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Abstract

This paper describes methods applicable to the modeling and control of mechanical contact, partic-

ularly those systems that experience uncertain stick/slip phenomena. Geometric kinematic reductions

are used to reduce a system’s description from a second-order dynamic model with frictional distur-

bances coming from a function space to a first-order model with frictional disturbances coming from a

space of finite automata over a finite set. As a result, modeling for purposes of control is made more

straight-forward by getting rid of some dependencies on low-level mechanics (in particular, the details

of friction modeling). Moreover, the online estimation of the uncertain, discrete-valued variables has

reduced sensing requirements. The primary contributions of this paper are the introduction of a simpli-

fying representation of friction and formal tests for kinematic reducibility. Results are illustrated using

a slip-steered vehicle model and an actuator array model.
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1 Introduction

It is traditional in robotics to view problems of manipulation, motion planning, and control in one of two

extreme lights. First, if a system is kinematic, the system description is simplified from a second-order

system with forces and inertias to a first-order system that consists of velocities and constraints. Then

motion plans and control laws (if necessary) are designed for this kinematic system. It is important to note

that in order toimplementthis plan based on kinematics, a backstepping algorithm is employed, either

explicitly in an “inner-loop-outer-loop” control architecture, or implicitly by purchasing motor controllers

(or other appropriate devices) that provide the inner loop control. In the end, the advantages of using

kinematic structures include both lessened computational burden (due to the computation in a lower-

dimensional space) and increased robustness to some classes of uncertainty (due to robustness properties

of the backstepping, inner-loop controller).

If, however, there is some reason that a kinematic analysis is inappropriate, then one often reverts to

a more complex set of modeling choices. In particular, in multi-point contact many phenomena are intro-

duced, including soft-contact models [2], elaborate models of frictional interfaces [20], and the inclusion

of dynamic effects such as inertial terms and generalized forces. Nevertheless, it is not clear that the

introduction of these additional modeling techniques helps for the purpose of control, motion planning,

etcetera. In particular, the task description typically does not include these effects, so one should only

incorporate them in the representation in use for planning and control if they are actually necessary for

task completion (which they typically are not). In fact, it is often the case that the inclusion of these details

hurtsour ability to successfully design control strategies. Not only does the introduction of these effects

make problems computationally more complex, it also decreases robustness by introducing assumptions

that are often not satisfied by the environment or, worse, may only sometimes be satisfied by the environ-

ment. Hence, one can be faced with a situation where our modeling assumptions are occasionally correct,

but not reliably so.

From a design perspective (as opposed to a simulation perspective), it is thus desirable to, if necessary,

introduce elements to a model that provide the full complexity of possible behavior of the system without

introducing too much new information (thereby decreasing the applicability of the model).
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This paper shows how notions of kinematic reducibility can allow one to recast a dynamic system

that has frictional effects belonging to a function space into a first-order system that has frictional effects

that form a finite automaton over a finite set. Hence, the goal of the reduction isnot solely or even

primarily to reduce from a second-order equation to a first-order equation. (Cutting a search space in half

is not particularly beneficial from a computational perspective, and would not motivate all the formality.)

Rather, the thing of interest is the induced mapping from the function space of friction laws over a vector

space to the space of finite automata over the finite set of contact states. This provides a representation of

friction that is simultaneously more simple and less naive (in the sense that one no longer needs to know

whichfriction law is governing the dynamic equations of motion for purposes of implementation).

Two examples are discussed in-depth to illustrate the broad applicability of the framework–a slip-

steered vehicle in Section 6.1 and actuator arrays in Section 6.1. Surprisingly, slip-steered vehicles are

almost always kinematic, but their dynamic states should be avoided to avoid having to calculate motion

plans in the full space. Moreover, orthogonal actuator arrays arealwayskinematic. This is true even if all

contact points are slipping against the surface of a manipulated object, so long as the frictional interaction

is strictly dissipative.

This paper is organized as follows. Section 2 describes two overconstrained example systems that

motivate the present work and that will be used as examples later in Section 6. Section 3 discusses

modeling of multi-point contact systems using the constrained affine connection and introduces a new way

of representing friction that is amenable to kinematic analysis. Section 4 contains the other main results

of the paper on kinematic reduction for systems with external forces. Because control and estimation are

occurring directly in the reduced space, Section 5 discusses the method employed for estimating discrete

variables, in this case the contact state of the system. Section 6 discusses a slip-steered vehicle and actuator

arrays from Section 2.
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2 Motivation: Mechanical Contact Systems

A system consisting of many points of contact typically exhibits stick/slip phenomenon due to the point

contacts moving in kinematically incompatible manners. This manner of motion is calledoverconstrained

motionbecause not all of the constraints can be satisfied.
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Figure 1: Scratch Drive Actuators (SDA)
(Figures taken from [13]). SDAs are chips
covered with a large number of actuators
along with the gold tether than is used to send
voltages down to the SDAs. Despite being
able to drive SDA actuators quite reliably, the
individual forces are difficult to model accu-
rately.

Consider the first example in Fig. 1. Scratch drive ac-

tuators (SDA) are characterized by being able to produce

large deflections (on the order of 500µm), relatively large

forces (on the order of 100µN), with high precision step

sizes (on the order of 30 nm). They can be arrayed on

chips with as few as ten SDA actuators on a chip. De-

spite the fact that these devices were first developed over

ten years ago [1], only recently has any formal work been

done on modeling and control for these devices [13].

Modeling these devices depends heavily on the partic-

ulars of the brushing geometry, plate thickness, insulator

properties, and the plate Young’s modulus. However, an

in-depth analysis of such a device was performed in [13]. The main important result of that analysis is

that one can drive the actuators at a desired velocity, despite considerable uncertainty in the force char-

acteristics. Hence, SDAs are most naturally described in terms of kinematic relationships, at least when

considered individually. Solving for the forces is difficult here as well, as at the micro-scale they are typ-

ically not well defined using traditional friction models. Hence, it is desirable for any control strategy to

not require this modeling and to take advantage of being able to reliably drive these actuators at a desired

velocity.

Consider the vehicle object in Fig. 2. It has four independently driven wheels, but no steering capabil-

ity. Hence, its wheels must slip sideways in order to turn. Because this vehicle will typically be outdoors

in an unstructured environment, there is no reason to believe that any particular friction model
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Figure 2: The “Flexy-Flyer” slip-
steered vehicle in the author’s laboratory
http://robotics.colorado.edu. In order to
turn, the vehicle must violate sideways-slip
constraints.

will capture the details of the dynamics. Moreover,

even if onecould describe the friction model properly,

online system identification would be necessary, which

requires high-bandwidth calculations. Both this example

and the previous example are discussed in detail in Sec-

tion 6, where it will be illustrated that much lower band-

width sensing is possible if calculations are performed us-

ing the kinematic equations of motion.

3 Modeling and Analysis of Multiple Point Contact

The systems considered here are finite-dimensional simple mechanical systems (as described for smooth

systems in [5]). That is, their equations of motion may be found using a Lagrangian of the form kinetic

energy minus potential energy (L = K.E.− V ) along with a set of constraints on the system of the form

ω(q)q̇ = 0, whereω(q) is a matrix representing the configurationq dependent constraints. Moreover, there

may be external forces acting on the system. If one ignores potential energy (as is appropriate for many

planar systems including the ones described in Section 2), such a system’s dynamics may be represented

as:

∇q̇ q̇ = uαYα, (1)

where the notationuαYα implies summation over theα. In this expression,∇ is the constrained affine

connection encoding the free kinetic energy and any constraints on the system. Moreover,u ∈ Uinput (u :

[0, T ] → Rm) represents external forces (not necessarily inputs) whereUinput is the space of essentially-

bounded, Lebesgue-integrable external forces [6]. TheY terms represent the associated vector fields on the

configuration manifoldQ (i.e.,Y ∈ TqQ, the tangent space atq ∈ Q). If one wishes to include potential

energy, it will show up as a vector field on the right-hand side of the equation. A short description of this

formulation of mechanics may be found in the Appendix.

The systems of interest have two types of external forces–those that correspond to inputs and those
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Figure 3: Types of friction model, including (a) Coulomb friction, (b) Coulomb plus viscous friction, (c)
Coulomb/viscous stiction, and (d) Nonlinear smoothing of stiction.

that correspond to external disturbances. In the case of multiple point contact, the external disturbance

forces (d ∈ Udisturbancewhered : [0, T ] → Rl and whereUdisturbanceis also a space of essentially-bounded,

Lebesgue-integrable functions) generally correspond to reaction forces due to friction when a contact slips.

Therefore, it will be useful to write the dynamic equations as:∇q̇ q̇ = uαYα + dβVβ so that a distinction

between external forces that can be controlled and those that cannot can be made.

3.1 Standing Assumptions on Friction

Consider some of the standard friction models, seen in Fig. 3. These of course include Coulomb friction

(F = FCsign(v) for FC > 0), but additionally include viscous friction, stiction, and nonlinear versions,

such as a better representation of viscous friction. These are respectively represented as

F =


FV v + c v > 0

(−c, c) v = 0

FV v − c v < 0

F =


FV v + c v > 0

(−c− δ, c+ δ) v = 0

FV v − c v < 0

F =


FV |v|δcsign(v) + c v > 0

(−c, c) v = 0

FV |v|δcsign(v)− c v < 0

for FV , c, δ > 0. These are seen in Fig. 3. Moreover, there are many more types of friction model to choose

from, including dynamic models of friction like Dahl and LuGre models [20] or even more heuristic mod-
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els such as Pacejka’s “Magic Tire Formula”–each with their own specialized area of applicability. What

one would like is a description of friction that does not depend on any of these particular characteristics.

Although they are qualitatively similar to each other, we would like to conservatively bound the class of

friction models and choose a reduction that is invariant with respect to the particular friction model.

With this goal in mind, replace the family of curves seen in Fig. 3 by the conservative estimation of

those curves seen in Fig. 4. In this figure, the friction law need only be dissipative. That is,v > 0 ⇒ τ > 0

andv < 0 ⇒ τ < 0. If v = 0, thenτ ∈ R–that is, stiction (constraint) forces are allowed, and frictional

constraints are allowed. (This is the first time any use for the constrained affine connection becomes ap-

parent.) The important thing to note is thatv 6= 0 ⇒ τ 6= 0–this will be important later. In any case, the

friction curve can be any absolutely continuous curve that has all its values in the grayed regions in Fig. 4.

ω   (q)q

τ

.

Figure 4: Friction is only assumed to be dissi-
pative, so that any curve in the grayed areas is
a valid friction model. Clearly, this includes
all the friction models in Fig. 3 (shown again
here) and more [20].

(Ultimately τ will restricted slightly more for pur-

poses of stability analysis.) Hence, ifω(q)q̇ is the slip-

ping velocity at some point, we restrictτ in the following

manner.

τ(ω(q)q̇) =


τ+(ω(q)q̇) > 0 if ω(q)q̇ > 0

τ−(ω(q)q̇) < 0 if ω(q)q̇ < 0

τ 0(ω(q)q̇) ∈ R if ω(q)q̇ = 0

(2)

With this picture in mind, one can nowchoosean

equivalence class onτ ∈ L (the space of all possible absolutely continuous curves satisfying Eq. (2)) that

will be familiar. In particular, let us consider the casesω(q)q̇ = 0 (when the system is constrained) and

ω(q)q̇ 6= 0 (when the system is sliding) separately.That is, we arbitrarily choose to distinguish between

slippingfriction forces andconstraintfriction forces.This canonical distinction is traditionally referred to

as thecontact stateof a system. Note that there is no reason to treat these as canonically different from

each other. In fact, one could argue that it is better to treat systems with frictional contact as unconstrained
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systems with frictional forces determined by the force laws such as those in Fig. 3. However, distinguish-

ing between geometrically constrained and unconstrained situations allows one to take advantage of deep

geometric results regarding kinematic reducibility, which in turn take advantage of algebraic calculations

using the affine connection.

In particular, whenω(q)q̇ = 0, the dynamics may still be written as∇q̇ q̇ = uαYα, where∇ is now

the constrained affine connection andYα are appropriately projected onto the distribution (see Appendix).

Moreover, because the contact state changes over time (as the contacts transition between stick and slip),

the constraints change over time. This implies that∇ is not a single constrained affine connection, but

rather comes from a discrete set of constrained affine connections∇σ (indexed byσ ∈ Σ whereΣ is a

finite set), each of which represents a different set of stick/slip states of the mechanism. The same holds

true forY σ andV σ. Hence, if one indexes the set of possible stick/slip states byσ, one gets second-order

equations of motion of the following form:

∇σ
q̇ q̇ = uαY σ

α + dβV σ
β (3)

whereu are input forces andd are external forces. Moreover,σ will evolve overΣ with time according to

the reaction force description. Typically the automaton that describes the evolution ofσ over its potential

values inΣ depends on the continuous calculation of constraint forces that enforce a constraint. If one

of these forces exceeds a critical value, for instance the coefficient of stictionµS, then the constraint is

broken andσ changes. Reducing Eq. (3) to a first-order description without friction and retainingσ as the

representation of frictional effects is the focus of Section 4.

4 Kinematic Reduction With External Forces

We now focus on kinematic reductions [5–8, 12, 18]. Smooth kinematic reductions take systems of the

form of Eq. (1) and convert them into systems of the form

q̇ = uaXa, (4)
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whereq ∈ Q, Xa(q) ∈ TqQ, andu : [0, T ] → Rm. Note that the controlsu ∈ Ukin are now kinematic

inputs (i.e., velocities, whereUkin is the space of piecewise absolutely continuous functions) instead of

generalized forces. The affine connection formalism in Section 3 is used to describe mechanical systems

because it is in the context of this formalism that a useful technical connection between2nd-order mechan-

ical systems and1st-order kinematic systems has been made (found for smooth systems in [12] and for

nonsmooth systems in [18]). In particular, it would be useful to be able to write Eq. (3) in the form:

q̇ = uaXσ
a , (5)

whereσ ∈ Σ is allowed to switch the vector fieldsX discretely just as it does in Eq. (3). That is, we

would like to perform this reduction in the presence of switching inσ and external forcesdb. Note that in

the kinematic setting it is not clear that one can calculate the automaton that represents the evolution ofσ

because the reaction forces cannot be calculated. This leads to the need for online estimation ofσ, which

is discussed in Section 5.

An algebraic test for kinematic reduction relies on thesymmetric productbetween two vector fields

Y σ
i andY σ

j for a particularσ, which is defined by
〈
Y σ

i : Y σ
j

〉
= ∇σ

Y σ
i
Y σ

j + ∇σ
Y σ

j
Y σ

i for given i, j. We

will see that the algebraic test of kinematic reducibility is: the symmetric product between any two vector

fieldsY σ
i andY σ

j must lie within the distribution of the vector fields and any reaction force vector fieldV σ
β

must also lie within the distribution of the input vector fields. That is, the system in Eq.(3) is kinematically

reducible to the one in Eq.(5) if and only if the following conditions hold.

〈
Y σ

i : Y σ
j

〉
∈ spanR{Y σ

i |i = 1, . . . ,m} ∀ i, j, σ (6)

V σ
β ∈ spanR{Y σ

i |i = 1, . . . ,m} ∀ β, σ (7)

where spanR is the span over the fieldR. This result is the focus of the rest of this section.
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4.1 Reduction for single model systems

Initially reduction for single model systems of the following form is considered.

∇c′(t)c
′(t) = ua(t)Ya(c(t)) + db(t)Vb(c(t)) (8)

In this equation∇ is the (possibly constrained) affine connection associated with the Riemannian metric

G, db belongs to a family of disturbance signalsD that take values inUdisturbanceand meet the assumptions

in Section 3.1 in Eq. (2),Vb is the set of corresponding vector fields,ua belongs to a family of control input

signalsU taking values inUinput, andYa are the associated vector fields. Since the motivation here is not

wanting to be forced to rely on the correctness of one particular disturbance force model (such as friction

force modeling where there are many possible choices of model), the termdb is presumed to be set-valued

for each indexb, as in Fig. 4. Ifdb as a set is not convex, then it is replaced by its convex hullco{db} so as

to guarantee solutions exist in the Filippov sense [9].

Now, given a system with set-valued disturbances such as in Eq. (8), under what circumstances it can

be reduced to a system of the form in Eq. (1)? That is, when can one find an equivalent system that

does not include external disturbance forces. To make such an equivalence more rigorous, we introduce

some definitions, following the Appendix for guidance. In particular, we use the notion of a(U ,D, T )-

solution(a trajectory given signals coming from a family of controlsU and from a family of disturbances

D), (U ,D)-reducible(reduction from(U ,D, T )-solution to(U , T )-solutions), and
(
(U ,D),U

)
-reducible

(reduction from(U ,D, T )-solutions to
(
U , T

)
-solutions, whereU is a new family of control inputs for the

kinematic system). See the Appendix for further discussion of these definitions.

Definition 4.1 Let Σs be a smooth control systeṁq = f(q, u, d) on a smooth manifoldM . A (U ,D, T )-

solutionto Σs is a triple (c, u, d), whereu : [0, T ] → Rm, d : [0, T ] → Rl, andc : [0, T ] → M satisfy

c′(t) = f(c(t), u(t), d(t)).

(This is simply an extension of the definition of the(U , T )-solutionto a smooth control systeṁq = f(q, u)

found in the Appendix.) Again using the definitions found in the Appendix for guidance, we define the

following notion of reduction.
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Definition 4.2 Let∇ be an affine connection onQ, and letU be a family of control functions andD be

a family of disturbance functions. The system in Eq. (8) is(U ,D)-reducibleto the system in Eq. (1) if

for each(U ,D, T )-solution(η1, u1, d) of the Eq. (8) there exists a(U , T )-solution(η2, u2) of Eq. (1) with

η1(t) = η2(t);

Lastly, one would like to be rigorous about what it means for a mechanical system with set-valued distur-

bances to be reducible to a kinematic system, which leads to the following definition (based on Def. A.4).

Definition 4.3 Let∇ be an affine connection onQ, and letU andU be two families of control functions.

The system in Eq. (8) is
(
(U ,D),U

)
-reducibleto the system in Eq. (4) if the following two conditions hold:

i) for each(U ,D, T )-solution(η, u, d) of the dynamic Eq. (1) with initial conditionsη(0) in the dis-

tributionDkin, there exists a
(
U , T

)
-solution(γ, u) of the kinematic Eq. (4) with the property that

γ = τQ ◦ η;

ii ) for each
(
U , T

)
-solution(γ, u) of the kinematic Eq. (4), there exists a(U ,D, T )-solution(η, u, d)

of the dynamic Eq. (1) with the property thatη(t) = γ′(t) for almost everyt ∈ [0, T ].

With these definitions, we can state sufficient conditions for a system to be(Uinput,Udisturbance)-reducible

or ((Uinput,Udisturbance),Ukin)-reducible. Intuitively, this corresponds to being able to guarantee that any

solutions that include disturbances can be mapped directly to a solution that has no disturbances.

Lemma 4.1 Assume one has a mechanical system of the form in Eq. (8) with unbounded inputs and

dissipative friction forcesτ as in Eq.(2). Then the system in Eq. (8) is(Uinput,Udisturbance)-reducible to the

mechanical system in Eq. (1) iff this system satisfiesVb ∈ spanR{Ya} for all b.

Proof: The condition is clearly necessary because ifVb /∈ spanR{Ya} one automatically has a trajec-

tory that the system cannot follow just using the control inputs. Sufficiency is nearly as clear. Suppose we

have a(U ,D, T )-solutionΦd whereVb ∈ spanR{Ya}. We know that even if the controlua is a function of

τ it can be made any nonzero value by the assumption in Eq.(2). Hence,Φd can locally be represented as

Φd = lim
n→∞

(
∏

i

Φ
δi
n

Yi)n(q0) for someδi such that
∑

i δi = 1 [18]. (HereΦ
δ
n

Yi(q0) is the flow of Eq. (1) along
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Yi for δi/n,
∏

represents sequential composition of mappings, and a mapping to thenth power is simply

composed with itselfn times.) Becausedb is convex, a limit of a sequence of solutions to the differential

inclusion must be a solution as well [9], so this limit is a(U , T )-solution to Eq. (1).

This means that all trajectories can be planned as if there are no forces due to the termsdbVb. However, it

is important to note that the requirement thatua 6= 0 is satisfied precisely because we do not allowτ 6= 0

for v 6= 0. We are now interested in finding out when a multiple model of the form in Eq.(3) is reducible

to a system of the form in Eq. (5).

Theorem 4.2 Equation (3) is((Uinput,Udisturbance),Ukin)-reducible iff Equation (3) is((Uinput,Udisturbance),Ukin)-

reducible for every constantσ (i.e., Eqs. (6) and (7) hold for any choice ofσ).

Proof: Suppose that Equation (3) is
(
(U ,D),U

)
-reducible (i.e.,((Uinput,Udisturbance),Ukin)-reducible)

for everyσ. Any (U ,D, T )-solution must therefore satisfyVb ∈ spanR{Yα}. This implies that we can write

any solution (which we will denote byΦd) asΦd = lim
n→∞

(
∏
i,σ

Φ
δi
n

Y σ
i )n(q0) such that

∑
i δi = 1, just as it

did in the proof of Lemma 4.1 except that now we are approximating the flow of both the uncertainty and

the switching ofσ. Piecewise flows can be reduced to a first-order system for eachσ by assumption, so we

can reduce to a composition of solutions of the formlim
n→∞

(
∏
i,σ

Φ
δi
n

Xσ
i )n(q0). Because these are solutions

to Eq. (5), and we are taking the Filippov notion of solution, their limit is also a solution [9]. We call

this solutionΦk, and this is a(U , T )-solution to Eq. (5). Hence, if givenσ for every(U ,D, T )-solution

we have a(U , T )-solution, we can construct a(U , T )-solution forσ as a measurable function oft. To

construct a(U ,D, T )-solution for a given(U , T )-solution we simply reverse this process and note that

any(U , T )-solution (a dynamic solution without disturbances) is also a(U ,D, T )-solution.

To sum up, if a system of the form in Eq. (3) satisfies the algebraic conditions in Eqs. (6) and (7), the

system can be represented as a kinematic system and planning and control can take place in the reduced

space without any loss of trajectory information.
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4.2 Kinematic Reductions in Closed Loop

Everything discusses so far has implicitly relied on the control being “open-loop.” However, if one is

using a discrete time controller (with one’s favorite continuation algorithm, such as zero-order holds) the

control is open loop in between controller updates. It was already shown in [18] for two control families

U andU that
(
U ,U

)
-reductions are not affected by separable discontinuities. By the exact same logic, the

systems considered here are reducible in discrete time closed-loop if they satisfy the requirements to be

reducible under the tests of Theorem 4.2

Lemma 4.3 A discrete-time closed loop system (whereua are functions ofq andt) coming from Eq.(3) is(
(U ,D),U

)
-reducible to a discrete time version of Eq.(5) if it satisfies the conditions in Theorem 4.2.

It is also important to note that the systems response to disturbances (in closed-loop) is completely

encoded in the reduction as well, precisely because we included the uncertainties in the description of the

reduction. Hence, dynamic uncertainties in Eq. (3) become kinematic uncertainties in Eq.(5). This way,

closed-loop design in the kinematic description are valid when implemented on the dynamic system, along

with a backstepping algorithm to control the velocities of the actuators.

ω

τ

   (q)qα
.

Figure 5: An additional requirement is that
the friction curve lie within a sector nonlin-
earity that allows the use of a proportional
controller in implementation.

We change the assumption onτ in Eq. (2) slightly

by requiring that the reaction force curve must lie in the

grayed area in Fig. 5, whereα > 0. Moreover, assume

that thatu andu are related bymi(q)u̇i = τui, where

mi(q) > 0 is the inertial term for actuatori. That is, the

velocity of the contact point is the integral (scaled by the

configuration dependent inertia) of the force input, which

is common in many applications including those found in

Section 2 and 6. Then a choice of backstepping controller

ui = −K(vi − ui) (9)

13



(wherevi is the desired velocityu) provides a stable response because the grayed region is a sector non-

linearity [21]. (This result has already been used in the analysis of multi-point contact in [14].) Also, note

that the use of a sector nonlinearity also allows us to take into account dynamic shifts in normal force

without any extra analysis.

There is no question that better knowledge of the friction law will lead to a model-based controller

that performs better. However, we are interested in analyzing cases where the friction model cannot be

known. We will see in the example in Section 6.1 that this choice of implementation controller provides

acceptable performance (for a variety of friction models) so long as the kinematic controller is stable.

5 Estimation of the Contact State

If one wishes to design a kinematic plan or control of some sort, then online estimation ofσ may be

necessary. Suppose for anyσ we have a stable estimator ofq ∈ Q such that there is a quadratic Lyapunov

function Vσ in the error of the state. Then a reasonable estimate ofσ (which we will denoteσ̂) could

evolve according to

E(y) = arg min
σ
‖ỹσ − ỹ‖

whereỹσ is the expected output for eachσ and ỹ is the measured output. (This assumes that the state

evolves differently for every every choice ofσ.) However, this estimate may be poor because it may not

be stable in the state asσ changes in time. Hence, an adjustment is necessary to estimate bothq andσ.

In order to create a stable estimate ofσ, we first define some useful notation. First, define

s(t) = lim
t̃→t−

Vσ(t̃)− lim
t̃→t+

Vσ(t̃). This is the discrete change in the value of the Lyapunov function for the

estimator that occurs when there is a switch inσ. Next define

Ė(t) = −keλ if s(t) = 0

E(t) = limt̃→t− E(t̃)− s(t) otherwise
(10)

whereke is a chosen constant,0 < ke < 1 andλ(t) < 0 is a bounded conservative estimate of the stability

margin for all the estimators that hasλ̇ bounded. For instance, this can sometimes be the minimum

14



magnitude real part of all of the eigenvalues of all the estimators times the norm of the state if they are

based on the linearization. Note thatE is initialized to a nonnegative value and then evolves according

to Equation 10 as long ass is zero (that is, on intervals with no switches). Whenevers 6= 0 (there is a

switch),E is re-initialized. Lastly, defineVσ(t) to be equal toVσ on the time intervals between switches.

That is,Vσ(t) is always equal to the Lyapunov function for a choice ofσ on a given time interval. Then

we use the following equation to estimateσ.

σ̂(t) =

 E(ỹ(t)) if E > 0

limt̃→t− E(ỹ(t)) otherwise
(11)

Theorem 5.1 An estimate of̂σ using Eq. (11) converges. That is,|Vσ(t) − α| → 0 for someα ∈ R and,

in particular, V̇σ(t) → 0. Moreover,|σ̂(t)− σ(t)| = 0 after a finite amount of time ifσ is constant and the

stateq evolves differently for every choice ofσ.

Proof: For purposes of notational simplicity, we will takeV to denoteVσ(t) for the remainder of this

proof. Our approach invokes Barbalat’s lemma, which states that iff(t) is lower bounded,̇f(t) is negative

semi-definite, anḋf(t) is uniformly continuous (or equivalently,̈f(t) is finite), thenḟ(t) approaches zero

as t approaches infinity. We will apply Barbalat’s lemma to a potential functionV′, thereby showing

thatV̇′ goes to zero. This, along with the fact thatE is monotonically increasing (and therefore,E > 0

eventually) between switches implies thatσ̂ can change toE(ỹ) after some finite time.

We will show convergence of the estimator using the functionV′ = V + E. SinceV is positive-

definite andE > 0, it is clear thatV′ ≥ 0. Differentiating, we see that on any interval on which there are

no switches we havėV′ = V̇ + Ė. Substituting forĖ we get

V̇′ = V̇ − keλ. (12)

To handle switches, note that at a switch inσ we havelim
t̃→t+

V(t̃) = lim
t̃→t−

V(t̃) + s(t). Thus, at any instant

t when a switch occurs (that is, when anys 6= 0), we havelim
t̃→t+

V′(t̃) = lim
t̃→t−

V(t̃) + s(t) + E(t). Sub-

stituting forE from Eq. (10), we getlim
t̃→t+

V′(t̃) = lim
t̃→t−

V(t) + s(t) + lim
t̃→t−

E(t̃)− s(t), which simplifies
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in the following way: lim
t̃→t+

V′(t̃) = lim
t̃→t−

V(t) + lim
t̃→t−

E(t̃)= lim
t̃→t−

V′(t̃). Thus, the discontinuity inV′ has

been removed, as the limits from both sides are the same. Since switches have no effect whatsoever on

V′, Equation 12 holds true at all times.

SinceV̇ is negative definite,0 < ke < 1, andV̇ < keλ < 0, it must be the case thaṫV′ is negative

semi-definite. Moreover, sincëV is bounded (because the dynamics are piecewise smooth) andλ̇ is

bounded, we also knoẅV′ is bounded.

We now have sufficient information to satisfy Barbalat’s lemma. We knowV′ is lower bounded by

zero,V̇′ is negative semi-definite, and̈V′ is bounded, so Barbalat’s lemma implies thatV̇′ → 0 ast→∞.

It follows directly thatV̇σ(t) → 0 ast → ∞. Moreover, by the monotonically increasing evolution ofE

between switches in the estimate ofσ we are guaranteed to eventually be able to switch to any estimate

E(ỹ) of σ.

6 Examples

Mechanical systems that experience intermittent contact are common in engineering, and include vehicles

such as the Mars Rover [16], distributed manipulation [3,4,14,17], MEMS manipulation [13], and legged

locomotion [10]. In these situations, particularly at the micro-scale, the reaction forces due to friction

are not well characterized and can involve a host of friction modeling methodologies [20]. Hence, it is

desirable to represent these systems in a way that does not involve the frictional reaction forces explicitly.

Note that if the contact state of a((Uinput,Udisturbance),Ukin)-reducible intermittent contact system is

being driven by the frictional interactions (such as the case of MEMS manipulation),the effects of friction

are completely encoded in theσ evolution. The advantage of this is that it takes a highly nonlinear,

nonsmooth phenomenon and encodes its effect as a finite state machine. The examples discussed here

illustrate how the prior results can allow one to neglect disturbance forces in mechanical systems. First a

slip-steered vehicle is presented and then manipulation using actuator arrays is analyzed.
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6.1 Slip-Steered Vehicles
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Figure 6: A slip-steered vehicle
with frames at each wheel, its
center of geometry, and inertial
frame.

Consider the vehicle in Fig. 2 and diagrammed in Fig.6. The con-

figuration isq = (x, y, θ) and there are forcesu1, u2, u3, u4 acting

on the body at each wheel, where wheel1 is the front right wheel

and then the wheels are numbered counter-clockwise. (One can an-

alyze this system usingq = (x, y, θ, φ1, φ2, φ3, φ4) whereφi are the

configurations of the wheels with no substantive change in the calcu-

lations–it is simplified here for purposes of presentation.) The wheels

are locateda units to the front and back of the center of mass andb

units to the right and left. The inertia tensor for the vehicle is simply

G = m dx ⊗ dx +m dy ⊗ dy + J dθ ⊗ dθ wherem is the mass of

the vehicle andJ its moment of inertia about its center of mass. There are two constraints–that the front

wheels cannot slide sideways and that the back wheels cannot slide sideways. Relative to the coordinates

q = [x, y, θ], these can be represented by the covectors

ωf = [− sin(θ), cos(θ), a] ωb = [− sin(θ), cos(θ),−a]

respectively. The force vector fieldsYi obtained by adjointing the input forces from the wheels into the

generalized coordinates are:

Y1 =


cos(θ)

sin(θ)

−b

Y2 =


cos(θ)

sin(θ)

b

Y3 =


cos(θ)

sin(θ)

b

Y4 =


cos(θ)

sin(θ)

−b

 ,

so it is clear thatY1 = Y4 andY2 = Y3.

We now proceed to analyze the slip-steered vehicle. We will make the canonical distinction between

τ(0) (a constraint force) andτ(v 6= 0) (a slipping force) as before, hence leading to four different possibil-
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ities of stick/slip, two for the front wheels and two for the back wheels. We denote the contact stateΣ for

this system to be the four possible choices of sideways slipping and sticking. That is,σ ∈ Σ satisfiesσ = 1

if both constraints are satisfied,σ = 2 if the front wheels are slipping sideways but the back wheels are

not,σ = 3 if the back wheels are slipping sideways but the front are not, andσ = 4 if both front and back

wheels are sliding sideways. We will see thatσ = 1, 2, 3 are all((Uinput,Udisturbance),Ukin)-reducible but

thatσ = 4 is not ((Uinput,Udisturbance),Ukin)-reducible. Lastly, note that if one of the constraints is broken,

and there is a reaction force due to slipping, it will be of the formVf = Pσω
T
f or Vb = Pσω

T
b , wherePσ is

theG-orthogonal projection operator for the contact stateσ (see Appendix).

The underlying dynamics evolve onTSE(2) while the frictional forces aredf,b ∈ R andui ∈ R are

the set of four input forces (elements ofUinput) that can be applied to the body. The kinematics evolve on

SE(2), the contact changes due to friction nominally evolve onΣ = {1, 2, 3, 4} (we will see that 4 cannot

be inΣ), andũ ∈ R4 is a velocity input inUkin.

For each choice ofσ, the equations of motion are of the form

∇σ
q̇ q̇ = PσY1u1 + PσY2u2 + PσY3u3 + PσY4u4 + PσVfdf + PσVbdb.

In the case of this vehicle, the affine connections∇σ are all trivial, as can be verified by calculation of the

constrained affine connection. For each stateσ, we compute the equations of motion separately and test

whether it is((Uinput,Udisturbance),Ukin)-reducible. In each case we first compute the projected vector fields

and then consider whether the system is reducible. (To simplify notation, letkJ = J + a2m in all that

follows.)

6.1.1 Analysis of the Slip-Steered Vehicle

No Slipping (σ = 1): With no wheels slipping sideways we compute the affine connection with bothωf

andωb as constraints and theG-orthogonal projectionP1. The projectionP1 can be computed using the

distributionD = NullSpace([ωb, ωf ]) and its complementD′ = NullSpace(G ·D) (whereG is now the

matrix representation of the tensorG). These allow one to compute the projectionP ′1 = APD
1 A

−1, where
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A = [D|D′] andPD
1 = diag{1, 1, 0} (this should be thought of as the projection in coordinates aligned

with the vector fields that spanD andD′). With this,P1 = (I3×3 − P ′1)G
−1. (The calculations are nearly

identical forP2 − P4. For more information on these calculations, see [5].) This gives us inputs of the

form:

P1Yi =
1

m


cos(θ)

sin(θ)

0

∀i
There are noV input forces because in this contact state the contacts are maintained. Moreover,〈Yi, Yj〉 =

0 ∀i. Therefore, this system is((Uinput,Udisturbance),Ukin)-reducible with dynamics̈q = P1Y1u and reduction

q̇ = P1Y1u, but is clearly not controllable (since there is only one vector field). Hence, it is desirable to

force the vehicle to exitσ = 1 (e.g., if it needs to turn). However, if the difference betweenu1 + u4 and

u2 + u3 is large enough, the stiction constraint force can always be exceeded so thatσ 6= 1.

Front Wheels Slipping (σ = 2): With the front wheels slipping we compute the affine connection with

the constraintωb and the reaction forceVf = P2ω
T
f . This gives us inputs of the form:

P2Y1 = P2Y4 =
1

mkJ


kJ cos(θ) + abm sin(θ)

kJ sin(θ)− abm cos(θ)

−bm

 P2Y2 = P2Y3 =
1

mkJ


kJ cos(θ)− abm sin(θ)

abm cos(θ) + kJ sin(θ)

bm


and〈P2Y1, P2Y1〉 , 〈P2Y2, P2Y2〉 , 〈P2Y1, P2Y2〉 ∈ spanR{P2Y1, P2Y2}, so it satisfies the first requirement in

Eq. (6) to be((Uinput,Udisturbance),Ukin)-reducible. ComputingVf (the reaction force due to the front wheels

slipping sideways), we see that

Vf = P2ω
T
f =


−2a2 sin(θ)

2a2 cos(θ)

2a

 ∈ spanR{P2Y1, P2Y2}

so this system is((Uinput,Udisturbance),Ukin)-reducible with dynamics̈q = P2Y1u1 + P2Y2u2 and reduction
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q̇ = P2Y1u1 + P2Y2u2.

Back Wheels Slipping (σ = 3): The back wheels slipping sideways while the front wheels do not slip is

essentially the same asσ = 2. We get

P3Y1 = P3Y4 =
1

mkJ


kJ cos(θ)− abm sin(θ)

abm cos(θ) + kJ sin(θ)

−bm

 P3Y2 = P3Y3 =
1

mkJ


kJ cos(θ) + abm sin(θ)

kJ sin(θ)− abm cos(θ)

bm


and computingVb we get

Vb = P2ω
T
b =


−2a2 sin(θ)

2a2 cos(θ)

−2a

 ∈ spanR{P3Y1, P3Y2}

leading to the system being((Uinput,Udisturbance),Ukin)-reducible with reductioṅq = P3Y1u1 + P3Y2u2.

All Wheels Slipping (σ = 4): The case where both axles slip sideways is the one of most interest, as

it will turn out to not be((Uinput,Udisturbance),Ukin)-reducible. Since there are no constraints,P4 is simply

G−1. This gives us

P4Y1 = P4Y4 =
1

mJ


J cos(θ)

J sin(θ)

−bm

 P4Y2 = P4Y3 =
1

mJ


J cos(θ)

J sin(θ)

bm


and again〈P4Y1, P4Y1〉 , 〈P4Y2, P4Y2〉 , 〈P4Y1, P4Y2〉 ∈ spanR{P4Y1, P4Y2}, so it satisfies the requirement

in Eq. (6) to be((Uinput,Udisturbance),Ukin)-reducible. Therefore, if there were no other forces acting on the

system, this would be a reducible system. However, computingVf andVb yields

Vf = P4ω
T
f =

1

mJ


−J sin(θ)

J cos(θ)

am

 /∈ spanR{P4Y1, P4Y2}
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and

Vb = P4ω
T
b =

1

mJ


−J sin(θ)

J cos(θ)

−am

 /∈ spanR{P4Y1, P4Y2}

so this system isnot ((Uinput,Udisturbance),Ukin)-reducible. This means that whenσ = 4, a kinematic de-

scription of the system cannot be used for planning or feedback control.

6.1.2 Design implications and Simulations

Now let us use the kinematic description to create a motion planner that is not sensitive to the particulars

of friction in a planar setting. Sinceσ = 1, 2, 3 are kinematic andσ = 4 is not,σ = 4 should be considered

unsafe and avoided. Of course the system is not controllable whenσ = 1, so we should only allow the

system to haveσ = 1 when the vehicle is already oriented properly and does not need to turn.

The approach taken here is to simply initially ignore the fact thatσ changes and pretend that the system

is differentially flat with outputx andy. We construct a path(xd(t), yd(t)) and follow it using the control

law

u1 = u4 = Kθ(θd − θ) +Ksr (13)

u2 = u3 = −Kθ(θd − θ) +Ksr) (14)

whereθd is the desired orientation,r is thex component of the body representation of the desired trajectory,

andKθ andKs are control gains to be chosen. The controlsui are implemented dynamically using Eq. (9)

and the estimation ofσ is achieved assuming full-state feedback so that Eq.(11) can be used withany

nonzero, negative value of the estimated stability marginλ. Note that forKθ andθd − θ large enough, any

finite stictionµS coefficient will be exceeded and the vehicle will leaveσ = 1. Moreover, if the vehicle is

in a state withσ = 4, reducingui (by reducing gains or directly saturatingui in Eq. (9)) will always move

the system back intoσ = 1, 2, 3).

Figure 7 shows simulations of this scenario with a full dynamic model (including the configuration of
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(a) (b) (c)

Figure 7: Simulations of the slip-steered vehicle. The graphs on top show theXY trajectory of the vehicle
and elliptical obstacles it should avoid while the plots on bottom show howσ, the contact state, changes
over time. These simulations show poor performance in (a) due to staying inσ = 1 (an uncontrollable
kinematic state) and in (b) due to transitioning into a dynamic mode where the kinematic plan is not valid.
Saturating the inputs so that the system stays in the kinematic modes leads to acceptable performance in
(c).

the wheels, so thatq = (x, y, θ, φ1, φ2, φ3, φ4) whereφi are the configurations of the wheels). Parameters

came from the vehicle in Fig.2, and were geometry (a = 15cm, b = 10cm), the mass of the body

of the vehicle (mb = 60Kg), the mass of the wheels (mw = 10Kg), radius of wheels (rw = 8cm),

and Coulomb viscous friction (µS = .6N , µK = 1N/(m/s)). The switching inσ (i.e., the automaton

overΣ = {1, 2, 3, 4}) is based on calculating the Lagrange multipliers for the constrained dynamics and

evaluating whether the multipliers exceed the Coulomb friction coefficientµS. All bodies were considered

homogeneous for purpose of calculating their inertia tensors. Figure 7 shows two graphs for three different

situations. The top graph shows thex andy trajectory of the vehicle, with the dotted line being the desired

path and the black line being the actual trajectory. The ellipses are obstacles, and the obstacle-free desired

path(xd, yd) was computed using a potential-based planner [11]. The bottom graph showsσ as a function

of time.

Figure 7(a) showsKθ = 2000 andKs = 0.005 (these differences in magnitude are due to choice of

units). BecauseKθ is too small, the vehicle never leavesσ = 1 and crashes into an obstacle. Figure 7(b)
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shows a more aggressive controller ofKθ = 3000 andKs = 0.01, and we see the vehicle gets off course

because of sideways slip and again runs into an obstacle. It generally has bad dynamic behavior (later

it runs in a loop sliding sideways), indicating that a controller would need to take dynamic effects into

account. Figure 7(c) shows an even more aggressive controller ofKθ = 8000 andKs = 0.013 where now

the velocity commands are saturated if they are going to push the system intoσ = 4. Hence, not only

do we see successful avoidance of obstacles, but we additionally see that the system never entersσ = 4.

Notice that this implies that “fish-tailing” (where the back wheels slide sideways) is fine from a kinematic

perspective whereas all wheels sliding sideways is not acceptable in terms of kinematic analysis.

Note that we cannot ask for anything more than bounding the error because there is always a suf-

ficiently low orientation error that we enterσ = 1 (where we cannot stabilize to the trajectory), hence

leading to substantial error even in Fig. 7(c) between100m and200m in x andy and between times30s

and50s when the vehicle is staying inσ = 1. Nevertheless, even this naive controller with only mini-

mal representation of the underlying frictional dynamics functions well enough to ensure adequate path

following.

They key point is that planning for this vehicle can be done on a purely kinematic basis so long as

σ = 1, 2, 3. This condition requires a slight modification to ensure thatσ 6= 4, but does not require any

detailed information about the mechanical contact.

The last thing to note is that the bottom plots ofσ versus time give a good indication that fully modeling

τ ∈ L is not necessary for purposes of estimatingσ; σ evolves rather slowly. We will discuss this more in

detail in the next section on actuator arrays.

6.2 Actuator Arrays

Consider Fig. 8. In this schematic we see a chip on an insulating layer that is actuated by nine SDAs

(discussed in Section 2). Each SDA is capable of moving in the direction of its long axis and is in principle

constrained to not move sideways. If it does move sideways, a reaction force occurs due to the sliding.

Such a chip can be viewed as a micro-scale vehicle capable of “driving” on the insulating layer [13], or, if

flipped over, could function as a manipulation surface. Now we ask whether such a chip can be represented
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as a kinematic system.

Assume that the chip has massm and rotational inertiaJ , so that when we write the coordinates of

its body frame relative to the world asq = (x, y, θ), G = m dx ⊗ dx + m dy ⊗ dy + J dθ ⊗ dθ. The

dynamics evolve onTSE(2) and the friction reaction forces are inLr, wherer is the number of actuators.

The kinematic equations evolve onSE(2) andΣ is a finite set that describes the total number of contact

states for the system. For simplicity, assume that the SDA actuators are themselves of negligible mass and

SDA Chip

Insulating Layer

SDA

Figure 8: Array of scratch drive actuators

that they form a point contact with the insulating

layer. Then, the equations of motion can be written as

∇c′(t)c
′(t) = uaYa + dbVb. In this equation theua corre-

spond to each force being produced by the SDAs and the

Ya transform these forces into the body frame while re-

specting any constraints imposed upon the system. Such

constraints arise from no-slip contact between the insu-

lating layer and the actuators. Thedb represent reaction

forces due to slipping along the insulating layer when such a constraint is violated. We now analyze

whether a planar array of alternately orthogonal actuators (such as those seen in Fig. 8) is kinematic.

Proposition 6.1 An object manipulated by a planar array of alternatively orthogonal actuators has dy-

namics that are both(Uinput,Udisturbance)-reducible and((Uinput,Udisturbance),Ukin)-reducible.

Proof: Note that we cannot explicitly compute all possible equations of motion for an infinite array of

actuators. Instead, we implicitly show that the conditions for reducibility are met. First, it is clear that the

system is(Uinput,Udisturbance)-reducible. This follows from the fact that in the body frame any reaction force

due to friction is a vector inR3 ∼= se∗(2) (the dual to the Lie algebra ofSE(2)), and the forces coming

from the actuators spanR3. This fact is not surprising because the system is massively overactuated, but

it is unfortunately also not terribly helpful due to the fact that we cannot reliably compute the reaction

forces.

We are now left with the question of whether the pictured SDA chip is((Uinput,Udisturbance),Ukin)-

reducible. Note that if we represent the chip as a rigid body with configuration inSE(2), any force vector
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~f at an actuatorAi can be represented in the inertial frame by a wrench inse∗(2), namelyAdT
gWBgBAi

~f .

In this formulagWB is the rigid body transformation from the world frame to the body frame,gBAi
is the

rigid body transformation from the body frame to the actuator frame, andAdgXY
is the adjoint transfor-

mation mapping velocities in theY frame to velocities in theX frame. (For an elementary presentation of

these computations, see [19].) Hence, if we assume that forces (from constraints or from actuation) occur

at the site of actuatorsAi, we can compute their forces in the common inertial frame, and thus compute

uaYa + dbVb. Say that we choose three actuators,A1,A2, andA3, each with coordinates in the body frame

(ai, bi, ψi), whereψi are multiples ofπ
2

(since the actuators are all orthogonal). Then, if we assume that

the location of the body in the world frame is(x, y, θ), the representation of each of the forces in the world

frame can be written asAdT
gWBgBAi

~fi = [cos(θ+ψi),− sin(θ+ψi), y+b cos(θ)+a sin(θ)]T . If we take the

determinant of the matrix[AdT
gWBgBA1

~f1, Ad
T
gWBgBA2

~f2, Ad
T
gWBgBA3

~f3] we find that it is nonzero as long as

ψ1 6= ψ2. Hence, alternately orthogonal is not really a necessary condition–instead alternately skew is

necessary.

First, what does this mean if there are no constraints (i.e., no slipping orthogonal to the actuators).

Then for the proper choice of actuators,R3 = T(x,y,θ)SE(2) is spanned by the force vector fieldsuaYa, so

the system without disturbance forces is(Udyn,Ukin)-reducible by Lemma A.2 (in Appendix) which implies

that with forces it is((Uinput,Udisturbance),Ukin)-reducible by Lemma 4.3. If there is only one constraint, then

for the proper choice of input forcesua that constraint combined withYa spanR3, implying by similar

logic that the dynamic system with disturbances is((Uinput,Udisturbance),Ukin)-reducible. The argument for

two constraints is identical. For three independent constraints, the chip is completely constrained not to

move.

Hence, an array of actuators manipulating an object is always((Uinput,Udisturbance),Ukin)-reducible to a

kinematic system of the form in Eq. (4). Moreover, as the contact states change, the kinematic system will

change. This means that the effects of friction on the dynamics of the chip are now completely encoded in

the switching ofσ from one set ofkinematicequations to another over time. This situation has well-defined

control strategies, as discussed next.

25



Table 1: Orthogonal Actuator arrays (like those seen in Fig. 8 and Fig. 8) have all kinematic states, many
of which are redundant. This figure shows the four distinct equations of motion that can occur. Note that
so long asu(1,1) (= u(−1,−1)) andu(−1,1) (= u(1,−1)) are nonzero, the four states can be distinguished from
state output. In fact, just observation ofθ is sufficient for distinguishing the states. Moreover, this system
can be stabilized to the origin using the control law shown and an estimate ofσ [15].

σ Equations of Motion Control Law

σ = 1 q̇ =

 −1
−1

0

u(1,1) +

 1
−1

1

u(−1,1)
u(1,1) =

−kθ (θ+x−y)+k (θ2+x2+y2)
x+y

u(−1,1) = −kθ

σ = 2 q̇ =

 −1
−1
−1

u(1,1) +

 1
−1

0

u(−1,1)

u(1,1) = kθ

u(−1,1) =
kθ (θ+x+y)−k (θ2+x2+y2)

x−y

σ = 3 q̇ =

 −1
−1

0

u(1,1) +

 1
−1
−1

u(−1,1)
u(1,1) =

kθ (θ−x+y)+k (θ2+x2+y2)
x+y

u(−1,1) = kθ

σ = 4 q̇ =

 −1
−1

1

u(1,1) +

 1
−1

0

u(−1,1)

u(1,1) = −kθ
u(−1,1) =

−kθ (−θ+x+y)−k (θ2+x2+y2)
x−y

6.2.1 Stabilization of Manipulation Using Arrays of Actuators

Consider a desired equilibrium point on an alternately orthogonal array. It has contact actuators located

at (2i + 1, 2j + 1) with i, j ∈ N. Their orientations relative to the world frame are alternatelyπ
4

and

−π
4
, and the applied force is always in the direction of thex-axis of the local actuator frame. We will

denote the velocities of these actuators byu(2i+1,2j+1) and the applied force byu(2i+1,2j+1). The system

is ((Uinput,Udisturbance),Ukin)-reducible by Prop. 6.1, so long as the contact interfaces aredissipativewhen

slipping is occurring (i.e., the reaction force is nonzero and in the opposite direction of the slipping). The

dynamics are of the form

Mq̈ =
∑

(2i+1,2j+1)

AdT
g(2i+1,2j+1)


1

0

0

u(2i+1,2j+1) + AdT
g(2i+1,2j+1)


0

1

0

 d(2i+1,2j+1) + ΛTω(q)T (15)

whereq = (x, y, θ), ω(q) is the set of constraint covectors,gi is the rigid body mapping from the world

frame to the actuatori frame,Λ is the vector of Lagrange multipliers, andM = diag{m,m, J}. The
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Lagrange multipliers are solved for using the constraint equationd
dt

(ω(q)q̇) = 0. Additionally, all the

nontrivial, non-overconstrained kinematics when the center of mass is near(x, y) = (0, 0) are of one of

the four forms in Table 6.2.1 [15,17].

For each of the four models in Table 6.2.1 a control law is calculated from the Lyapunov function

k(x2 + y2 + θ2) (wherek is some constant to be chosen during implementation) by solvingV̇ = −V for

u(2i+1,2j+1) subject to the constraint that actuators with the same orientation have the same velocity com-

mandu. Hence, there are two unique inputsu(1,1) andu(−1,1) in the kinematic description, and including

more does not produce additional trajectories [15, 17]. Moreover, by virtue of the design methodology,

there is a common Lyapunov function. This was shown to provide global stabilization to(0, 0, 0) for the

kinematic system in [15,17].

Figure 9 shows three simulations of an actuator array near a desired equilibrium. For each simulation,

going from left to right, theXY location of a manipulated object is shown, the orientationθ, the evolution

of σ, and the response of the actuator at(1, 1) in the dynamic simulation as it tracksu(1,1). The four

actuators near the equilibrium dominate the motion, and the rest are kinematically constrained to match

the speeds ofu(1,1) andu(−1,1). We use Eq. (9) to implement the commandsu(2i+1,2j+1) with a control

gain ofK = 10 for three different friction laws–Coulomb friction, viscous friction, and stiction, as in

Section 3.1. Again the contact state is estimated using Eq.(11) with full-state feedback. All the responses

have an initial condition of(x0, y0, θ0) = (0.5, 2, π
2
) and the goal is to stabilize to the origin(0, 0, 0). All

responses are qualitatively similar despite the differences in friction law in the actual implementation.

The key is that despite changes in the characteristics of friction, the controller computed based on the

kinematic equations of motion (which only needs to estimateσ) performs well (and similarly to the macro-

scale experimental work in [17]). This is because all possibleσ yield kinematic equations of motion that

can be stably implemented using Eq. (9).

Lastly, note thatσ does not change very quickly in this setting, just as it did not change very quickly

in Fig. 7 in Section 6.1. Moreover, looking at the kinematic equations of motion, we see thatσ can be

estimated based onθ measurements alone (so long asu1 6= u2 andu1, u2 6= 0). In this case sensingθ at

10 Hz would be more than sufficient for purposes of capturing theσ changes. In comparison to directly

27



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9: Three simulations with different choices of friction model. From left to right, the plots are the
XY trajectory of an object supported by an actuator array, the orientationθ as a function of time, the
kinematic stateσ as a function of time, and lastly the response of the actuator at(1, 1) as it tracks the
desired velocityu(1,1). The simulations are for viscous friction (a-d), Coulomb friction (e-h), and stiction
friction (i-l). Parameters used werem = 1, J = 5, µS = 1.1, µK = 1, andK = 10 in Eq. (9).
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identifying τ ∈ L, which often requires sampling rates at 1 KHz or more, this is clearly superior from a

sensing perspective.

7 Conclusions

This paper considers the use of a canonical distinction between slipping frictional forces and nonslipping

frictional forces for purposes of motion planning and control for mechanical contact systems. Geometric

kinematic reductions play a central role in why this choice is effective in generating useful descriptions

of a system, even when a system experiences stick/slip phenomena (which are typically thought of as

being dynamic). Both planning and stabilization can be computed in the kinematic setting, and then im-

plemented in the underlying dynamic space through the use of a stable plan, typically just a backstepping

controller in the context of the work presented here. These techniques are illustrated on two example sim-

ulations–a slip-steered vehicle and an actuator array. Lastly, the kinematic equations have more limited

sensing requirements, both in terms of spatial resolution and temporal resolution. Ongoing work targets

demonstrating these results in hardware experiments.
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A Background: Kinematic Reduction

In discussing kinematic reductions, we follow [5, 6]. Asimple mechanical control systemconsists of a

manifoldQ of dimensionn, a Riemannian metricG that defines the kinetic energy, a set of constraints

represented as a constraint distributionD, and a set of external forces. Associated with a Riemannian

metricG are what are calledChristoffel symbols.

Definition A.1 TheChristoffel symbolsassociated with the metricG are

GΓi
jk =

1

2
Gil

(
∂Gjl

∂qk
+
∂Gkl

∂qj
− ∂Gjk

∂ql

)
(16)

where summation over repeated indices is implied used unless otherwise stated, and upper indices indicate

the inverse.

Also associated with the Riemannian metric is theaffine connection, which assigns to a pair of vector

fieldsX andY another vector field∇XY . This is referred to as thecovariant derivativeof Y with respect

toX.

Definition A.2 In coordinates, the covariant derivative ofY with respect toX is

G∇XY =

(
∂Y i

∂qj
Xj + Γi

jkX
jY k

)
∂

∂qi
(17)

With this, the Euler-Lagrange equations can be written as

G∇c′(t)c
′(t) = ua(t)Ya(c(t)) (18)

wheret 7→ c(t) is a path onQ andc′(t) = d
dt
c(t) [5, 6]. In this equationG∇ is the constrained affine con-

nection associated with the Riemannian metric (kinetic energy)G andYa are force vector fields associated

with forcesua. In coordinates this is written as:

q̈i + GΓi
jkq̇

j q̇k = uα Y i
α. (19)
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Constrained systems, those control systems whose trajectories must lie in some distributionD, can

also be described by Eq. (18). However, the affine connection must be modified in order to incorporate

the constraints. LetD be a distribution onQ and letD⊥ denote theG-orthogonal complement ofD.

Moreover, letP : TQ → TQ be aG-orthogonal projection operator ontoD and letP ′ : TQ → TQ

be aG-orthogonal projection ontoD⊥. Lastly, letA(q) be any invertible(1, 1) tensor field onQ and let

B(q) be its inverse. Then, the Euler-Lagrange equations can be written as Eq. (19) where the Christoffel

symbols are:

AΓi
jk = GΓi

jk +Bi
l

∂(AP ′)l
j

∂qk +Bi
l
GΓl

km(AP ′)m
j −Bi

l
GΓm

kj(AP
′)l

m

where, again,A(q) is any invertible(1, 1) tensor onQ. In order to add forces, we must ensure the forces

comply with the constraints. Hence, the final equations of motion are:

G∇c′(t)c
′(t) = ua(t)PjY

j
a (c(t)) (20)

or in coordinates:

q̈i + AΓi
jkq̇

j q̇k = uα PjY
i
α. (21)

Therefore, simple mechanical control systemsall can be represented using an affine connection. For more

details and examples worked out in detail, refer to Bullo and Lewis [5].

We know that Eq. (18) is a second order differential equation evolving on the manifoldQ. On the other

hand, given input velocitiesuα, kinematicequations can be written in the form:

q̇(t) = uα(t)Xα(q(t)) (22)

Our goal in this section is to formally reduce Eq. (18) to Eq. (22). If{Xi} are kinematic vector fields and

{Yj} are dynamic vector fields, we let thedistributionsDkin andDdyn be defined byDkin = spanR{Xi}

andDdyn = spanR{Yj}. A solution to a control system is defined as follows.

Definition A.3 Let Σs be a smooth control systeṁq = f(q, u) on a smooth manifoldM and letu ∈

U ⊆ Rm. A (U , T )-solution to Σs is a pair (c, u), whereu : [0, T ] → U and c : [0, T ] → M satisfy
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c′(t) = f(c(t), u(t)).

Note that Def. A.3 only makes sense for first order equations evolving onM and Eq. (18) is a second order

differential equation evolving onQ. Hence, we must rewrite Eq. (18) as a first order equation evolving on

TQ. To do this, we must use thevertical lift, defined by

verlift(X)(vq) =
d

dt
|t=0vq + tX(q),

and thegeodesic spray, defined in coordinates by

Z = vi ∂

∂qi
− Γi

jkv
jvk ∂

∂vi
.

Now let τQ

τQ : TQ → Q

vq 7→ q

denote the tangent bundle projection. Then, Eq. (18) written as a first order system evolving onTQ is

v̇(t) = Z(v(t)) + ua(t)verlift(Ya(τQ ◦ v(t))) (23)

wherev(t) ∈ TQ. We now can define what it means for a mechanical system of the form in Eq. (18) to be

(U ,U)-reducible to Eq. (22).

Definition A.4 Let∇ be an affine connection onQ, and letU andU be two families of control functions.

The system in Eq. (18) is
(
U ,U

)
-reducibleto the system in Eq. (22) if the following two conditions hold:

i) for each(U , T )-solution(η, u) of the dynamic Eq. (18) with initial conditionsη(0) in the distribution

Dkin, there exists a
(
U , T

)
-solution(γ, u) of the kinematic Eq. (22) with the property thatγ = τQ◦η;

ii ) for each
(
U , T

)
-solution(γ, u) of the kinematic Eq. (22), there exists a(U , T )-solution(η, u) of the

dynamic Eq. (18) with the property thatη(t) = γ′(t) for almost everyt ∈ [0, T ].

34



Condition i) says that for every solution of a dynamic system there must exist a kinematic solution that

is the projection of the dynamic system. In the case of a vehicle, this corresponds to requiring that for

every trajectory of the vehicle there exists a correspondingpath that can be obtained from kinematic

considerations alone. Condition ii) says that for every kinematic solution there must exist a dynamic

solution that is equal to the kinematic solution coupled with its time derivative (so that it lies inTQ). This

means that there must exist a dynamic solution for every feasible kinematic path.

Let χ∞(D) denote thoseC∞ vector fields taking values in a distributionD. The following theorem

states the local test for Eq. (18) to be(Uinput,Uinput)-reducible to Eq. (22).

Theorem A.1 (Lewis [6]) Let∇ be an affine connection, and letY1, . . . , Ym andX1, . . . , Xm be vector

fields on a manifoldQ. The control system in Eq. (18) is(Uinput,Uinput)-reducible to a system of the form

in Eq. (22) if and only if the following two conditions hold:

i) spanR{X1(q), . . . , Xm(q)} = spanR{Y1(q), . . . , Ym(q)}

for eachq ∈ Q (in particular,m = m)

ii ) 〈X : Y 〉 ∈ χ∞(Ddyn) for everyX, Y ∈ χ∞(Ddyn) where〈·, ·〉 is the symmetric product of vector

fields defined by

〈X : Y 〉 =G ∇XY +G ∇YX (24)

This theorem says that if the input distributions of both the kinematic system and the dynamic system are

the same and the dynamic system is closed under symmetric products, then the system is kinematic. The

following Lemma (from [18]) is a particularly useful result that we will use repeatedly in our analysis of

the examples.

Lemma A.2 Given a “constraint distribution”Dcon ⊆ TQwhich annihilates the constraints{ωj} and an

input distributionDdyn, if Ddyn = Dcon the mechanical system described by∇q̇ q̇ = uαYα is (Uinput,Uinput)-

reducible.

This says that whenever when the constraint distribution is covered by the input distribution,(U ,U) re-

ducibility of a multiple model mechanical system is guaranteed regardless of the metricG.
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