetic energy relative to the state.
From the work in Section II, we know that these quantities
can be computed directly based on the graph G that describes
the system. Kinematic reduction is then calculated by testing
the following condition: 〈Yi, Yj〉 ∈ span{Yk|1 ≤ k ≤ m}
(where 〈X, Y 〉 = ∇̃XY + ∇̃Y X), yielding a reduction to
q̇ = ũiXi. Since this calculation only depends on calculation
of partial derivatives, it can be distributed across the graph
in much the same manner that the Euler-Lagrange Equations
and variational integrators are computed. Other types of
analytical tools that use the covariant derivative, such as
controllability and nonlinear stability analysis [4], can also
be computed in this setting. Moreover, subgraphs of G can
be analyzed without modifying the procedure. We are still
in the process of showing that systems with constraints (i.e.,
using ∇̃ instead of ∇) can be analyzed in this manner.

III. A FORMAL LANGUAGE FOR INDIVIDUAL PUPPET
MOTIONS

A system with limited expressive powers, such as a
marionette, needs to be able to convey the proper emotions
in such a way that a human audience understands what
is being conveyed. As previously mentioned, puppeteers
achieve this through the three steps: Imitate, Simplify, and
Exaggerate. We make these three steps formal in that human
motion is being mimicked, after which the resulting motions
are projected onto the constrained space over which the
marionette operates, followed by a transformation of the
resulting motion in such a way that the “energy” of the
original (non-projected) motion is reproduced.

Assume that the play starts at time t0 and that it ends at
time tf . Moreover, let the temporal resolution (the length of
each “count”) be ∆, and assume that (tf − t0)/∆ = M .
Following this, the set of all times over which the play is
specified is T = {t0, t0 + ∆, t2 + 2∆, . . . , t0 + M∆}.

Moreover, assume that the stage is divided into N different
sections (typically this number is 6, namely LowerLeft,
LowerCenter, LowerRight, MiddleLeft, MiddleCenter, Mid-
dleRight, UpperLeft, UpperCenter, UpperRight), whose pla-
nar center-of-geometry coordinates are given by r1, . . . , rN ,
with the set of regions being given by R = {r1, . . . , rN}.

Assume that each puppet has dynamics given in standard
form [16] by ẋi = f i(xi, ui), yi = hi(xi), where the
superscript i denotes agent i. Note that we can obtain f i

directly from the graph-based methods described in Sec-

tion II. Moreover, the state xi ∈ Xi ⊂ <ni

, and the
output yi ∈ <m is given by a mapping hi from Xi to a
lower dimensional space <m. Now, supposing that we have
constructed a number of control laws κi

j , j = 1 . . . , Ci,
corresponding to different motions that puppet i can perform,
with each control law being a function of xi (state), t (time),
and αi (a parameter characterizing certain aspects of the
motion such as speed, energy, or acceleration, as is the
normal interpretation of the parameterization of biological
motor programs [5], [12]), we can let the set of moves that
puppet i can perform be given by Ki = {κi

1, . . . , κ
i
Ci}. In

fact, we will often use the shorthand f i
j(x

i, t, α) to denote
the impact that control law κi

j has on puppet i through
f i(xi, κi

j(x
i, t, α)).

As already pointed out, each instruction in the puppet play
language is a four-tuple designating when, who, where, and
what the puppets should be doing. In other words, given that
we have a total of P puppets, with P = {1, . . . , P}, we can
let the puppet alphabet associated with puppet i be given by
Li = T × T × R × Ki. Each element in Li is thus given
by (T0, T1, r, κ), where the interpretation is that the motion
should take place during the time interval T1 − T0, largely
in region r, while executing the control law κ.

And, if we drop the explicit dependence on i, i.e. assume
that we are concerned with a given puppet, we can then
follow the standard notation in the formal language field
[5], [11] and let L? denote the set of all finite-length
concatenations of elements in L (including the empty string),
and let puppet plays be given by words ` ∈ L?. In particular,
if we let ` = (t0, T1, r1, κ1), . . . , (Tp−1, Tp, rp, κp) be p
motions in a row, then the puppet operates on this string
through

ẋ =

f1(x, t, α1), t ∈ [t0, T1)
f2(x, t, α2), t ∈ [T1, T2)

...
fp(x, t, αp), t ∈ [Tp−1, Tp].

We thus have obtained the semantics of a motion descrip-
tion language that allows us to specify ’plays’ at a high-
level of abstraction through strings over a motion alphabet.
However, this construction only becomes meaningful if we
can populate the underlying motion alphabet with appropriate
motion primitives, which is the topic of the next section.

A. Constructing Components of the Language

The approach just described seems fairly natural, but two
essential parameters seem to have been left out. First, the
parameterized motion parameters α1, . . . , αp have not yet
been specified. Moreover, the desired regions r1, . . . , rp have
not been utilized in any way. In order to remedy this, we need
to construct not just a dynamic “parser” for puppet plays, as
given above, but also a “compiler” that selects the “best”
parameters (as well as durations) for the different moves so
that the play is executed as efficiently as possible.

However, before one can embark on the task of selecting
the best member in a parameterized class of control laws,
this class must be obtained in the first place. If the puppet is

a human marionette, we would like it to execute human-like
motions. We have been using data from Carnegie Mellon
University [19]. However, since marionettes are constrained
in such a way that they cannot be as expressive as human
motions, we first identify human motions (corresponding to
the Imitate phase in puppetry), project human motion down
onto the space of available puppet motions (the Simplify
phase), and then exaggerate these motions in order to make
them sufficiently expressive (the Exaggerate phase). For-
mally speaking, given a desired trajectory z(t) ∈ Z that we
would like the puppet (whose state is x(t) ∈ X, dim(X) ≤
dim(Z)) to follow, we define a projection π : Z → X . This
is typically simply the immersion defined by the subgraph
of the marionette graph GM that is isomorphic to the human
graph GH . The Simplify-phase thus consists of minimizing
expressions like accumulated error,∫ t0+(i+1)∆

t0+i∆

L(x(t)− π(z(t)))dt, (8)

(where L = ‖x(t) − π(z(t))‖2) subject to the puppet
dynamics ẋ = f(x, u).We use a projection-operator based
approach to trajectory optimization [10]. It searches the
trajectory space of the target system for an admissible
trajectory that best resembles the desired one. The returned
trajectory is always admissible, even if the system dynamics
are nonlinear, uncontrollable, or unstable.

To implement this optimization procedure, we use a
nonlinear projection operator P to project trajectories onto
the manifold of admissible trajectories T . This projection
depends on calculating the linearization of the system equa-
tions, which we can do using the graph representation dis-
cussed in Section II. The projection operator approach uses
a novel modification of standard constrained optimization
techniques. Instead of a constrained search in the admissible
trajectory space of the system, it performs an unconstrained
search in the larger general trajectory space and uses a
projection operator to project trajectories into admissible tra-
jectories. In this setting, the search is roughly analogous to an
optimization in finite dimensions using an iterative gradient
descent method. At each iteration, a new descent direction
is found by solving a linear optimal control problem. An
Armijo search is performed in the descent direction until it
finds a new trajectory that improves the current score. The
new trajectory is projected back into the admissible trajectory
space, and the process is repeated. Details of this analysis
may be found in [13].

An example of such a calculation is seen in Fig. 5, where
a simplified string puppet is given a waving motion and
then an optimal control procedure computes string motions
that imitate the waving motion. Fig. 5(a) and (b) show
the shoulder and elbow trajectories. The dashed line is the
desired trajectory that we might see from a human waving,
while the solid line represents the trajectory that results from
the optimization procedure. It is important to note that these
two trajectories match at nearly all times, indicating that the
problem can be solved. However, the inputs required to solve

2 4 6

-120

-100

-80

-60

-40

-20

2 4 6

-120

-110

-100

-80

-70

-60

(a) Shoulder Position (b) Elbow Position

2 4 6

-40

-20

20

40

2 4 6

-20

20

40

60

80

100

(c) Length Input (d) Position Input

Fig. 5. Imitation: A 2-dimensional puppet arm waving. Plots (a) and
(b) show the desired (dashed) and obtained (solid) angles of the shoulder
and elbow based on motion-capture data, while plots (c) and (d) show
the optimized string length and position inputs. A movie of the optimized
motion may be found at http://puppeteer.colorado.edu

the problem (seen in Fig. 5(c) and (d)) are very complex–one
would not want to have to guess them.

B. A Puppet Play Compiler: From Motions to Sequences

Given a series of motions that are dynamically feasible,
how do we take strings that correspond to these motions
and turn them into actual physical motions? Each motion is
described by a start time, a stop time, a region of action,
and input. Two such motions in a row can be denoted by
(0, T, r1, κ1), (T, tf , r2, κ2).

Ideally, the actual transition time τ between motions will
be roughly the same as the desired transitions time T . That
is, we’d like to keep |T − τ | small. Similar goals include:
being in the correct region at the transition times; keeping
the energy used as small as possible; and ensuring that the
reference (e.g., from motion capture) is tracked closely. To
frame these goals as an optimal control problem, we simply
specify that any deviations from the ideal ones are to be kept
as small as possible.

A standard, variational argument from our prior work in
[6] gives the optimality conditions for solving this condition.
That approach amounts to solving the optimization problem

J = min
ti

m∑
i=0

∫ ti+1

ti

Ldt. (9)

Moreover, we showed that the necessary computations in
this setting are feasible for systems as complex as mari-
onettes. By a direct generalization to more than two modes,
this construction allows us to produce a compiler that takes
sequences of parameterized tokens and outputs sequences
of control modes with an optimized temporal duration and
mode-parameterization through a gradient descent algorithm
(see for example [1], [7]).

An example of this proposed approach is shown in Figure
6, in which an oscillator is switching between two modes
- one slow (corresponding to walking) and one fast (corre-
sponding to running).

Fig. 6. A simplified locomotion model in which walking and running
are defined through linear oscillators with different frequencies. The figure
on the left depicts the waveform of the gait, and the figure on the right
is a snapshot of the animation showing the result, which can be found at
http://puppeteer.colorado.edu.

An alternative approach to the one described above is to
first compute the hybrid modes based on an abstraction (such
as a bisimulation strategy like that discussed in Section II),
and then use a smooth optimization to combine the motions.
This entails solving Eq. (9) first for the abstracted system and
then solving Eq. (8). If the abstraction has been generated
carefully, this can potentially lead to a more numerically
efficient algorithm by virtue of being able to approximate
the solution to Eq. (8). However, if one truly has to solve
the full version of Eq. (8), then it will almost certainly be
more numerically efficient to solve it offline and solve Eq. (9)
online.

IV. CONCLUSIONS

We have introduced our approach to motion control and
coordination of marionette puppets. Marionettes represent
an excellent testbed for testing online embedded system
design and control design. Our plan is to continue to use the
testbed as a prototype for verification and testing reliability
of various control approaches for high-dimensional systems.
In the near future we are still implementing each of the pieces
described here in the hardware in Fig. 2. Soon, we will use
these puppets in a performance with the Atlanta Center for
Puppetry Arts. In addition, we believe that the marionette
platform is ideally suited for web-based control. Using the
simulation method described in Section II, we can implement
faster-than-realtime simulation of the marionettes that people
can use to simulate their choreography. They will be able to
upload it on the project website and see their choreography
on a real device over a webcam. This is in the same spirit
as the Demonstrate (2004) and the Telegarden (1995-2004
[24]) projects, where thousands of people used online robotic
environments for artistic expression.

V. ACKNOWLEDGMENTS

We would like to thank Jon Ludwig of the Atlanta Center
for Puppetry Arts and Annie Peterli, freelance puppeteer
extraordinaire.

REFERENCES

[1] L. Armijo. Minimization of functions having lipschitz continuous first-
partial derivatives. Pacific Journal of Mathematics, 16:1–3, 1966.

[2] B. Baird. The Art of the Puppet. Mcmillan Company, New York,
1965.

[3] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot
planning and control in polygonal environments. IEEE Transactions
on Robotics, 21(5):864–874, 2005.

[4] F. Bullo and A.D. Lewis. Geometric Control of Mechanical Systems.
Number 49 in Texts in Applied Mathematics. Springer-Verlag, 2004.

[5] M. Egerstedt and R.W. Brockett. Feedback can reduce the specification
complexity of motor programs. IEEE Transactions on Automatic
Control, 48(2):213–223, February 2003.

[6] M. Egerstedt, T. D. Murphey, and J. Ludwig. Hybrid Systems:
Computation and Control, volume TBD of Lecture Notes in Computer
Science, chapter Motion Programs for Puppet Choreography and
Control, pages 190–202. Springer-Verlag, 2007. Eds. A. Bemporad,
A. Bicchi, and G. C. Buttazzo.

[7] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time optimization
for switched systems. IEEE Transactions on Automatic Control,
51(1):110–115, January 2006.

[8] L. Engler and C. Fijan. Making Puppets Come Alive. Taplinger
Publishing Company, New York, 1973.

[9] Center for Puppetry Arts. http://www.puppet.org/.
[10] J. Hauser. A projection operator approach to optimization of trajectory

functionals. Barcelona, Spain, 2002.
[11] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, Reading, MA,
2 edition, 2000.

[12] M. Itô. The Cerebellum and Neural Control. Raven, New York, 1984.
[13] E. Johnson and T. D. Murphey. Automated trajectory morphing for

marionettes using trajectory optimization. In IEEE Int. Conf. on
Robotics and Automation, 2007. Submitted.

[14] E. Johnson and T. D. Murphey. Discrete and continuous mechanics
for tree representations of mechanical systems. In IEEE Int. Conf. on
Robotics and Automation, 2007. Submitted.

[15] E. Johnson and T. D. Murphey. Dynamic modeling and motion

planning for marionettes: Rigid bodies articulated by massless strings.
In IEEE Int. Conf. on Robotics and Automation, pages 330–335, 2007.

[16] H.K. Khalil. Nonlinear Systems (second edition). Prentice Hall, 1996.
[17] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical

approach to self-organizing robotic systems. IEEE Transactions on
Automatic Control, 51(6):949–962, June 2006.

[18] T. J. Koo, J. Liebman, C. Ma, and S. Sastry. Hierarchical approach
for design of multi-vehicle multi-modal embedded software. In T. A.
Henzinger and C. M. Kirsch, editors, Embedded Software, Lecture
Notes in Computer Science 2211, pages 344–360. Springer-Verlag,
12001.

[19] J. Lee, J. Chai P. Reitsma, J. K. Hodgins, and N. S. Pollard.
Interactive control of avatars animated with human motion data. ACM
Transactions on Graphics, pages 491 – 500, 2002.

[20] A. Lew, J. E. Marsden, M. Ortiz, and M. West. Asynchronous
variational integrators. Arch. Rational Mech. Anal., 167:85–146, 2003.

[21] J. Ludwig. Rainforest adventures.
http://www.puppet.org/perform/rainforest.shtml.

[22] V. Manikonda, P.S. Krishnaprasad, and J. Hendler. Languages,
behaviors, hybrid architectures and motion control. In Willems
and Baillieul, editors, Mathematical Control Theory, pages 199–226.
Springer-Verlag, 1998.

[23] J. E. Marsden and M. West. Discrete mechanics and variational
integrators. Acta Numerica, pages 357–514, 2001.

[24] M. L. McLaughlin, K. K. Osborne, , and Nicole B. Ellison. Virtual
Culture, chapter Virtual Community in a Telepresence Environment,
pages 146–168. Sage Publication, London, 1997.

[25] T. D. Murphey. Kinematic reductions for uncertain mechanical contact.
Robotica, To be published in 2007.

[26] G.J. Pappas, G. Laffierier, and S. Sastry. Hierarchically consistent
control sytems. IEEE Trans. Automatic Control, 45(6):1144–1160,
June 2000.

[27] Paulo Tabuada and George J. Pappas. Bisimilar control affine systems.
Systems and Control Letters, 52(1):49–58, May 2004.

