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Abstract— Many cooperative control strategies focus on sta- mechanism should dictate task specification to the minimum
bility concerns to the deficit of global structure in a distributed  extent possible.
cooperation task. We present a method of ensuring provable To this end, we have developed a coordinated control

convergence of decentralized switching systems using ad-hoc . . .
definitions of proximity graphs, where convergence is measured algorithm that operates in the following context. Assumg th

by a potential function defined on the graph. The method @ graphG can be computed given the state of every agent and
depends on the proper filtering of the time-varying proximity  that the goal is to minimize this potential. For instanceshsu
graph structure so as to maintain convergence characteristics. g potential could be a measure of deviation from a desired
We demonstrate the approach with an underactuated system. distance between two agents, in which case minimizing the
potential corresponds to successfully creating a formatio
However, allowing arbitrary switching in the graph due
We present a technique that uses a locally-defined energtate changes—and corresponding changes in the contiol-ca
function that leads to a guarantee that a potential globallyotentially lead to instability. Filtering the changes imet
defined for the system converges for the coordinated contrgfaph in such a way that convergence of the state-dependent
algorithm in the face of arbitrarily changing proximity gta  potential is ensured avoids this issue. This is the topihef t
structures. The adaptive control system weighs the chgngipresent paper.
network with internal models of the system in order to
provide converging responses with acceptable performancdl- M OTIVATING EXAMPLE: CONNECTIVITY USING THE
This is accomplished through an internal estimate of the GABRIEL GRAPH
stability margin along with the use of consensus for purpose Let R be the set of agents. Létbe the set of graphs over
of performance improvement. Depending on the controllehe verticesR. Let the sensor graphGs be a graph where
chosen, this can be achieved using linear controllers witR is the vertex set, and there is an edge (or “link”) between
guadratic Lyapunov functions. two verticesr; andre € R iff agentsr; andr, can both
This work is in contrast to other approaches that focusense each other. Let tlentrol graph (also referred to as
on nonsmooth analytical approaches to showing stabilithe neighbor graph G be a graph where is the vertex
and convergence. The advantage of the approach we shset, and there is an edge between two vertigesndry € R
here is that it does not depend on any particular proximitiff agentsr; andr, are interacting for control purposes. To
graph structure, and correspondingly does not depend smplify notation, we will understand to be the edge set
any particular potential function for potential-based noets. of Gg, NV to be the edge set afy, and S; and N; to the
Proofs of stability have been produced for such systenmrresponding set for a given agentThe graphGy will
(e.g., [1], [2]), but typically these proofs impose consttea be defined by a time-varying switching functien which
on the dynamics of the system and the proximity graphwve will describe in terms of a graph construction algorithm.
For example, the results in [1] apply only to a specifidNote that/N (the set of neighbors used in the control law)
potential function on the unit-disk graph, and the resuits iis necessarily a subset 6f (the set of sensed neighbors).
[2] apply to another particular potential function on a Viood A Gabriel graph [3], [4], [5] is a grapiGy(x(t)) that
graph. The difficulty associated with these prior works &t th dictates which data is incorporated into the control laws.
the stability results leave little room for task specifioati There is a link between agentd and B if and only if
tasks must be framed in terms of what can be achievddr all other agentsZ, the interior angle/AZB is acute.
in a stable manner and may therefore be limited to stablquivalently, there is a link between agertsand B iff there
area coverage or “flocking” through a series of obstaclesre no other agents within the circle with diameteB.
Moreover, the task specification will likely change over The Gabriel graph switching function provides many ad-
time, thus introducing discrete changes into the equatiomantages; chief among these is provable connectivity of the
of motion. Finally, heuristics that are not easily combinedjraph [4]. The Gabriel graph is also well-suited to prowvigdin
with these approaches are often helpful for various taskaniform coverage of an area, as it creates a mesh of acute
such as collision avoidance and other safety-critical eleis triangles. The Gabriel graph is a planar graph [4], so it
of the task specification. The key point is that the contrafloes not suffer from high edge density when the agents
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are close together. However, the Gabriel graph depends ofias a means of “filtering” the effects aff based on a
links being created wittnon-zero virtual potentialthat is, stability condition.
the potential function defined on the graph will generally We show here that if one has a stable cooperative system
jump up when an edge is generated between two verticksr each possible network statéy, then one may use an
i and j. This complicates any proof of stability, as virtualadaptive control strategy to guarantee stability in a deakn
energy may be added to the system as the topology (aiwkd manner. In particular, the idea is to associate wittheac
therefore the control law) changes. Even for linear, stablggenti a value E; which is defined as the solution to the
systems, arbitrary switching can lead to instability. Tisis following differential equation, wherés; has an arbitrarily
what we wish to avoid in a completely generic manner.  chosen nonnegative initial value.

In our approach to showing convergence, instead of com-

puting a limit on the switching frequency explicitly, we use ~ Ei(t) = —ked;(t) if no switch in graph occurs
a notion of a global “energy reserve” (first introduced in  E;(t) = lim E;(f) — AV otherwise
[6], [7]) to create a convergence-guaranteeing limitinfgtf t—=tm

on the switching rate. (The idea behind this name is that {{herek, > 0 is the same constant for all agerfisy k. < 1

a switch will increase the value of the Lyapunov function(ijs will be formalized shortly in Egs. (5) and (6)). The wel

there must be enough energy reserve to compensate [pris a local conservative estimate of the stability margin of

this increase.) We find this approach intuitive and moreovepe system, and is critical to maintaining stability. Théuea

straightforward to implement in our distributed scenarios g, s initialized to a nonnegative value and then evolves

which switching events are detected locally. Although anyccording to Equation 5 as long as the network topology is

global quantity can be problematic, we will demonstrate tha,ot changing. Whenever there is a switéh,is re-initialized

a local estimate of this quantity based upon a zero SUgg the value given in Equation 6 by subtracting”. We call

consensus algorithm is sufficient to establish convergencer the local energy reserveand it should be thought of as
a local estimate of stability margin relative to thbrid

[1l. PROBLEM DESCRIPTION system. (Moreover, we will see that replacifg with an
estimate ofF; can be shown to provide global stability so
The general problem we wish to address is how ONRng as the estimate is conservative.)

takes a control law calculated using a proximity graph Thjs prings us to the simple change necessary to stabilize

definition that depends on the state and implements it on gge system. The modified contralx(G ), X(t)) is identical

underlying dynamic, cooperative system. The translatito i . u(Gy,x(t)), except for the added condition that any

physical actions should take into account stability, $itgbi \vitch in the control graph that would cauge < 0 is

margin, and correctness (in terms of successfully comueti prohibited. This result provides guaranteed convergeae,

a command or returning a failure result). In this paper Wepne is guaranteed to eventually be able to implement any
focus on stability _(at least in the classmal_ !lnear system&rath_ It is worth noting that the evolution of is only
sense of bounded input bounded output stability). We addregse in the calculation of—it doesn't affect which controlg

the issue of margin as a natural byproduct of how we solVgre agmissible for the system. Additionally, this compotat
the stability problem. We do not address correctness, #oug; yecentralized: agents only need access to local vales

it is an important problem. However, the method presented and |ocal estimates of changes in the Lyapunov functions
here allows one to specify arbitrary proximity graph rulesgs the network topology changes.

hence potentially moving the correctness question into the The key idea is that we are using the evolution of

graph design domain. the energy reserve?; to systematicallyblock changes in
The primary difficulty is that a control(G,x) (where  hroximity graph if they will lead to instability (that isy

G € G is a graph and is the state) that has no informationp|ocks new graphs until stability can be ensured). However,

about low-level convergence characteristics may have to *Pg‘?pically u(x(@),z) = wu(G,z) in systems that do not

modifiedto preserve convergence. Hence, we will require §5ye aggressive controller gains [6]. Henge, though a

mapping X: g : g i that maps alesired proximity ~ conservative approach to preserving stability, often duss

graphG to a stably implementable proximity graghg. An come into play.

example of such a motivating scenario is discussed in the

next section. IV. GENERAL RESULT
We would like to have a system that has provable high- consider a set of agent8 and a time-varying switch-
level properties (e.g., connectivity of the network toplp , c:R — G , o
ing signal that determines the proximity

while maintaining low-level characteristics such as sitgbi t — Gy
(of the physical system), stability margin, and perfornencgraph and is constant except for discrete changes at times
metrics. The basic approach is to translate the proximit...t,, on the intervalty,ts]. Assume that the state for
graph G to an alternativeGg by using a mappingy that each agent is x € M, the governing equations ase =

is essentially a dynamically updated guard condition thaf(x), and that the switching function changégsover time,
protects the stability of the system. Hengemay be thought o : (x,t) — f. The equations of motion of interest are as



follows: E=>E (10)

. 1ER
. _x (o) <T @) We vinI cgll E the global energy reserve .
Wi w(x(G),x(t)) 7(o)>T This brings us to the graph filter definition that provides

- , , convergence, defined by
wherew; stabilizex for each choice of7, 7(o) is the length

of time since the last change in the network topoldyy; (G(), X(), 1) = { G  FE >0
andT is a time-delay before. can decrease the Lyapunov N lim;_,— x(G(¢),x(¢),t) otherwise.
function. The filtery will be defined shortly. We assume that
for each time intervalt;...t;41) (we will call this interval

7j), there exists a global p_otential functidﬁa(m such that is prohibited. Note that the value df; cannot decrease in
V() Is positive-definite,V, ) is negative semi-definite, e apnsence of switching if; < 0 for all i (this can be
and V() is bounded. (This is satisfied, for instance, undefought of as a conservative estimate of the stability margi
the conditions on the graph Laplacian discussed in [1].) Wgf the system for a graph at tim Also, this computation is

define the overall potential functioV, ) to be equal to gecentralized; the agents only need access to the locas/alu

The filterx is an identity ong, except for the added condition
that any switch that would causk; < 0 for any agenti

Vo(r,) On the interval(t;..t;,,), for all 5. E;, d;, ands;.
Define the quantitys; such that: The immediate consequence of modifyingin this way
1 is that £ > 0, since it is the sum of all nonnegative terms.
si(t) = = Z (liﬂ} P(xi,xj) — lim P(xz—,xj)> , It follows from Equations 9 and 10 and the definitionsspf
2 jen; N\ttt t—tT ands; thatE > E. Thus if E > 0, thenE > 0 as well. This

(3) allows us to prove the following statement.
where P(x;,Xx;) is the potential between agemtand j. Theorem 4.1:The states in the system in Eq (1) and (2)
Moreover, each agent can determine an estirbageich that all converge to a state of of unchanging potential for any
Y icr % = D ;e i (often for our purposes; = s;). This  sequence of graphS(t).
quantity captures the instantaneous change in potent@l du  Proof: For purposes of notational simplicity, we will
to the link switching. The factor of 1/2 is present becaustake V to denoteV,, for the remainder of this section
each link connects to two agents, and thus will be countaghless otherwise specified.
twice. It is thus easy to show that the following holds: We start with the cas& = 0 and then adapt accordingly
. . for the casel’ # 0. On a time interval going front, to
i;%si - }E}UVUW - tlffi (Vo) ) t¢, let the proximity graphG (¢) change at times;. We will

) ) o show stability of the system using the functid™, defined
Associate with each agent valueE; which is called the 4.

local energy reseryeand is defined as the solution to a dif- W=V4+E
ferential equationE; has an arbitrarily chosen nonnegative
initial value and evolves according to the following: The functionV is positive-definite on any intervét;, ¢; 1)

) 0 if s,(t) =0 andr(c) < T py the assumption thgt for ea_ch sFa_tic choi.cethe system
Et)=< , ; o (5) is stable with negative semi-definite derivative. Moreover
ked;(t) +w; if s;(t)=0andr(c) >T , C L
since E > 0 by definition, it is clear thatW > 0.
Differentiating, we see that on any intervéd;, t;11) on
which there are no switches:

E;(t) = lim E;(f) — s;(t) otherwise (6)
t—t—

wherek, is a global constant) < k. < 1 and)_, w; =0

(which will show up as a zero-sum consensus [8] term later). W=V+E.

Notice thatF; is initialized to a nonnegative value and then
evolves according to Equation 5 as longsasis zero (that Note that

is, on intervals with no switches). Whenewgr#£ 0 (there is S S g o g
a switch), E; is re-initialized to the value given in Equation E= ZEZ N Z Fedi + w; = Z ed; (11)
6 i€ER i€ER i€ER
Each agent maintains a local estimate which is initially ~because of the zero-sum property. Substituting Hofwith
greater than zero and evolves as follows: T = 0) gives:
S 0 if $;(t)=0and7(o) <T W=V+ —kod <0 12
Ei(®) { Chody(t) +w; if &(t) = 0 and (o) > 7 () %; =0 (12)
Ei(t) = glir?f E(t) — 5i(t) otherwise ®) sowis negative definite on the intervél;, t; 1) Vi.
Let the global values? and £ be defined such that OfTS?.address the timés, we must look back to the definition
E=)E 9) lim V(i) = lim V() + Y s(t).

L b
i€R t=t it i€R



Thus, at any instant when a switch occurs (that is, whenHence, we need to evaluafe and V.

any s; # 0), Now consider a time intervalt;..t; ). First, letT <
lim W) = lim V(i +Zsl tis1—t;. ThenE =0on(t;.t;+T) andE = 3, p —ked;
i—t+ Fot— et on [t; + T..t;+1), henceE < 0 on the complete interval.

Under these same condition¥, a new Lyapunov function
has derivative—%x"% whent € (t;,t; + T) and W =
lim W(f) = Jim V() + > silt)+ Jim. BE() = si(t) Yien(l = ke)d; whent € (t; + T,t;11). Therefore, on
t—t+

Substituting forE' from Equation 6,

i€R icR this interval a differen¥/(¢) (corresponding to the Euclidean
S . (13)  norm onR?) is decreasing. In the case tHAt> ¢;,1 — t;,
which simplifies in the following way: E =0 on that interval. We simply consider the next tihe
lim; ,+ W(#) = lim;_,- V(¢) +lim;_,_ E(f) such thatt; + T € (t;,t;11). Then, by the logic just given,
= lim;_,- W(?) we haveW < 0 and are done. ]
(14) Note that in the proof of Theorem 4.1 we are effectively

Thus, the discontinuity inW has been removed, as thechanging both at what time changegirare allowed to occur
limits from both sides are the same. Further, siféeis and potentiallyif they are allowed to occur if the deldy
negative semi-definite by assumptioh, < k. < 1, and s too large. However, it is important to notice that network
V < > icr ked; <0, it must be the case thaV is negative dropouts do not affect the analysis; a link can always be lost
semi-definite. because that will only decrease potential energy assdciate
We now follow the proof of Barbalat's lemma [9], which with the control, but it may not be possible to add it back in.
states that iff(¢) is lower bounded(t) is negative semi- |f a communication is re-established, the link still may not
definite, andf (¢) is uniformly continuous (or equivalently, be added back into the control graph; thus, it is possible to
f(t) is finite), then f(t) approaches zero asapproaches control the switch in the positive direction. In generalisit
infinity. Unfortunately, Barbalat's Lemma as stated does niecessary to define systems such that uncontrollable events
apply to our system because at the tintgsthe function cannot increase the overall potential.
W (t;) discontinuous. However, these discontinuities are Now we may state the algorithm for ensuring convergence

Separable, a.”OWing the basic result to still hold. The truﬂ'] the face of arbitrary time_varying proximity graph topoi
generalization of Barbalat's lemma requires the technicgjies,

use of meagre functions [10], which are heavy machinery
for what (for our purposes) is a reasonably straight forward
result. We will show thatW — 0 ast — . To see this,

supposeW did not go to zero as as — co. Then there Given a proximity graptG (x(¢)):

Algorithm for Filtering Proximity Graphs

exists a sequence of timeég — oo such thatfW| > ¢ v 1) Choose a set of initial valuek; greater than
n € N. On all intervals[t;, t;+1) W is bounded, so on these Zero;

intervalsW is uniformly continuous. Because of this, there 2) UpdateFE; using Eq. (7) and (8);

exists ad such thatit, —t| < = [W(t,) — W(t)| < ¢/2 3) Apply x to G(x(t)) using E;

on any interval that does not includg We know thatW 4) Calculate the control law using x(G(x(t))).

is integrable by the existence A&V (which is bounded
below by 0 and above bylV (0 )) which means that the Note that the algorithm is completely decentralized and
quantity |f(t "Wt — t"” Wdt| — 0 asn — oo. oOnly adds one stateF) to each vehicle that needs to be
Hence, |ft "Wt — 0 aSn - o0, which implies that Maintained.

ff”‘s [W|dt — 0 asn — oo (since W < 0). Now, if

ti € [tn,tn + 6], the value ofW( ;) does not affect the V. EXAMPLE: CONNECTED TARGET TRACKING WITH

integral sinceW( ) c co{llmt_>t+ W( ) hmt—>t‘ W( )} UNDERACTUATED DYNAMICS USING FILTERED GABRIEL

GRAPHSINTERACTIONS
Hence, ft”+6 (Wt = [+ t”+6 |W|dt >

6% €(6— 6t ) _ 65 This contrad|cts the convergence of the We now introduce an example that takes advantage of
Riemann mtegral and therefore contradicts the integitgbil Thm. 4.1. We assume we have each agenwith the
Hence,W — 0 ast — oo. It follows directly (sinceE — 0 normalized nonholonomic vehicle dynamics:

ast — 0) that Vg(t) — 0 ast — oo. That is, all agents

reach a state of unchanging potential. T % Y% T C,Os(z)“il 15
To address the case whefe # 0, we simply need to y.l, = ”f zfg = sin( i)ul (19)
confirm thatW < 0 when usingu; (x(Gn (t)), x(¢)). Again, 0 = vy vy = U2

we have and control laws defined in the next sections. We will show

in detail how the hybrid filtering works for this system,
and . _ _ first generating the potentials for target tracking, cailis
W=V +E. avoidance, and the Gabriel graph itself. We will assume that

W=V+E>0



the control has the following structure: For each interva(t,, t;+1) between switches, the potential

function is:
P U; cond < €
R o Vot = 2 [ Plsis) +57%)
I { 4 arctan(y, &) cond < € i€R jJEN;
> | —Ke(0(t) — £(32; VP(xi,X;))  else Since P is conservative (in this case a quadratic function),

. it can be shown that:
where cond = |0(t) — Z£(>_; VP(X;, X;)|. This control

ensures that the vehicle turns when it is not oriented phpper VU(Tj) = Z — kg%l %;

and, when it is, it follows the Gabriel graph control laws. To i€R

generateu, we create separate potentials for target trackingind hence we simply let:

collision avoidance, and our ad-hoc proximity graph of T

choice, the Gabriel graph itself. di = —kaX{ X;.

Although the decision to prohibit a switch is made by eaclve defines; such that:

agent based on its local energy reserve, it may be desimble t

allow switches to occur whenever tigiobal energy reserve si= Y, P(xi,x;)— Y Plxix)

is sufficiently large. That is, we do not want to prevent a JEN; JEN;

switch due to low energy reserves in one part of the systemy are N+ represents the limit of; from the right, andV.~

when there are sufficient energy reserves unused somewhere ! o L3
. o .represents the limit oV; from the left. Lastly, we allowF;

else. Thus, we need some mechanism for sharing informati

n .
about the energy reserve levels between agents. % evqlve as in Egs. (5) and (6). , . .
. While our proof based on Barbalat’s lemma is convenient
We will take advantage of thaverage-consensuslgo-

. . X ; for smooth potentials, it is not the only technique that is
r!thm descrlbed_by_OIfan-Saber and Murray [8]. This algo'compatible with the energy reserve approach. For example,
rithm allows a distributed set of agents to reach a consens

. S . USnsider the work of Tanner et. al. in [11]. A control input
on a common global value, while sharing information onl

. . X ) ) Yu and Lyapunov functiorV are presented (we have changed
with their local neighbors. If an agenhas a set of neighbors the notation slightly to match the conventions used here):
S; that it can sense,

U; = — ().(77).()7 VP(X“X')
=Y (B - E). (16) ZN ’ X]IV ’

1esi where P is some potential function that approaches infinity

The system evolves somewhat differently, as the time3s x; approachesx;, and has a unique minimum when
when we must prohibit a switch have changed due to thgentsi and j are at a desired distancél; is the set of
differing local values of E, but the system meets all the neighboring agents within some threshold distance of agent
conditions necessary for the proof in Section IV (in Eq.j11)i- The Lyapunov function is then

because theglobal behavior of E still has the required 1 T
properties. However, as described in [8], all of the local V= 52 [ Z P(xi,%;) + % %;)]
energy reserves will now converge to a single value. iR JEN:

The consensus function [8] is just one example of a validnd )
consensus function. In fact, any consensus algorithm with VvV =xTLx

the zero-sum property is acceptable, as is clear from th . . .
proof of Thm. 4.1. The consensus dnis independent of V%Ier_eL 1S tf|1e Laplg((j:lan of the neighbor graﬂy_\/h 4 -
the normal control of the system, although a faster consensu t '? simpie to add an energy reserve_\d with d; .
will improve performance in terms of convergence rate. X; —%;. This modifies the Lyapunov function as shown:
To generate a control law from the Gabriel Graph set of V= }Z [ Z P(x;,x;) Jr)-{r)-(i)] +E
neighbors for a given agernt we choose the following: ek jem, Y !
u; = [ Z ks(HXi — Xj” — lo)\’\fij} — kgX; V = (1 — ke))'(TL).(

JEN: This change carries through the rest of the analysis. The

wherex; represents the Cartesian coordinates describing thesults in [11] are preserved with the addition of an energy
agent's positionx; is the agent’s acceleratiork; is the reserve, which allows for more flexibility in specifying a
agent’s velocityN; is the set of links connected to this agentswitching function.

and v;; is the unit vector from agent to agent;. Control For some systems, using the modified switching function
constants are the natural length)( the stiffness k), and may have implications for collision avoidance. If its energ
the damping coefficientk(;). We require that the system bereserve is depleted, an agent may not allow a switch that
symmetric: if an agent has a link connected to agebt is necessary in order to prevent a collision. However, it is
then agenb must have a link connected to agent possible (and fairly straightforward) to design a systeat th
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(—200,600) cm such that two groups of three are substan-
tially separated, as seen in Fig. 1(a). The Gabriel graph
structure dictates that a link must be established between t
(©) (d) two groups if they are within sensing range of each other.
However, first the two groups separately create connections
Fig. 1.  Simulation of Gabriel graph maintaining connectivighgent ~ Separately (seen in Fig. 1(b)) as the Gabriel graph willdnje
o_rientation is ir_ldicatgd by _the small black line point_ing ilnet_direc- too much energy into the system to be able to guarantee
tion the agent is facing.) Figures (a) and (b) shows linksdpaireated " A
between nearby agents, but the long link connecting the tomygg is Convergence. Then, after the energy reserve conditionts me
being filtered by x until Figure (c). After they have connected, they the connection between the two groups is made in Fig. 1(c),

come closer together in (d). Movies of this simulation may benébat i i
http://robotics. colorado.ed/AMAIZ007 Izigerl\?g;lch the two groups converge together, as seen in

Figure 2 shows the energy reserve for agent 3. Near

does not depend on switching for collision avoidance. Fdme zero, connections are made to both agents 1 and 2,
example, consider the following control law: substantially increasing the potential energy. Then thezggn
reserve remains flat while the vehicle re-orients itselferT,h

it must wait until the first drop is seen to create the link
= Z VPi(x;,%x;)] + [Z VP (xi,xp)| — kak; between the two groups. Without the consensus algorithm
JEN; keR in Eq. (16), this could have taken longer to take place,
. . ) . but it would have nevertheless eventually created the link.
whereN; is the set of neighbors according to some relatiohis simulation was additionally performed on a hardware
(such as a Gabriel graph), arfd is the set of all agents. oq¢ ped the Roomba robotic vacuum cleaner manufactured
Suppose thaP, and P, are both conservative functions, andby iRobot as a base. This provides for an inexpensive
that P»(x;, x;,) approaches infinity as; approachescy. It arqware platform that can integrate sensors and disédbut
may be the case tha, is a "short-range” potential-it rapidly comnting. The Roomba measures 32cm across and uses
becomes small as the distance between the agents increaaegimme differential drive system. (Hence, its dynamics
Similar to our previous examples, this system satisfiege underactuated as in Eq.(15).) We are using a Linux-
all of the requirements for Theorem 4.1. In addition, sinC@sed board (the TS-7260 from Technologic Systems) as
P, affects all pairs of robots at all times, no collision canpe deployed computer. We use wireless for broadcasting
occur without overcoming an infinite potential. (We Choos%onfiguration data to neighbors. The experimental restdts a

Po(xi;%;) = 1/|[ri;|| for purposes of simulation, where perhaps not surprisingly, nearly identical to those seen in
r;; 1s the distance from agentto agentj.) A continuity Fig.1

argument such as that given in [11] is adequate for showing
that collisions are avoided.

It should be noted that some care must be taken to ensyge
that a collision-avoidance term does not cause unintended

consequences. For example, a poorly-chosen control law mayconsider a system in which there are potentials between
avoid collisions but allow undesired local minima in theie agents, as well as between the agents and targets in
potential function. While terms such a8, do not affect the environment. It may be the case that targets can appear,
our ability to cause convergence, they may alter systefisappear, change position, and/or change characteristic
performance. such a way as to inject large amounts of virtual energy
into the system. Our technique can be applied to prevent

A. Simulation of Filtered Gabriel Graph interactions with gestapilization of the system due to target behavior oefals

Potentials and Simulations for Target Tracking

A group of six mobile agents with dynamics in Eq. (15) For example, leR be a set of agents afida set of targets,
are given initial conditions in the regio(—600,600) x each of which may appear and disappear arbitrarily. Let the
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Fig. 3.  Simulation of Gabriel graph tracking an intruder. S'i8 similar
to Fig.1, but here we see that agent 5 is unable to track thediet
(agent 6) immediately. Nevertheless, agents 1,2,4 and 5 aetually
tracking the intruder convergently. Movies of this simwatimay be found
at http://robotics.colorado.edu/AMAI2007

control law for agent be the following:
u; = [ Z VPl(xi,xj)} =+ [Z VP2(XZ‘7X]€)]
JEN; keN

+[ Y VPr(xi)] - kaki

keT

where P, = ||r;;|| is the potential function acting between

the agents due to the Gabriel graph, = 1/|r;;|| is the

potential function acting between the agents for purpo$es o
collision avoidance, an@®; is the potential function acting

between agents and targets.

with agent 2 and agent 6, agent 5 must wait longer to make
these connections (seen in Fig. 3(c)). At the end, agent 6 has
been handed off to agents 2,4, and 5 successfully, as seen in
Fig. 3(d).

VI. CONCLUSIONS

In this paper we have introduced an approach to coop-
erative control that focuses on monitoring and filtering the
admissible changes in network graph topology used in a
cooperative control law according to a stability criteridghis
method can be distributed across a network of agents by
additionally using consensus algorithms like those found i
[8]. This approach leads to a flexible method of guaranteeing
convergence for arbitrary network graphs, and explicitly
avoids instabilities due to the graph topology switching.

The results presented here allow one to use arbitrarily
chosen proximity graph definitions in the control law spec-
ification, which allows more flexibility in task specificatio
Moreover, the presented approach can be adapted to hier-
archical heterogeneous systems almost without modificatio
[12], where there are different types of agents with diffiere
priorities. However, this work only addresses convergence
under arbitrarily switching graph structures, not confagiom
stability (which will be a focus of ongoing research).
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