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Abstract

This paper describes methods applicable to the modeling and control of mechanical contact, partic-
ularly those systems that experience uncertain stick/slip phenomena. Geometric kinematic reductions
are used to reduce a system’s description from a second-order dynamic model with frictional distur-
bances coming from a function space to a first-order model with frictional disturbances coming from a
space of finite automata over a finite set. As a result, modeling for purposes of control is made more
straight-forward by getting rid of some dependencies on low-level mechanics (in particular, the details
of friction modeling). Moreover, the online estimation of the uncertain, discrete-valued variables has
reduced sensing requirements. The primary contributions of this paper are the introduction of a simpli-
fying representation of friction and formal tests for kinematic reducibility. Results are illustrated using

a slip-steered vehicle model and an actuator array model.



1 Introduction

It is traditional in robotics to view problems of manipulation, motion planning, and control in one of two
extreme lights. First, if a system is kinematic, the system description is simplified from a second-order
system with forces and inertias to a first-order system that consists of velocities and constraints. Then
motion plans and control laws (if necessary) are designed for this kinematic system. Itis important to note
that in order toimplementthis plan based on kinematics, a backstepping algorithm is employed, either
explicitly in an “inner-loop-outer-loop” control architecture, or implicitly by purchasing motor controllers
(or other appropriate devices) that provide the inner loop control. In the end, the advantages of using
kinematic structures include both lessened computational burden (due to the computation in a lower-
dimensional space) and increased robustness to some classes of uncertainty (due to robustness propertie
of the backstepping, inner-loop controller).

If, however, there is some reason that a kinematic analysis is inappropriate, then one often reverts to
a more complex set of modeling choices. In particular, in multi-point contact many phenomena are intro-
duced, including soft-contact models [2], elaborate models of frictional interfaces [20], and the inclusion
of dynamic effects such as inertial terms and generalized forces. Nevertheless, it is not clear that the
introduction of these additional modeling techniques helps for the purpose of control, motion planning,
etcetera. In particular, the task description typically does not include these effects, so one should only
incorporate them in the representation in use for planning and control if they are actually necessary for
task completion (which they typically are not). In fact, it is often the case that the inclusion of these details
hurts our ability to successfully design control strategies. Not only does the introduction of these effects
make problems computationally more complex, it also decreases robustness by introducing assumptions
that are often not satisfied by the environment or, worse, may only sometimes be satisfied by the environ-
ment. Hence, one can be faced with a situation where our modeling assumptions are occasionally correct,
but not reliably so.

From a design perspective (as opposed to a simulation perspective), it is thus desirable to, if necessary,
introduce elements to a model that provide the full complexity of possible behavior of the system without

introducing too much new information (thereby decreasing the applicability of the model).
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This paper shows how notions of kinematic reducibility can allow one to recast a dynamic system
that has frictional effects belonging to a function space into a first-order system that has frictional effects
that form a finite automaton over a finite set. Hence, the goal of the reductioot solely or even
primarily to reduce from a second-order equation to a first-order equation. (Cutting a search space in half
is not particularly beneficial from a computational perspective, and would not motivate all the formality.)
Rather, the thing of interest is the induced mapping from the function space of friction laws over a vector
space to the space of finite automata over the finite set of contact states. This provides a representation of
friction that is simultaneously more simple and less naive (in the sense that one no longer needs to know
whichfriction law is governing the dynamic equations of motion for purposes of implementation).

Two examples are discussed in-depth to illustrate the broad applicability of the framework—a slip-
steered vehicle in Section 6.1 and actuator arrays in Section 6.1. Surprisingly, slip-steered vehicles are
almost always kinematic, but their dynamic states should be avoided to avoid having to calculate motion
plans in the full space. Moreover, orthogonal actuator arrayalerg@yskinematic. This is true even if all
contact points are slipping against the surface of a manipulated object, so long as the frictional interaction
is strictly dissipative.

This paper is organized as follows. Section 2 describes two overconstrained example systems that
motivate the present work and that will be used as examples later in Section 6. Section 3 discusses
modeling of multi-point contact systems using the constrained affine connection and introduces a new way
of representing friction that is amenable to kinematic analysis. Section 4 contains the other main results
of the paper on kinematic reduction for systems with external forces. Because control and estimation are
occurring directly in the reduced space, Section 5 discusses the method employed for estimating discrete
variables, in this case the contact state of the system. Section 6 discusses a slip-steered vehicle and actuato

arrays from Section 2.



2 Motivation: Mechanical Contact Systems

A system consisting of many points of contact typically exhibits stick/slip phenomenon due to the point
contacts moving in kinematically incompatible manners. This manner of motion is cakedonstrained

motionbecause not all of the constraints can be satisfied.

Consider the first example in Fig. 1. Scratch drive ac-

tuators (SDA) are characterized by being able to produce plLLN Al
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large deflections (on the order of 50f), relatively large 3 : S \
forces (on the order of 100N), with high precision step

sizes (on the order of 30 nm). They can be arrayed on

chips with as few as ten SDA actuators on a chip. De- SCRATCHUATOR

spite the fact that these devices were first developed oygafure 1: Scratch Drive Actuators (SDA)

(rlfigures taken from [13]). SDAs are chips
€ )
covered with a large number of actuators
done on modeling and control for these devices [13]. along with the gold tether than is used to send
_ _ . voltages down to the SDAs. Despite being
Modeling these devices depends heavily on the partigble to drive SDA actuators quite reliably, the
ulars of the brushing geometry, plate thickness, insulat'P';r?gI/;/dual forces are difficult to model accu-

properties, and the plate Young’s modulus. However, an

ten years ago [1], only recently has any formal work be

in-depth analysis of such a device was performed in [13]. The main important result of that analysis is
that one can drive the actuators at a desired velocity, despite considerable uncertainty in the force char-
acteristics. Hence, SDAs are most naturally described in terms of kinematic relationships, at least when
considered individually. Solving for the forces is difficult here as well, as at the micro-scale they are typ-
ically not well defined using traditional friction models. Hence, it is desirable for any control strategy to
not require this modeling and to take advantage of being able to reliably drive these actuators at a desired
velocity.

Consider the vehicle object in Fig. 2. It has four independently driven wheels, but no steering capabil-
ity. Hence, its wheels must slip sideways in order to turn. Because this vehicle will typically be outdoors

in an unstructured environment, there is no reason to believe that any particular friction model



B = will capture the details of the dynamics. Moreover,
even if onecould describe the friction model properly,
online system identification would be necessary, which

requires high-bandwidth calculations. Both this example

and the previous example are discussed in detail in Sec-
Figure 2: The “Flexy-Flyer" slip- tion 6, where it will be illustrated that much lower band-

steered vehicle in the authors laboratoryyigih sensing is possible if calculations are performed us-
http://robotics.colorado.edu In order to

turn, the vehicle must violate sideways-slipng the kinematic equations of motion.
constraints.

3 Modeling and Analysis of Multiple Point Contact

The systems considered here are finite-dimensional simple mechanical systems (as described for smooth
systems in [5]). That is, their equations of motion may be found using a Lagrangian of the form kinetic
energy minus potential energy & K.E. — V) along with a set of constraints on the system of the form
w(q)¢ = 0, wherew(q) is a matrix representing the configuratipdependent constraints. Moreover, there

may be external forces acting on the system. If one ignores potential energy (as is appropriate for many
planar systems including the ones described in Section 2), such a system’s dynamics may be represented
as:

qu = uaYa7 (1)

where the notation®Y,, implies summation over the. In this expressionV is the constrained affine
connection encoding the free kinetic energy and any constraints on the system. Mareové#y: (v :

[0, 7] — R™) represents external forces (not necessarily inputs) wHggg is the space of essentially-
bounded, Lebesgue-integrable external forces [6]. YT kerms represent the associated vector fields on the
configuration manifold) (i.e.,Y € 7,0, the tangent space atc (). If one wishes to include potential
energy, it will show up as a vector field on the right-hand side of the equation. A short description of this
formulation of mechanics may be found in the Appendix.

The systems of interest have two types of external forces—those that correspond to inputs and those
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Figure 3: Types of friction model, including (a) Coulomb friction, (b) Coulomb plus viscous friction, (c)
Coulomb/viscous stiction, and (d) Nonlinear smoothing of stiction.

that correspond to external disturbances. In the case of multiple point contact, the external disturbance
forces (¢ € UgisurbancewWhered : [0, T] — R’ and wheré/gsurbanceiS also a space of essentially-bounded,
Lebesgue-integrable functions) generally correspond to reaction forces due to friction when a contact slips.
Therefore, it will be useful to write the dynamic equations ¥sg = u“Y,, + d°V; so that a distinction

between external forces that can be controlled and those that cannot can be made.

3.1 Standing Assumptions on Friction

Consider some of the standard friction models, seen in Fig. 3. These of course include Coulomb friction
(F = Fgsign(v) for F > 0), but additionally include viscous friction, stiction, and nonlinear versions,

such as a better representation of viscous friction. These are respectively represented as

Fpo+c v>0 Fyv+c v>0 Fylv]sign(v) + ¢ v >0
F= (—c,c) v=0 F=9 (~c—68c+d) v=0 F= (—c,0) v=0
Fyv—c v<0 Fyv—c v <0 Fy|v|’sign(v) —c v <0

for Fy,c,d > 0. These are seen in Fig. 3. Moreover, there are many more types of friction model to choose

from, including dynamic models of friction like Dahl and LuGre models [20] or even more heuristic mod-



els such as Pacejka’s “Magic Tire Formula’—each with their own specialized area of applicability. What
one would like is a description of friction that does not depend on any of these particular characteristics.
Although they are qualitatively similar to each other, we would like to conservatively bound the class of
friction models and choose a reduction that is invariant with respect to the particular friction model.

With this goal in mind, replace the family of curves seen in Fig. 3 by the conservative estimation of
those curves seen in Fig. 4. In this figure, the friction law need only be dissipative. That 8= 7 > 0
andv < 0 = 7 < 0. If v = 0, thenT € R-that is, stiction (constraint) forces are allowed, and frictional
constraints are allowed. (This is the first time any use for the constrained affine connection becomes ap-
parent.) The important thing to note is thatt 0 = 7 # 0-this will be important later. In any case, the

friction curve can be any absolutely continuous curve that has all its values in the grayed regions in Fig. 4.

(Ultimately 7 will restricted slightly more for pur-
poses of stability analysis.) Hence,uifq)q is the slip-

ping velocity at some point, we restricin the following

manner.
T (w(g)g) >0 ifw(g)g>0
T(w(q)d) =4 7 (w(g)q) <0 ifwlq)g<0  (2) Figure 4: Friction is only assumed to be dissi-
0 ) _ ) pative, so that any curve in the grayed areas is
T (w(g)d) € R ifw(g)g=0 a valid friction model. Clearly, this includes

all the friction models in Fig. 3 (shown again
With this picture in mind, one can noshoosean here)and more [20].

equivalence class one L (the space of all possible absolutely continuous curves satisfying Eq. (2)) that
will be familiar. In particular, let us consider the casgg)¢ = 0 (when the system is constrained) and
w(q)¢ # 0 (when the system is sliding) separatefhat is, we arbitrarily choose to distinguish between
slippingfriction forces andconstrainftfriction forces.This canonical distinction is traditionally referred to
as thecontact stateof a system. Note that there is no reason to treat these as canonically different from

each other. In fact, one could argue that it is better to treat systems with frictional contact as unconstrained



systems with frictional forces determined by the force laws such as those in Fig. 3. However, distinguish-
ing between geometrically constrained and unconstrained situations allows one to take advantage of deep
geometric results regarding kinematic reducibility, which in turn take advantage of algebraic calculations
using the affine connection.

In particular, whenuv(q)¢ = 0, the dynamics may still be written &8, = u“Y,, whereV is now
the constrained affine connection arjdare appropriately projected onto the distribution (see Appendix).
Moreover, because the contact state changes over time (as the contacts transition between stick and slip),
the constraints change over time. This implies fffais not a single constrained affine connection, but
rather comes from a discrete set of constrained affine connedior{;dexed bys € ¥ whereX is a
finite set), each of which represents a different set of stick/slip states of the mechanism. The same holds
true forY? andV?. Hence, if one indexes the set of possible stick/slip states oye gets second-order

equations of motion of the following form:
Vig=uY +d'V§ 3)

whereu are input forces and are external forces. Moreover,will evolve overy: with time according to

the reaction force description. Typically the automaton that describes the evoluticovef its potential
values inX depends on the continuous calculation of constraint forces that enforce a constraint. If one
of these forces exceeds a critical value, for instance the coefficient of stictioien the constraint is
broken andr changes. Reducing Eq. (3) to a first-order description without friction and retairaisghe

representation of frictional effects is the focus of Section 4.

4 Kinematic Reduction With External Forces

We now focus on kinematic reductions [5-8, 12, 18]. Smooth kinematic reductions take systems of the

form of Eq. (1) and convert them into systems of the form

q = ﬂaXaa (4)



whereq € Q, X,(q) € T,Q, andu : [0,7] — R™. Note that the controlg € U, are now kinematic

inputs (i.e., velocities, wher&, is the space of piecewise absolutely continuous functions) instead of
generalized forces. The affine connection formalism in Section 3 is used to describe mechanical systems
because it is in the context of this formalism that a useful technical connection betWemder mechan-

ical systems and®-order kinematic systems has been made (found for smooth systems in [12] and for

nonsmooth systems in [18]). In particular, it would be useful to be able to write Eq. (3) in the form:
qg=u"Xy, ®)

whereo € Y is allowed to switch the vector field§ discretely just as it does in Eq. (3). That is, we
would like to perform this reduction in the presence of switching end external forced’. Note that in
the kinematic setting it is not clear that one can calculate the automaton that represents the evatution of
because the reaction forces cannot be calculated. This leads to the need for online estimratramaif
is discussed in Section 5.

An algebraic test for kinematic reduction relies on fygnmetric producbetween two vector fields
Y7 andYy for a particulars, which is defined by(Y;” : Y77) = V§. Y/ + Vi, Yy for giveni, j. We
will see that the algebraic test of kinematic reducibility is: the symmetric product between any two vector
fieldsY;” andY;” must lie within the distribution of the vector fields and any reaction force vectorifigld
must also lie within the distribution of the input vector fields. That is, the system in Eq.(3) is kinematically

reducible to the one in Eq.(5) if and only if the following conditions hold.

(Y7:Y7) € spap{Y7li=1,....,m} Vi jo (6)

Vi € spap{Y/li=1,...,m} V3,0 (7)

where spap is the span over the field. This result is the focus of the rest of this section.



4.1 Reduction for single model systems

Initially reduction for single model systems of the following form is considered.

Vewd (t) = u(t)Ya(e(t) + d"(6)Vi(c(t)) (8)

In this equationV is the (possibly constrained) affine connection associated with the Riemannian metric
G, d” belongs to a family of disturbance signdlsthat take values if/gisubance@nd meet the assumptions

in Section 3.1 in EqQ. (2)y; is the set of corresponding vector field§,belongs to a family of control input
signalsi/ taking values inJinoy, andY, are the associated vector fields. Since the motivation here is not
wanting to be forced to rely on the correctness of one particular disturbance force model (such as friction
force modeling where there are many possible choices of model), theltésmresumed to be set-valued

for each index, as in Fig. 4. Ifd® as a set is not convex, then it is replaced by its convexdaditl’} so as

to guarantee solutions exist in the Filippov sense [9].

Now, given a system with set-valued disturbances such as in Eg. (8), under what circumstances it can
be reduced to a system of the form in Eq. (1)? That is, when can one find an equivalent system that
does not include external disturbance forces. To make such an equivalence more rigorous, we introduce
some definitions, following the Appendix for guidance. In particular, we use the notioritéf R, 7 )-
solution(a trajectory given signals coming from a family of contrélgind from a family of disturbances
D), (U, D)-reducible(reduction from(t{, D, T )-solution to(i/, T )-solutions), and (i, D), U )-reducible
(reduction fromi/, D, T )-solutions to(Z7, T) -solutions, wheré/ is a new family of control inputs for the

kinematic system). See the Appendix for further discussion of these definitions.

Definition 4.1 LetX:, be a smooth control systejn= f(q, u,d) on a smooth manifold/. A (U, D, T )-
solutionto X, is a triple (c, u,d), whereu : [0,7] — R™, d : [0,7] — R’, andc : [0,7] — M satisfy

(This is simply an extension of the definition of tiié, 7 )-solutionto a smooth control systetn= f(q, u)
found in the Appendix.) Again using the definitions found in the Appendix for guidance, we define the

following notion of reduction.
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Definition 4.2 Let V be an affine connection ag, and let/ be a family of control functions anB be
a family of disturbance functions. The system in Eq. (§4sD)-reducibleto the system in Eq. (1) if
for each(U, D, T)-solution(ny, u1, d) of the Eq. (8) there exists@/, 7 )-solution (7., us) of Eq. (1) with

m(t) = (),

Lastly, one would like to be rigorous about what it means for a mechanical system with set-valued distur-

bances to be reducible to a kinematic system, which leads to the following definition (based on Def. A.4).

Definition 4.3 Let V be an affine connection af, and let/ andi{ be two families of control functions.

The system in Eq. (8) s/, D), U )-reducibleto the system in Eq. (4) if the following two conditions hold:

i) for each (U, D, T)-solution (n, u, d) of the dynamic Eq. (1) with initial conditiong0) in the dis-
tribution Dy,,, there exists 424, T )-solution (v, u) of the kinematic Eq. (4) with the property that

Y=TQ0M,

i) for each (i, T)-solution (v, ) of the kinematic Eq. (4), there existg, D, T )-solution (, u, d)

of the dynamic Eq. (1) with the property thgt) = ~/(¢) for almost every € [0, T].

With these definitions, we can state sufficient conditions for a system (&g, Udisturbance-reducible
or ((Uinput, Udisturbancd s Uin )-reducible.  Intuitively, this corresponds to being able to guarantee that any

solutions that include disturbances can be mapped directly to a solution that has no disturbances.

Lemma 4.1 Assume one has a mechanical system of the form in Eq. (8) with unbounded inputs and
dissipative friction forces as in Eq.(2). Then the system in Eq. (8)lput, Udisturbancd-reducible to the

mechanical system in Eq. (1) iff this system satisfjes span,{Y,} for all b.

Proof: The condition is clearly necessary becausg i span{Y,} one automatically has a trajec-
tory that the system cannot follow just using the control inputs. Sufficiency is nearly as clear. Suppose we
have al/, D, T)-solution®, whereV, € span{Y,}. We know that even if the contral* is a function of
7 it can be made any nonzero value by the assumption in Eq.(2). Hépoan locally be represented as

d; = lim (H®%Yi)”(q0) for somes; such thafy", §; = 1 [18]. (Hered i) is the flow of Eq. (1) along
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Y; for §;/n, ][] represents sequential composition of mappings, and a mappingtd'thewer is simply
composed with itself, times.) Becausé® is convex, a limit of a sequence of solutions to the differential
inclusion must be a solution as well [9], so this limit i§l& 7 )-solution to Eq. (1). |

This means that all trajectories can be planned as if there are no forces due to thé’tgrri®wever, it

is important to note that the requirement thét# 0 is satisfied precisely because we do not altlow 0

for v # 0. We are now interested in finding out when a multiple model of the form in Eq.(3) is reducible

to a system of the form in Eq. (5).

Theorem 4.2 Equation (3) iS((uinput, Zf{disturbance}, L{kin)-reducible iff Equation (3) i$(1/{input, udisturbancé, L{kin)-

reducible for every constamt (i.e., Egs. (6) and (7) hold for any choice ©f.

Proof: Suppose that Equation (3) (&4, D), )-reducible (i.e.((Uinput, Uaisturbancs, Uiin)-reducible)
foreveryo. Any (U, D, T )-solution must therefore satisty € span{Y,}. Thisimplies that we can write
any solution (which we will denote b$,) as®, = JLIEO(HCI)%W)"(%) such thaty . 0; = 1, just as it
did in the proof of Lemma 4.1 except that now we are z;gproximating the flow of both the uncertainty and
the switching otr. Piecewise flows can be reduced to a first-order system foreebglassumption, so we
can reduce to a composition of solutions of the f%klnllo(H@%Xf)”(qo). Because these are solutions
to Eq. (5), and we are taking the Filippov notion of solilftion, their limit is also a solution [9]. We call
this solution®;,, and this is &/, T )-solution to Eq. (5). Hence, if given for every (U, D, T )-solution
we have aU{, T )-solution, we can construct @, 7)-solution fors as a measurable function af To
construct a4, D, T)-solution for a givenl{, T )-solution we simply reverse this process and note that
any (U, T')-solution (a dynamic solution without disturbances) is al$td @D, T )-solution. |
To sum up, if a system of the form in Eq. (3) satisfies the algebraic conditions in Egs. (6) and (7), the

system can be represented as a kinematic system and planning and control can take place in the reducec

space without any loss of trajectory information.
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4.2 Kinematic Reductions in Closed Loop

Everything discusses so far has implicitly relied on the control being “open-loop.” However, if one is
using a discrete time controller (with one’s favorite continuation algorithm, such as zero-order holds) the
control is open loop in between controller updates. It was already shown in [18] for two control families
U and/ that (L{,U)-reductions are not affected by separable discontinuities. By the exact same logic, the
systems considered here are reducible in discrete time closed-loop if they satisfy the requirements to be

reducible under the tests of Theorem 4.2

Lemma 4.3 A discrete-time closed loop system (whetere functions of; andt¢) coming from Eq3) is

(U, D),U)-reducible to a discrete time version of H§) if it satisfies the conditions in Theorem 4.2.

It is also important to note that the systems response to disturbances (in closed-loop) is completely
encoded in the reduction as well, precisely because we included the uncertainties in the description of the
reduction. Hence, dynamic uncertainties in Eq. (3) become kinematic uncertainties in Eq.(5). This way,
closed-loop design in the kinematic description are valid when implemented on the dynamic system, along

with a backstepping algorithm to control the velocities of the actuators.

We change the assumption enin Eq. (2) slightly
by requiring that the reaction force curve must lie in the
grayed area in Fig. 5, where > 0. Moreover, assume
that thatu and u are related byn;(q)u; = Tu;, where
m;(q) > 0 is the inertial term for actuator That is, the

velocity of the contact point is the integral (scaled by the

configuration dependent inertia) of the force input, which

is common in many applications including those found ifigure 5: An additional requirement is that

Section 2 and 6. Then a choice of backstepping controlltepr(':‘.f”CtIon curve lie within a sector nor_llln-
earity that allows the use of a proportional

controller in implementation.
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(wherev; is the desired velocity) provides a stable response because the grayed region is a sector non-
linearity [21]. (This result has already been used in the analysis of multi-point contact in [14].) Also, note
that the use of a sector nonlinearity also allows us to take into account dynamic shifts in normal force
without any extra analysis.

There is no question that better knowledge of the friction law will lead to a model-based controller
that performs better. However, we are interested in analyzing cases where the friction model cannot be
known. We will see in the example in Section 6.1 that this choice of implementation controller provides

acceptable performance (for a variety of friction models) so long as the kinematic controller is stable.

5 Estimation of the Contact State

If one wishes to design a kinematic plan or control of some sort, then online estimatiomaly be
necessary. Suppose for amyve have a stable estimator @& () such that there is a quadratic Lyapunov
function V; in the error of the state. Then a reasonable estimate @fhich we will denotes) could

evolve according to

E(y) = argmin [|g, — g|

wherey, is the expected output for eaehandy is the measured output. (This assumes that the state
evolves differently for every every choice eof) However, this estimate may be poor because it may not
be stable in the state aschanges in time. Hence, an adjustment is necessary to estimateg douodly .

In order to create a stable estimatesgive first define some useful notation. First, define

s(t) = lim V,(t) — lim V,(¢). This is the discrete change in the value of the Lyapunov function for the

t—t— t—tt
estimator that occurs when there is a switchrilNext define

E(t) = —ko\ if s(t) =0
(10)
E(t) = lim;_,- E(t) —s(t) otherwise

wherek, is a chosen constarit,< k. < 1 and\(t) < 0 is a bounded conservative estimate of the stability

margin for all the estimators that hasbounded. For instance, this can sometimes be the minimum
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magnitude real part of all of the eigenvalues of all the estimators times the norm of the state if they are
based on the linearization. Note thatis initialized to a nonnegative value and then evolves according
to Equation 10 as long asis zero (that is, on intervals with no switches). Whenewve# 0 (there is a
switch), £/ is re-initialized. Lastly, defin&/,(,) to be equal td/; on the time intervals between switches.
That is,V, is always equal to the Lyapunov function for a choiceradn a given time interval. Then
we use the following equation to estimate

E(y(t if £>0

a(t) = 5(®) (12)

lim;_,- E(y(t)) otherwise

Theorem 5.1 An estimate of using Eq. (11) converges. That |3/, — «| — 0 for somea € R and,

in particular, V,,(;, — 0. Moreover,

a(t) — o(t)| = 0 after a finite amount of time i is constant and the

stateq evolves differently for every choice @f

Proof: For purposes of notational simplicity, we will takéto denoteV,, for the remainder of this
proof. Our approach invokes Barbalat’s lemma, which states thét)iis lower boundedf (t) is negative
semi-definite, ang'(¢) is uniformly continuous (or equivalently,() is finite), thenf () approaches zero
ast approaches infinity. We will apply Barbalat’s lemma to a potential funcNdnthereby showing
that V' goes to zero. This, along with the fact thiatis monotonically increasing (and therefoig,> 0
eventually) between switches implies tidatan change t&(y) after some finite time.

We will show convergence of the estimator using the funchén= V + E. SinceV is positive-
definite andE’ > 0, it is clear thatV’ > 0. Differentiating, we see that on any interval on which there are

no switches we hav’ = V + E. Substituting for we get

V' =V — k. (12)

To handle switches, note that at a switchrive havelim V(¢) = lim V(t) + s(¢). Thus, at any instant
t—tt t—t—

t when a switch occurs (that is, when any# 0), we havejini V'(t) = lim V(f) + s(t) + E(t). Sub-
t—t t—t—

lim V() + s(t) + lim E(#) — s(t), which simplifies

t—t— t—t—

stituting for E from Eqg. (10), we getim V(1)
t—t
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in the following Way:flirﬁ V'(t) = fmﬁ V(t) + Elirg E(t)= ilirtr} V'(t). Thus, the discontinuity iV’ has
been removed, as the limits from both sides are the same. Since switches have no effect whatsoever on
V’, Equation 12 holds true at all times.

SinceV is negative definite) < k. < 1, andV < k.\ < 0, it must be the case that’ is negative
semi-definite. Moreover, sinc¥ is bounded (because the dynamics are piecewise smooth) éd
bounded, we also knoW’ is bounded.

We now have sufficient information to satisfy Barbalat's lemma. We kiNovis lower bounded by
zero,V' is negative semi-definite, ald is bounded, so Barbalat’s lemma implies tN&t— 0 ast — cc.

It follows directly that\'/g(t) — (0 ast — oco. Moreover, by the monotonically increasing evolutionfof

between switches in the estimatecofve are guaranteed to eventually be able to switch to any estimate

E(g) of 0.

6 Examples

Mechanical systems that experience intermittent contact are common in engineering, and include vehicles

such as the Mars Rover [16], distributed manipulation [3,4,14,17], MEMS manipulation [13], and legged

locomotion [10]. In these situations, particularly at the micro-scale, the reaction forces due to friction

are not well characterized and can involve a host of friction modeling methodologies [20]. Hence, it is

desirable to represent these systems in a way that does not involve the frictional reaction forces explicitly.
Note that if the contact state of @/finput, Udisturbancd, Ukin)-reducible intermittent contact system is

being driven by the frictional interactions (such as the case of MEMS manipulategffects of friction

are completely encoded in the evolution. The advantage of this is that it takes a highly nonlinear,

nonsmooth phenomenon and encodes its effect as a finite state machine. The examples discussed her:

illustrate how the prior results can allow one to neglect disturbance forces in mechanical systems. First a

slip-steered vehicle is presented and then manipulation using actuator arrays is analyzed.
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6.1 Slip-Steered Vehicles

Consider the vehicle in Fig. 2 and diagrammed in Fig.6. The con-
figuration isq = (z,y,0) and there are forces,, us, us, us acting

on the body at each wheel, where wheak the front right wheel

and then the wheels are numbered counter-clockwise. (One can an-
alyze this system using = (z, vy, 0, ¢1, 2, ¢3, ¢4) Whereg, are the
configurations of the wheels with no substantive change in the calcuL
lations—it is simplified here for purposes of presentation.) The wheels;
are located: units to the front and back of the center of mass and

Figure 6. A slip-steered vehicle
units to the right and left. The inertia tensor for the vehicle is simplith frames at each wheel, its

_ center of geometry, and inertial
G=mdxr®dr+mdy®dy+ Jdi @ df wherem is the mass of frgme.
the vehicle and/ its moment of inertia about its center of mass. There are two constraints—that the front
wheels cannot slide sideways and that the back wheels cannot slide sideways. Relative to the coordinates

q = [x,y, 0], these can be represented by the covectors
wr = [—sin(f),cos(d),a]  wy = [—sin(h),cos(), —a]

respectively. The force vector field$ obtained by adjointing the input forces from the wheels into the

generalized coordinates are:

cos(0) cos(0) cos(0) cos(0)
Yi=| sin(@) | Yo=| sin(@) | Ys=| sin(d) | Ya= | sin(d) |,
—b b b —b

so itis clear that; = Y; andY,; = Y5.
We now proceed to analyze the slip-steered vehicle. We will make the canonical distinction between

7(0) (a constraint force) and(v # 0) (a slipping force) as before, hence leading to four different possibil-
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ities of stick/slip, two for the front wheels and two for the back wheels. We denote the contacl &tate
this system to be the four possible choices of sideways slipping and sticking. That iS,satisfiesr = 1
if both constraints are satisfied,= 2 if the front wheels are slipping sideways but the back wheels are
not,s = 3 if the back wheels are slipping sideways but the front are notgard! if both front and back
wheels are sliding sideways. We will see that= 1,2, 3 are all ((Uinput, Udisturbance , Ukin)-reducible but
thato = 4 is not ((Uinput, Udisturbancd , Ukin )-reducible. Lastly, note that if one of the constraints is broken,
and there is a reaction force due to slipping, it will be of the fofm= Pow]? orV, = P,w/, whereP, is
the GG-orthogonal projection operator for the contact stafsee Appendix).

The underlying dynamics evolve dnSE(2) while the frictional forces aré;;, € R andu; € R are
the set of four input forces (elementsiaf,.,) that can be applied to the body. The kinematics evolve on
SE(2), the contact changes due to friction nominally evolveébs {1,2, 3,4} (we will see that 4 cannot
be inY), anda € R* is a velocity input irl4gn.

For each choice af, the equations of motion are of the form

Vg = P.Yiur + PoYoug + PoYaus + Py Yyuy + P, Vidy + PpVidy.

In the case of this vehicle, the affine connecti®ifsare all trivial, as can be verified by calculation of the
constrained affine connection. For each stgteve compute the equations of motion separately and test
whether it iS((Uinput, Udisturbancd , Ukin ) -reducible. In each case we first compute the projected vector fields
and then consider whether the system is reducible. (To simplify notatioh;, let J + a*m in all that

follows.)

6.1.1 Analysis of the Slip-Steered Vehicle

No Slipping (¢ = 1): With no wheels slipping sideways we compute the affine connection withudgoth
andw, as constraints and th@&@-orthogonal projectior?;. The projectionP; can be computed using the
distributionD = NullSpace([wy, wr]) and its complemend’ = NullSpace(G - D) (whereG is now the

matrix representation of the tens@). These allow one to compute the projectiBh= AP’ A~!, where

18



A = [D|D'] and PP = diag{1,1,0} (this should be thought of as the projection in coordinates aligned
with the vector fields that spab and D’). With this, P, = (I3x3 — P{)G~!. (The calculations are nearly
identical for P, — P,. For more information on these calculations, see [5].) This gives us inputs of the

form:
cos(f)

1 :
PY; = — | sin() | Vi
m
0

There are nd” input forces because in this contact state the contacts are maintained. MofEovey, =

0 Vi. Therefore, this system {$Uinput, Udisturbancd » Ukin )-reducible with dynamicg = P, Y;« and reduction

g = P Yju, but is clearly not controllable (since there is only one vector field). Hence, it is desirable to
force the vehicle to exit = 1 (e.g., if it needs to turn). However, if the difference between- v, and

us + ug is large enough, the stiction constraint force can always be exceeded soAhat

Front Wheels Slipping (c = 2): With the front wheels slipping we compute the affine connection with

the constraint, and the reaction forc€; = PQw?. This gives us inputs of the form:

kjcos(8) + abmsin(0) kj cos(0) — abmsin(6)
1 1
Y, = BY, = i kysin(6) — abm cos(6) PY; = BY; = mky abm cos(0) + k; sin(0)
—bm bm

and(PY, BY)) , (PYs, BYs) , (PY:, PYs) € span{ Y, P»Y,}, so it satisfies the first requirementin
Eq. (6) to be((Uinput, Udisturbancd » Ukin)-reducible. Computingy’; (the reaction force due to the front wheels

slipping sideways), we see that

—2a?sin(6)
Vi = Pywji = | 242 cos(f) € spap{ Y1, Y}

2a
so this system i$(Uinput, Udisturbancd s Ukin )-reducible with dynamicg = P,Yiu; + P»Ysus and reduction
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q = PYiu, + PYsyus.
Back Wheels Slipping ¢ = 3): The back wheels slipping sideways while the front wheels do not slip is

essentially the same as= 2. We get

kj cos(0) — abmsin(0) kjcos(8) + abmsin(0)
1 1
BY1 = PYy = - abm cos(0) + k; sin(0) PsYy = P3Y3 = - kjsin(0) — abm cos(0)
—bm bm

and computing/, we get

—2a? sin(6)
Vy, = Puwj = | 242 cos(6) € span{ Y1, P3Ya}

—2a

leading to the system beir@finput, Udisturbancd s Ukin)-reducible with reductiog = PsY 1, + PsYaus.
All Wheels Slipping (¢ = 4): The case where both axles slip sideways is the one of most interest, as
it will turn out to not be((Uinput, Udisturbancd , Ukin)-reducible. Since there are no constraidtsjs simply

G~!. This gives us

J cos(0) J cos(0)
1 1
P4Y1:P4Y4:W J sin(6) P4Y2=P4Ys:m—J J sin(0)
—bm bm

and again P,Y1, PiY1) , (PyYs, PyYs) , (P Y1, P,Y,) € spang{P,Y, P,Y>}, so it satisfies the requirement
in Eq. (6) to be((Uinput, Udisturbancd, Ukin )-reducible. Therefore, if there were no other forces acting on the

system, this would be a reducible system. However, compijrandV;, yields

—J sin(0)
1
Vi = Py = 7| Jeos(0) ¢ span{PyY1, PYs}
am
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and

—J sin(0)
1
V, = Py, = o J cos(0) ¢ span{P,Y1, P,Ya}
—am

so this system is10t ((Uinput, Udisturbancd, Ukin)-reducible. This means that when= 4, a kinematic de-

scription of the system cannot be used for planning or feedback control.

6.1.2 Design implications and Simulations

Now let us use the kinematic description to create a motion planner that is not sensitive to the particulars
of friction in a planar setting. Since= 1, 2, 3 are kinematic and = 4 is not,c = 4 should be considered
unsafe and avoided. Of course the system is not controllable whenl, so we should only allow the
system to have = 1 when the vehicle is already oriented properly and does not need to turn.

The approach taken here is to simply initially ignore the factéhettanges and pretend that the system
is differentially flat with outputr andy. We construct a patt,(t), y4(t)) and follow it using the control

law

UL =Uy = K@(Qd — 0) + KST’ (13)

ﬂg = ﬂg = —Kg(@d — 9) + KST‘) (14)

whered, is the desired orientation,is thex component of the body representation of the desired trajectory,
and Ky and K are control gains to be chosen. The contiglare implemented dynamically using Eq. (9)
and the estimation of is achieved assuming full-state feedback so that Eqg.(11) can be usednyith
nonzero, negative value of the estimated stability makgiNote that forkKy andéd,; — 0 large enough, any
finite stictionyg coefficient will be exceeded and the vehicle will leave- 1. Moreover, if the vehicle is

in a state withr = 4, reducingu; (by reducing gains or directly saturatimgin Eq. (9)) will always move

the system back inte = 1,2, 3).

Figure 7 shows simulations of this scenario with a full dynamic model (including the configuration of
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Figure 7: Simulations of the slip-steered vehicle. The graphs on top shaWithieajectory of the vehicle

and elliptical obstacles it should avoid while the plots on bottom showhatilve contact state, changes

over time. These simulations show poor performance in (a) due to staymmgdn (an uncontrollable
kinematic state) and in (b) due to transitioning into a dynamic mode where the kinematic plan is not valid.
Saturating the inputs so that the system stays in the kinematic modes leads to acceptable performance in

().

the wheels, so that = (x,y, 0, ¢1, 02, ¢3, ¢4) Whereg; are the configurations of the wheels). Parameters
came from the vehicle in Fig.2, and were geometty= 15c¢m, b = 10cm), the mass of the body
of the vehicle {n, = 60Kg), the mass of the wheelsn(, = 10Kg), radius of wheels(, = 8cm),
and Coulomb viscous frictionus = .6/N, ux = 1N/(m/s)). The switching ino (i.e., the automaton
overY = {1,2,3,4}) is based on calculating the Lagrange multipliers for the constrained dynamics and
evaluating whether the multipliers exceed the Coulomb friction coeffigienAll bodies were considered
homogeneous for purpose of calculating their inertia tensors. Figure 7 shows two graphs for three different
situations. The top graph shows thandy trajectory of the vehicle, with the dotted line being the desired
path and the black line being the actual trajectory. The ellipses are obstacles, and the obstacle-free desired
path(z,, y4) was computed using a potential-based planner [11]. The bottom graph stassfunction
of time.

Figure 7(a) showsd(y, = 2000 and K, = 0.005 (these differences in magnitude are due to choice of

units). Becausé, is too small, the vehicle never leaves= 1 and crashes into an obstacle. Figure 7(b)
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shows a more aggressive controllerfof = 3000 and K, = 0.01, and we see the vehicle gets off course
because of sideways slip and again runs into an obstacle. It generally has bad dynamic behavior (later
it runs in a loop sliding sideways), indicating that a controller would need to take dynamic effects into
account. Figure 7(c) shows an even more aggressive controlléy ef 83000 and K, = 0.013 where now

the velocity commands are saturated if they are going to push the system #atd. Hence, not only

do we see successful avoidance of obstacles, but we additionally see that the system never-edters
Notice that this implies that “fish-tailing” (where the back wheels slide sideways) is fine from a kinematic
perspective whereas all wheels sliding sideways is not acceptable in terms of kinematic analysis.

Note that we cannot ask for anything more than bounding the error because there is always a suf-
ficiently low orientation error that we enter = 1 (where we cannot stabilize to the trajectory), hence
leading to substantial error even in Fig. 7(c) betwée®n and200m in z andy and between time30s
and50s when the vehicle is staying im = 1. Nevertheless, even this naive controller with only mini-
mal representation of the underlying frictional dynamics functions well enough to ensure adequate path
following.

They key point is that planning for this vehicle can be done on a purely kinematic basis so long as
o = 1,2,3. This condition requires a slight modification to ensure that 4, but does not require any
detailed information about the mechanical contact.

The last thing to note is that the bottom plotsofersus time give a good indication that fully modeling
T € L is not necessary for purposes of estimating evolves rather slowly. We will discuss this more in

detail in the next section on actuator arrays.

6.2 Actuator Arrays

Consider Fig. 8. In this schematic we see a chip on an insulating layer that is actuated by nine SDAs
(discussed in Section 2). Each SDA is capable of moving in the direction of its long axis and is in principle
constrained to not move sideways. If it does move sideways, a reaction force occurs due to the sliding.
Such a chip can be viewed as a micro-scale vehicle capable of “driving” on the insulating layer [13], or, if

flipped over, could function as a manipulation surface. Now we ask whether such a chip can be represented
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as a kinematic system.
Assume that the chip has massand rotational inertia/, so that when we write the coordinates of

its body frame relative to the world as= (x,y,0), G = mdx ® de + m dy @ dy + J df @ df. The

dynamics evolve off SE(2) and the friction reaction forces are i, wherer is the number of actuators.

The kinematic equations evolve ¢iF/(2) andX is a finite set that describes the total number of contact

states for the system. For simplicity, assume that the SDA actuators are themselves of negligible mass and

that they form a point contact with the insulating

layer. Then, the equations of motion can be written as

Vend (t) = uY, + d°Vi. In this equation the” corre-

spond to each force being produced by the SDAs and the

Y, transform these forces into the body frame while re-
specting any constraints imposed upon the system. Such

Insulating Layer

constraints arise from no-slip contact between the insu-

. . Figure 8: Arr f scratch driv r
lating layer and the actuators. THerepresent reaction gure 8 ay of scratch drive actuators
forces due to slipping along the insulating layer when such a constraint is violated. We now analyze

whether a planar array of alternately orthogonal actuators (such as those seen in Fig. 8) is kinematic.

Proposition 6.1 An object manipulated by a planar array of alternatively orthogonal actuators has dy-

namics that are botflfput, Usisturbance -reducible and (Uinput, Udisturbancd , Usin)-reducible.

Proof: Note that we cannot explicitly compute all possible equations of motion for an infinite array of
actuators. Instead, we implicitly show that the conditions for reducibility are met. First, it is clear that the
system i Uinput, Udisturbancd-reducible. This follows from the fact that in the body frame any reaction force
due to friction is a vector ifR* = se*(2) (the dual to the Lie algebra of £(2)), and the forces coming
from the actuators spdR®. This fact is not surprising because the system is massively overactuated, but
it is unfortunately also not terribly helpful due to the fact that we cannot reliably compute the reaction
forces.

We are now left with the question of whether the pictured SDA chif(d%nput, Usisturbance s Ukin)-

reducible. Note that if we represent the chip as a rigid body with configuratiSikii2), any force vector

24



f at an actuatori; can be represented in the inertial frame by a wrenctefi(2), namelyAd?WB g5, f

In this formulagyy, 5 is the rigid body transformation from the world frame to the body fragg, is the

rigid body transformation from the body frame to the actuator frame,Af)d, is the adjoint transfor-

mation mapping velocities in the frame to velocities in th& frame. (For an elementary presentation of
these computations, see [19].) Hence, if we assume that forces (from constraints or from actuation) occur
at the site of actuatord;, we can compute their forces in the common inertial frame, and thus compute
u®Y, + d°V,. Say that we choose three actuatots, 4., andA;, each with coordinates in the body frame

(ai, bi, ¥;), wherey; are multiples of} (since the actuators are all orthogonal). Then, if we assume that

the location of the body in the world frame(is, y, 6), the representation of each of the forces in the world

frame can be written add] fi = [cos(041;), — sin(B+1;), y+b cos(0) +asin(h)] . If we take the
determinant of the matrigAd? gma, 11, Adf g5, o, Adf - f5] we find that it is nonzero as long as

11 # 9. Hence, alternately orthogonal is not really a necessary condition—instead alternately skew is
necessary.

First, what does this mean if there are no constraints (i.e., no slipping orthogonal to the actuators).
Then for the proper choice of actuatafs’, = T\, , o) SE(2) is spanned by the force vector fieldsY,, so
the system without disturbance force#li&., Uin)-reducible by Lemma A.2 (in Appendix) which implies
that with forces it i (Uinput, Udisturbancd » Ukin )-reducible by Lemma 4.3. If there is only one constraint, then
for the proper choice of input forces' that constraint combined with, spanR?, implying by similar
logic that the dynamic system with disturbances(i$nput, Udisturbancd , Ukin)-reducible. The argument for
two constraints is identical. For three independent constraints, the chip is completely constrained not to
move. |

Hence, an array of actuators manipulating an object is alMu@¥ut, Usisturbancd » Ukin )-reducible to a
kinematic system of the form in Eq. (4). Moreover, as the contact states change, the kinematic system will
change. This means that the effects of friction on the dynamics of the chip are now completely encoded in
the switching ot from one set okinematicequations to another over time. This situation has well-defined

control strategies, as discussed next.
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Table 1: Orthogonal Actuator arrays (like those seen in Fig. 8 and Fig. 8) have all kinematic states, many
of which are redundant. This figure shows the four distinct equations of motion that can occur. Note that
so long asi(, 1y (= u(-1,-1)) andu_y,1) (= u(1,—1)) are nonzero, the four states can be distinguished from
state output. In fact, just observationeis sufficient for distinguishing the states. Moreover, this system
can be stabilized to the origin using the control law shown and an estimatgL6f.

o Equations of Motion Control Law
—1 1 _ _ —kO(0+z—y)+k (62+x2+y2)
g = 1 q = —1 E(l,l) + —1 ﬂ(—l,l) u(l’l) - Tty
0 1 U(-11) = =kt
—1 1 U1 = kb
. _ _ (1)
o=2|q=| -1 |ugn+ | =1 | T | _ kO (0-+aty)—k (62+22+y?)
-1 0 U-11) = z—y
-1 1 _ k9 (0—aty)+k (62 +22+y?)
g 3 q 1 u(l,l) + 1 U(,l,l) _ T+y
0 —1 U(-11) = k0
_1 1 ﬂ 1.1) — —k«9
. _ _ (11)
o=4|q=| -1 [ugy+ | =1 | @1, | _ —kt) (—0+a+y)—k (02 +22+y?)
1 0 U(—l,l) - r—y

6.2.1 Stabilization of Manipulation Using Arrays of Actuators

Consider a desired equilibrium point on an alternately orthogonal array. It has contact actuators located
at (2 + 1,25 + 1) with ¢, j € N. Their orientations relative to the world frame are alternafelgnd

—1, and the applied force is always in the direction of theaxis of the local actuator frame. We will
denote the velocities of these actuatorsipy. ;1) and the applied force bys;112j41). The system

iS ((Uinput, Udisturbanca » Ukin )-reducible by Prop. 6.1, so long as the contact interfacesliasipativewhen
slipping is occurring (i.e., the reaction force is nonzero and in the opposite direction of the slipping). The

dynamics are of the form

1 0
Mg = Z Ad£2i+1,21+1) 0 | U@i+12j+1) + Ad§(21+1,2j+1) 1 | dit12j+1) + ATW(q)T (15)
(2i4+1,2j+1)
0 0

whereq = (z,v,0), w(q) is the set of constraint covectorg,is the rigid body mapping from the world

frame to the actuatar frame, A is the vector of Lagrange multipliers, add = diag{m,m,J}. The
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Lagrange multipliers are solved for using the constraint equaj;i(m(q)q‘) = 0. Additionally, all the
nontrivial, non-overconstrained kinematics when the center of mass igmegr= (0,0) are of one of
the four forms in Table 6.2.1 [15, 17].

For each of the four models in Table 6.2.1 a control law is calculated from the Lyapunov function
k(z® 4 1> + 6%) (wherek is some constant to be chosen during implementation) by soWieg—V” for
U2i+1,2j+1) Subject to the constraint that actuators with the same orientation have the same velocity com-
mandu. Hence, there are two unique inpaig 1) andz_; ;) in the kinematic description, and including
more does not produce additional trajectories [15, 17]. Moreover, by virtue of the design methodology,
there is a common Lyapunov function. This was shown to provide global stabilizationd)) for the
kinematic system in [15,17].

Figure 9 shows three simulations of an actuator array near a desired equilibrium. For each simulation,
going from left to right, theX'Y” location of a manipulated object is shown, the orientaficthe evolution
of o, and the response of the actuator(atl) in the dynamic simulation as it trackg, ;). The four
actuators near the equilibrium dominate the motion, and the rest are kinematically constrained to match
the speeds ofi; 1y andu(_, ;). We use Eq. (9) to implement the commans ., »,.1) with a control
gain of K = 10 for three different friction laws—Coulomb friction, viscous friction, and stiction, as in
Section 3.1. Again the contact state is estimated using Eq.(11) with full-state feedback. All the responses
have an initial condition ofzo, 0, 60) = (0.5,2, §) and the goal is to stabilize to the origi, 0,0). All
responses are qualitatively similar despite the differences in friction law in the actual implementation.

The key is that despite changes in the characteristics of friction, the controller computed based on the
kinematic equations of motion (which only needs to estimaigerforms well (and similarly to the macro-
scale experimental work in [17]). This is because all possibyeeld kinematic equations of motion that
can be stably implemented using Eq. (9).

Lastly, note that- does not change very quickly in this setting, just as it did not change very quickly
in Fig. 7 in Section 6.1. Moreover, looking at the kinematic equations of motion, we see taet be
estimated based ghmeasurements alone (so long@as# u; andwuy, uy # 0). In this case sensingat

10 Hz would be more than sufficient for purposes of capturingstibbanges. In comparison to directly
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Figure 9: Three simulations with different choices of friction model. From left to right, the plots are the
XY trajectory of an object supported by an actuator array, the orientatama function of time, the
kinematic stater as a function of time, and lastly the response of the actuat(r, & as it tracks the
desired velocityii; ;). The simulations are for viscous friction (a-d), Coulomb friction (e-h), and stiction
friction (i-I). Parameters used were =1, J =5, us = 1.1, ux = 1, andK = 10 in Eq. (9).
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identifying = € £, which often requires sampling rates at 1 KHz or more, this is clearly superior from a

sensing perspective.

7 Conclusions

This paper considers the use of a canonical distinction between slipping frictional forces and nonslipping
frictional forces for purposes of motion planning and control for mechanical contact systems. Geometric
kinematic reductions play a central role in why this choice is effective in generating useful descriptions
of a system, even when a system experiences stick/slip phenomena (which are typically thought of as
being dynamic). Both planning and stabilization can be computed in the kinematic setting, and then im-
plemented in the underlying dynamic space through the use of a stable plan, typically just a backstepping
controller in the context of the work presented here. These techniques are illustrated on two example sim-
ulations—a slip-steered vehicle and an actuator array. Lastly, the kinematic equations have more limited
sensing requirements, both in terms of spatial resolution and temporal resolution. Ongoing work targets

demonstrating these results in hardware experiments.
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A Background: Kinematic Reduction

In discussing kinematic reductions, we follow [5, 6]. sfmple mechanical control systeronsists of a
manifold @) of dimensionn, a Riemannian metri¢&; that defines the kinetic energy, a set of constraints
represented as a constraint distributibn and a set of external forces. Associated with a Riemannian

metricG' are what are calle@hristoffel symbols.

Definition A.1 TheChristoffel symbolsassociated with the metriG are

(16)

. 1 . [0G; oG 0G;
Gri . il gl Kl ik
Fje = 2G <8qk + oq? g’ )

where summation over repeated indices is implied used unless otherwise stated, and upper indices indicate

the inverse.

Also associated with the Riemannian metric is #fne connectionwhich assigns to a pair of vector
fields X andY another vector fiel®& x Y. This is referred to as theovariant derivativeof Y with respect

to X.

Definition A.2 In coordinates, the covariant derivative Bfwith respect taX is

oyt . o 0
G _ 7 k
VyY = (8qj X7+ 15, X7Y ) _8qi a7)
With this, the Euler-Lagrange equations can be written as
“Vewd (t) = u(t)Ya(c(t)) (18)

wheret — c(t) is a path onQ andc/(t) = £¢(t) [5,6]. In this equatiorf'V is the constrained affine con-
nection associated with the Riemannian metric (kinetic enekggndY, are force vector fields associated
with forcesu®. In coordinates this is written as:

§+ i’ = u Y, (19)

32



Constrained systems, those control systems whose trajectories must lie in some distiihuteom
also be described by Eq. (18). However, the affine connection must be modified in order to incorporate
the constraints. LeD be a distribution or) and let D+ denote theG-orthogonal complement ab.
Moreover, letP : TQQ — T be aG-orthogonal projection operator onid and letP’ : TQQ — TQ
be aG-orthogonal projection ont®-+. Lastly, letA(q) be any invertible(1, 1) tensor field onR and let
B(q) be its inverse. Then, the Euler-Lagrange equations can be written as Eq. (19) where the Christoffel
symbols are:

A(AP)L
2

ATy, = Oy + Bi—g~ + BiT},.(AP")" — B{°T5(AP"),,

where, againA(q) is anyinvertible (1, 1) tensor on(). In order to add forces, we must ensure the forces

comply with the constraints. Hence, the final equations of motion are:
“Veowd (t) = u(t)PY] (c(t)) (20)

or in coordinates:

' +T%d " = u PY,. (21)

Therefore, simple mechanical control systatixan be represented using an affine connection. For more
details and examples worked out in detail, refer to Bullo and Lewis [5].
We know that Eqg. (18) is a second order differential equation evolving on the maifdlth the other

hand, given input velocitieg®, kinematicequations can be written in the form:

q(t) = u®() Xa(q(?)) (22)

Our goal in this section is to formally reduce Eqg. (18) to Eq. (22].Xf} are kinematic vector fields and
{Y;} are dynamic vector fields, we let tiéstributions Dy, and D,,,, be defined byD,;, = span{X;}

and D, = span{Y;}. A solution to a control system is defined as follows.

Definition A.3 Let X, be a smooth control systegn= f(g, ) on a smooth manifold/ and letu &

U C R™ A (U,T)-solutionto > is a pair (¢, u), whereu : [0,7] — U andc : [0,7] — M satisfy
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Note that Def. A.3 only makes sense for first order equations evolving amd Eq. (18) is a second order
differential equation evolving 0. Hence, we must rewrite Eq. (18) as a first order equation evolving on

TQ. To do this, we must use theertical lift, defined by
, d
verlift(X)(v,) = %\f:ovq +tX(q),

and thegeodesic spraydefined in coordinates by

Now let 7

denote the tangent bundle projection. Then, Eq. (18) written as a first order system evol¥iggisn

0(t) = Z(v(t)) + u’(t)verlift(Yo(mg o v(t))) (23)
whereu(t) € TQ. We now can define what it means for a mechanical system of the form in Eq. (18) to be
(U,U)-reducible to Eq. (22).

Definition A.4 LetV be an affine connection ap, and letl/ and/ be two families of control functions.

The system in Eq. (18) i¢/,)-reducibleto the system in Eq. (22) if the following two conditions hold:

i) for each(i, 7T')-solution(n, v) of the dynamic Eq. (18) with initial conditiomg0) in the distribution

Dy, there exists @, T) -solution(~y, @) of the kinematic Eq. (22) with the property that= 7gon;

i) for each (U4, T')-solution(v, @) of the kinematic Eq. (22), there exist&l& 7 )-solution(n, u) of the

dynamic Eq. (18) with the property thatt) = ~/(¢) for almost every € [0, 7.
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Condition i) says that for every solution of a dynamic system there must exist a kinematic solution that
is the projection of the dynamic system. In the case of a vehicle, this corresponds to requiring that for
every trajectory of the vehicle there exists a correspondpath that can be obtained from kinematic
considerations alone. Condition ii) says that for every kinematic solution there must exist a dynamic
solution that is equal to the kinematic solution coupled with its time derivative (so that it [le@)nThis
means that there must exist a dynamic solution for every feasible kinematic path.

Let x>°(D) denote thos€'> vector fields taking values in a distributidn. The following theorem

states the local test for Eq. (18) to @énput, Uinpur)-reducible to Eq. (22).

Theorem A.1 (Lewis [6]) Let V be an affine connection, and I¥t,...,Y,, and X, ..., X; be vector
fields on a manifold). The control system in Eq. (18) {&input, Uinput)-reducible to a system of the form

in Eq. (22) if and only if the following two conditions hold:

) span {Xi(q),- ... Xu(q)} = span{Yi(q),. ... Yam(q)}
for eachq € @ (in particular,mm = m)

i) (X :Y) € x*®°(Dayn) for everyX,Y € x*(Dyy,,) Where(:,-) is the symmetric product of vector
fields defined by
(X:Y)=9VxY +°VyX (24)

This theorem says that if the input distributions of both the kinematic system and the dynamic system are
the same and the dynamic system is closed under symmetric products, then the system is kinematic. The
following Lemma (from [18]) is a particularly useful result that we will use repeatedly in our analysis of

the examples.

Lemma A.2 Given a “constraint distribution"D,,,, C T'¢) which annihilates the constrain{s,; } and an
input distributionDy,,,, if Dy, = D..,, the mechanical system described\byj = uY,, iS (Uinput, Uinput)-

reducible.

This says that whenever when the constraint distribution is covered by the input distrilfision, re-

ducibility of a multiple model mechanical system is guaranteed regardless of the @ietric
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