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Abstract— Many cooperative control strategies focus on sta-
bility concerns to the deficit of global structure in a distributed
cooperation task. We present a method of ensuring provable
convergence of decentralized switching systems using ad-hoc
definitions of proximity graphs, where convergence is measured
by a potential function defined on the graph. The method
depends on the proper filtering of the time-varying proximity
graph structure so as to maintain convergence characteristics.
We demonstrate the approach with an underactuated system.

I. I NTRODUCTION

We present a technique that uses a locally-defined energy
function that leads to a guarantee that a potential globally
defined for the system converges for the coordinated control
algorithm in the face of arbitrarily changing proximity graph
structures. The adaptive control system weighs the changing
network with internal models of the system in order to
provide converging responses with acceptable performance.
This is accomplished through an internal estimate of the
stability margin along with the use of consensus for purposes
of performance improvement. Depending on the controller
chosen, this can be achieved using linear controllers with
quadratic Lyapunov functions.

This work is in contrast to other approaches that focus
on nonsmooth analytical approaches to showing stability
and convergence. The advantage of the approach we show
here is that it does not depend on any particular proximity
graph structure, and correspondingly does not depend on
any particular potential function for potential-based methods.
Proofs of stability have been produced for such systems
(e.g., [1], [2]), but typically these proofs impose constraints
on the dynamics of the system and the proximity graph.
For example, the results in [1] apply only to a specific
potential function on the unit-disk graph, and the results in
[2] apply to another particular potential function on a Voronoi
graph. The difficulty associated with these prior works is that
the stability results leave little room for task specification;
tasks must be framed in terms of what can be achieved
in a stable manner and may therefore be limited to stable
area coverage or “flocking” through a series of obstacles.
Moreover, the task specification will likely change over
time, thus introducing discrete changes into the equations
of motion. Finally, heuristics that are not easily combined
with these approaches are often helpful for various tasks,
such as collision avoidance and other safety-critical elements
of the task specification. The key point is that the control

mechanism should dictate task specification to the minimum
extent possible.

To this end, we have developed a coordinated control
algorithm that operates in the following context. Assume that
a graphG can be computed given the state of every agent and
that the goal is to minimize this potential. For instance, such
a potential could be a measure of deviation from a desired
distance between two agents, in which case minimizing the
potential corresponds to successfully creating a formation.
However, allowing arbitrary switching in the graphG due
state changes–and corresponding changes in the control–can
potentially lead to instability. Filtering the changes in the
graph in such a way that convergence of the state-dependent
potential is ensured avoids this issue. This is the topic of the
present paper.

II. M OTIVATING EXAMPLE : CONNECTIVITY USING THE

GABRIEL GRAPH

Let R be the set of agents. LetG be the set of graphs over
the verticesR. Let thesensor graphGS be a graph where
R is the vertex set, and there is an edge (or “link”) between
two verticesr1 and r2 ∈ R iff agents r1 and r2 can both
sense each other. Let thecontrol graph (also referred to as
the neighbor graph) GN be a graph whereR is the vertex
set, and there is an edge between two verticesr1 andr2 ∈ R
iff agentsr1 andr2 are interacting for control purposes. To
simplify notation, we will understandS to be the edge set
of GS , N to be the edge set ofGN , andSi and Ni to the
corresponding set for a given agenti. The graphGN will
be defined by a time-varying switching functionσ, which
we will describe in terms of a graph construction algorithm.
Note thatN (the set of neighbors used in the control law)
is necessarily a subset ofS (the set of sensed neighbors).

A Gabriel graph [3], [4], [5] is a graphGN (x(t)) that
dictates which data is incorporated into the control laws.
There is a link between agentsA and B if and only if
for all other agentsZ, the interior angle∠AZB is acute.
Equivalently, there is a link between agentsA andB iff there
are no other agents within the circle with diameterAB.

The Gabriel graph switching function provides many ad-
vantages; chief among these is provable connectivity of the
graph [4]. The Gabriel graph is also well-suited to providing
uniform coverage of an area, as it creates a mesh of acute
triangles. The Gabriel graph is a planar graph [4], so it
does not suffer from high edge density when the agents



are close together. However, the Gabriel graph depends on
links being created withnon-zero virtual potential; that is,
the potential function defined on the graph will generally
jump up when an edge is generated between two vertices
i and j. This complicates any proof of stability, as virtual
energy may be added to the system as the topology (and
therefore the control law) changes. Even for linear, stable
systems, arbitrary switching can lead to instability. Thisis
what we wish to avoid in a completely generic manner.

In our approach to showing convergence, instead of com-
puting a limit on the switching frequency explicitly, we use
a notion of a global “energy reserve” (first introduced in
[6], [7]) to create a convergence-guaranteeing limiting effect
on the switching rate. (The idea behind this name is that if
a switch will increase the value of the Lyapunov function,
there must be enough energy reserve to compensate for
this increase.) We find this approach intuitive and moreover
straightforward to implement in our distributed scenarios, in
which switching events are detected locally. Although any
global quantity can be problematic, we will demonstrate that
a local estimate of this quantity based upon a zero sum
consensus algorithm is sufficient to establish convergence.

III. PROBLEM DESCRIPTION

The general problem we wish to address is how one
takes a control law calculated using a proximity graph
definition that depends on the state and implements it on an
underlying dynamic, cooperative system. The translation into
physical actions should take into account stability, stability
margin, and correctness (in terms of successfully completing
a command or returning a failure result). In this paper we
focus on stability (at least in the classical linear systems
sense of bounded input bounded output stability). We address
the issue of margin as a natural byproduct of how we solve
the stability problem. We do not address correctness, though
it is an important problem. However, the method presented
here allows one to specify arbitrary proximity graph rules,
hence potentially moving the correctness question into the
graph design domain.

The primary difficulty is that a controlu(G, x) (where
G ∈ G is a graph andx is the state) that has no information
about low-level convergence characteristics may have to be
modifiedto preserve convergence. Hence, we will require a

mapping
χ : G → G

G 7→ GE
that maps adesiredproximity

graphG to a stably implementable proximity graphGE . An
example of such a motivating scenario is discussed in the
next section.

We would like to have a system that has provable high-
level properties (e.g., connectivity of the network topology)
while maintaining low-level characteristics such as stability
(of the physical system), stability margin, and performance
metrics. The basic approach is to translate the proximity
graph G to an alternativeGE by using a mappingχ that
is essentially a dynamically updated guard condition that
protects the stability of the system. Hence,χ may be thought

of as a means of “filtering” the effects ofG based on a
stability condition.

We show here that if one has a stable cooperative system
for each possible network stateGN , then one may use an
adaptive control strategy to guarantee stability in a decentral-
ized manner. In particular, the idea is to associate with each
agenti a valueEi which is defined as the solution to the
following differential equation, whereEi has an arbitrarily
chosen nonnegative initial value.

Ėi(t) = −kedi(t) if no switch in graph occurs

Ei(t) = lim
t̃→t−

Ei(t̃) − ∆V otherwise

whereke > 0 is the same constant for all agents,0 < ke < 1
(this will be formalized shortly in Eqs. (5) and (6)). The value
di is a local conservative estimate of the stability margin of
the system, and is critical to maintaining stability. The value
Ei is initialized to a nonnegative value and then evolves
according to Equation 5 as long as the network topology is
not changing. Whenever there is a switch,Ei is re-initialized
to the value given in Equation 6 by subtracting∆V . We call
Ei the local energy reserve, and it should be thought of as
a local estimate of stability margin relative to thehybrid
system. (Moreover, we will see that replacingEi with an
estimate ofEi can be shown to provide global stability so
long as the estimate is conservative.)

This brings us to the simple change necessary to stabilize
the system. The modified controlu(χ(GN ), x(t)) is identical
to u(GN , x(t)), except for the added condition that any
switch in the control graph that would causêEi < 0 is
prohibited. This result provides guaranteed convergence,and
one is guaranteed to eventually be able to implement any
graphG. It is worth noting that the evolution ofE is only
used in the calculation ofχ–it doesn’t affect which controlsu
are admissible for the system. Additionally, this computation
is decentralized: agents only need access to local valuesEi,
di, and local estimates of changes in the Lyapunov functions
as the network topology changes.

The key idea is that we are using the evolution of
the energy reserveEi to systematicallyblock changes in
proximity graph if they will lead to instability (that is,χ
blocks new graphs until stability can be ensured). However,
typically u(χ(G), x) = u(G, x) in systems that do not
have aggressive controller gains [6]. Hence,χ, though a
conservative approach to preserving stability, often doesnot
come into play.

IV. GENERAL RESULT

Consider a set of agentsR and a time-varying switch-

ing signal
σ : R → G

t 7→ GN
that determines the proximity

graph and is constant except for discrete changes at times
t1....tn on the interval[t0, tf ]. Assume that the state for
each agenti is x ∈ M , the governing equations arėx =
f(x), and that the switching function changesf over time,
σ : (x, t) −→ f . The equations of motion of interest are as



follows:

ẍi = ui (1)

ui =

{

−ẋ τ(σ) < T
ui(χ(G), x(t)) τ(σ) ≥ T

(2)

whereui stabilizex for each choice ofG, τ(σ) is the length
of time since the last change in the network topologyNi,
and T is a time-delay beforeu can decrease the Lyapunov
function. The filterχ will be defined shortly. We assume that
for each time interval(tj ...tj+1) (we will call this interval
τj), there exists a global potential functionVσ(τj) such that
Vσ(τj) is positive-definite,V̇σ(τj) is negative semi-definite,
andV̈σ(τj) is bounded. (This is satisfied, for instance, under
the conditions on the graph Laplacian discussed in [1].) We
define the overall potential functionVσ(t) to be equal to
Vσ(τj) on the interval(tj ...tj+1), for all j.

Define the quantitysi such that:

si(t) =
1

2





∑

j∈Ni

(

lim
t→t̃+

P (xi, xj) − lim
t→t̃−

P (xi, xj)

)



 ,

(3)
where P (xi, xj) is the potential between agenti and j.
Moreover, each agent can determine an estimateŝi such that
∑

i∈R ŝi ≥
∑

i∈R si (often for our purposeŝsi = si). This
quantity captures the instantaneous change in potential due
to the link switching. The factor of 1/2 is present because
each link connects to two agents, and thus will be counted
twice. It is thus easy to show that the following holds:

∑

i∈R

si = lim
t→t̃+

(Vσ(t)) − lim
t→t̃−

(Vσ(t)) (4)

Associate with each agenti a valueEi which is called the
local energy reserve, and is defined as the solution to a dif-
ferential equation.Ei has an arbitrarily chosen nonnegative
initial value and evolves according to the following:

Ėi(t) =

{

0 if si(t) = 0 andτ(σ) < T
−kedi(t) + wi if si(t) = 0 andτ(σ) ≥ T

(5)

Ei(t) = lim
t̃→t−

Ei(t̃) − si(t) otherwise (6)

whereke is a global constant,0 < ke < 1 and
∑

i wi = 0
(which will show up as a zero-sum consensus [8] term later).
Notice thatEi is initialized to a nonnegative value and then
evolves according to Equation 5 as long assi is zero (that
is, on intervals with no switches). Wheneversi 6= 0 (there is
a switch),Ei is re-initialized to the value given in Equation
6.

Each agent maintains a local estimateÊi, which is initially
greater than zero and evolves as follows:

˙̂
Ei(t) =

{

0 if ŝi(t) = 0 andτ(σ) < T
−kedi(t) + wi if ŝi(t) = 0 andτ(σ) ≥ T

(7)

Êi(t) = lim
t̃→t−

Ê(t̃) − ŝi(t) otherwise (8)

Let the global valuesE and Ê be defined such that

E =
∑

i∈R

Ei (9)

Ê =
∑

i∈R

Êi (10)

We will call E the global energy reserve.
This brings us to the graph filter definition that provides

convergence, defined by

χ(G(t), x(t), t) =

{

G if Êi > 0
limt̃→t− χ(G(t), x(t), t̃) otherwise.

The filterχ is an identity onG, except for the added condition
that any switch that would causêEi < 0 for any agenti
is prohibited. Note that the value of̂Ei cannot decrease in
the absence of switching ifdi ≤ 0 for all i (this can be
thought of as a conservative estimate of the stability margin
of the system for a graph at timet). Also, this computation is
decentralized; the agents only need access to the local values
Ei, di, andsi.

The immediate consequence of modifyingσ in this way
is that Ê ≥ 0, since it is the sum of all nonnegative terms.
It follows from Equations 9 and 10 and the definitions ofsi

andŝi thatE ≥ Ê. Thus if Ê ≥ 0, thenE ≥ 0 as well. This
allows us to prove the following statement.

Theorem 4.1:The states in the system in Eq (1) and (2)
all converge to a state of of unchanging potential for any
sequence of graphsG(t).

Proof: For purposes of notational simplicity, we will
take V to denoteVσ(t) for the remainder of this section
unless otherwise specified.

We start with the caseT = 0 and then adapt accordingly
for the caseT 6= 0. On a time interval going fromt0 to
tf , let the proximity graphG(t) change at timesti. We will
show stability of the system using the functionW, defined
as:

W = V + E

The functionV is positive-definite on any interval(ti, ti+1)
by the assumption that for each static choice ofG the system
is stable with negative semi-definite derivative. Moreover,
since E > 0 by definition, it is clear thatW ≥ 0.
Differentiating, we see that on any interval(ti, ti+1) on
which there are no switches:

Ẇ = V̇ + Ė.

Note that

Ė =
∑

i∈R

Ėi =
∑

i∈R

−kedi + wi =
∑

i∈R

−kedi (11)

because of the zero-sum property. Substituting forĖ (with
T = 0) gives:

Ẇ = V̇ +
∑

i∈R

−kedi ≤ 0, (12)

so Ẇ is negative definite on the interval(ti, ti+1) ∀i.
To address the timesti, we must look back to the definition

of si:
lim

t̃→t+
V(t̃) = lim

t̃→t−
V(t̃) +

∑

i∈R

si(t).



Thus, at any instantt when a switch occurs (that is, when
any si 6= 0),

lim
t̃→t+

W(t̃) = lim
t̃→t−

V(t̃) +
∑

i∈R

si(t) + E(t)

Substituting forE from Equation 6,

lim
t̃→t+

W(t̃) = lim
t̃→t−

V(t) +
∑

i∈R

si(t) + lim
t̃→t−

E(t̃)−
∑

i∈R

si(t)

(13)
which simplifies in the following way:

limt̃→t+ W(t̃) = limt̃→t− V(t) + limt̃→t− E(t̃)
= limt̃→t− W(t̃)

(14)
Thus, the discontinuity inW has been removed, as the
limits from both sides are the same. Further, sinceV̇ is
negative semi-definite by assumption,0 < ke < 1, and
V̇ <

∑

i∈R kedi ≤ 0, it must be the case thaṫW is negative
semi-definite.

We now follow the proof of Barbalat’s lemma [9], which
states that iff(t) is lower bounded,ḟ(t) is negative semi-
definite, andḟ(t) is uniformly continuous (or equivalently,
f̈(t) is finite), then ḟ(t) approaches zero ast approaches
infinity. Unfortunately, Barbalat’s Lemma as stated does not
apply to our system because at the timesti, the function
Ẇ(ti) discontinuous. However, these discontinuities are
separable, allowing the basic result to still hold. The true
generalization of Barbalat’s lemma requires the technical
use of meagre functions [10], which are heavy machinery
for what (for our purposes) is a reasonably straight forward
result. We will show thatẆ → 0 as t → ∞. To see this,
supposeẆ did not go to zero as ast → ∞. Then there
exists a sequence of timestn → ∞ such that|Ẇ| > ǫ ∀
n ∈ N. On all intervals[ti, ti+1) Ẅ is bounded, so on these
intervalsẆ is uniformly continuous. Because of this, there
exists aδ such that|tn − t| < δ ⇒ |Ẇ(tn) − Ẇ(t)| ≤ ǫ/2
on any interval that does not includeti. We know thatẆ
is integrable by the existence ofW (which is bounded
below by 0 and above byW (0)), which means that the
quantity |

∫ tn+δ

0
Ẇdt −

∫ tn+δ

0
Ẇdt| → 0 as n → ∞.

Hence,|
∫ tn+δ

tn
Ẇdt| → 0 as n → ∞, which implies that

∫ tn+δ

tn
|Ẇ|dt → 0 as n → ∞ (since Ẇ ≤ 0). Now, if

ti ∈ [tn, tn + δ], the value ofẆ(ti) does not affect the
integral sinceẆ(ti) ∈ co{limt̃→t

+

i
Ẇ(t̃), limt̃→t

−

i
Ẇ(t̃)}.

Hence,
∫ tn+δ

tn
|Ẇ|dt =

∫ tn+δti

tn
|Ẇ|dt +

∫ tn+δ

tn+δti

|Ẇ|dt ≥
ǫδti

2 +
ǫ(δ−δti

)

2 = ǫδ
2 . This contradicts the convergence of the

Riemann integral and therefore contradicts the integrability.
Hence,Ẇ → 0 ast → ∞. It follows directly (sinceĖ → 0
as t → 0) that V̇σ(t) → 0 as t → ∞. That is, all agents
reach a state of unchanging potential.

To address the case whereT 6= 0, we simply need to
confirm thatẆ ≤ 0 when usingui(χ(GN (t)), x(t)). Again,
we have

W = V + E > 0

and
Ẇ = V̇ + Ė.

Hence, we need to evaluatėE andV̇.
Now consider a time interval[tj ...tj+1). First, let T <

tj+1−tj . ThenĖ = 0 on [tj ...tj +T ) andĖ =
∑

i∈R −kedi

on [tj + T ...tj+1), henceĖ ≤ 0 on the complete interval.
Under these same conditions,V̇ a new Lyapunov function
has derivative−ẋ

T
ẋ when t ∈ (tj , tj + T ) and Ẇ =

∑

i∈R(1 − ke)di when t ∈ (tj + T, tj+1). Therefore, on
this interval a differentV (t) (corresponding to the Euclidean
norm onR

2) is decreasing. In the case thatT ≥ tj+1 − tj ,
Ė = 0 on that interval. We simply consider the next timeti
such thattj + T ∈ (ti, ti+1). Then, by the logic just given,
we haveẆ ≤ 0 and are done.

Note that in the proof of Theorem 4.1 we are effectively
changing both at what time changes inG are allowed to occur
and potentiallyif they are allowed to occur if the delayT
is too large. However, it is important to notice that network
dropouts do not affect the analysis; a link can always be lost
because that will only decrease potential energy associated
with the control, but it may not be possible to add it back in.
If a communication is re-established, the link still may not
be added back into the control graph; thus, it is possible to
control the switch in the positive direction. In general, itis
necessary to define systems such that uncontrollable events
cannot increase the overall potential.

Now we may state the algorithm for ensuring convergence
in the face of arbitrary time-varying proximity graph topolo-
gies.

Algorithm for Filtering Proximity Graphs

Given a proximity graphG(x(t)):

1) Choose a set of initial valueŝEi greater than
zero;

2) UpdateÊi using Eq. (7) and (8);
3) Apply χ to G(x(t)) using Êi;
4) Calculate the control lawu usingχ(G(x(t))).

Note that the algorithm is completely decentralized and
only adds one state (̂E) to each vehicle that needs to be
maintained.

V. EXAMPLE : CONNECTEDTARGET TRACKING WITH

UNDERACTUATED DYNAMICS USING FILTERED GABRIEL

GRAPHS INTERACTIONS

We now introduce an example that takes advantage of
Thm. 4.1. We assume we have each agenti with the
normalized nonholonomic vehicle dynamics:

ẋi = vi
x v̇i

x = cos(θ)ui
1

ẏi = vi
x v̇i

y = sin(θ)ui
1

θ̇i = vi
θ v̇i

θ = ui
2

(15)

and control laws defined in the next sections. We will show
in detail how the hybrid filtering works for this system,
first generating the potentials for target tracking, collision
avoidance, and the Gabriel graph itself. We will assume that



the control has the following structure:

ui
1 =

{

ui cond < ǫ
−ẋ − ẏ else

ui
2 =

{

d
dt

arctan(ẏ, ẋ) cond < ǫ
−Kθ(θ(t) − ∠(

∑

j ∇P (xi, xj)) else

where cond = |θ(t) − ∠(
∑

j ∇P (xi, xj)|. This control
ensures that the vehicle turns when it is not oriented properly
and, when it is, it follows the Gabriel graph control laws. To
generateu, we create separate potentials for target tracking,
collision avoidance, and our ad-hoc proximity graph of
choice, the Gabriel graph itself.

Although the decision to prohibit a switch is made by each
agent based on its local energy reserve, it may be desirable to
allow switches to occur whenever theglobal energy reserve
is sufficiently large. That is, we do not want to prevent a
switch due to low energy reserves in one part of the system,
when there are sufficient energy reserves unused somewhere
else. Thus, we need some mechanism for sharing information
about the energy reserve levels between agents.

We will take advantage of theaverage-consensusalgo-
rithm described by Olfati-Saber and Murray [8]. This algo-
rithm allows a distributed set of agents to reach a consensus
on a common global value, while sharing information only
with their local neighbors. If an agenti has a set of neighbors
Si that it can sense,

ūi =
∑

l∈Si

(El − Ei). (16)

The system evolves somewhat differently, as the times
when we must prohibit a switch have changed due to the
differing local values ofE, but the system meets all the
conditions necessary for the proof in Section IV (in Eq.(11))
because theglobal behavior of E still has the required
properties. However, as described in [8], all of the local
energy reserves will now converge to a single value.

The consensus function [8] is just one example of a valid
consensus function. In fact, any consensus algorithm with
the zero-sum property is acceptable, as is clear from the
proof of Thm. 4.1. The consensus onE is independent of
the normal control of the system, although a faster consensus
will improve performance in terms of convergence rate.

To generate a control law from the Gabriel Graph set of
neighbors for a given agenti, we choose the following:

ui =
[

∑

j∈Ni

ks(‖xi − xj‖ − l0)v̂ij

]

− kdẋi

wherexi represents the Cartesian coordinates describing the
agent’s position,̈xi is the agent’s acceleration,̇xi is the
agent’s velocity,Ni is the set of links connected to this agent,
and v̂ij is the unit vector from agenti to agentj. Control
constants are the natural length (l0), the stiffness (ks), and
the damping coefficient (kd). We require that the system be
symmetric: if an agenta has a link connected to agentb,
then agentb must have a link connected to agenta.

For each interval(ti, ti+1) between switches, the potential
function is:

Vσ(τj) =
∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi

]

.

SinceP is conservative (in this case a quadratic function),
it can be shown that:

V̇σ(τj) =
∑

i∈R

−kdẋ
T
i ẋi

and hence we simply let:

di = −kdẋT

i
ẋi.

We definesi such that:

si =
∑

j∈N
+

i

P (xi,xj) −
∑

j∈N
−

i

P (xi,xj)

whereN+
i represents the limit ofNi from the right, andN−

i

represents the limit ofNi from the left. Lastly, we allowÊi

to evolve as in Eqs. (5) and (6).
While our proof based on Barbalat’s lemma is convenient

for smooth potentials, it is not the only technique that is
compatible with the energy reserve approach. For example,
consider the work of Tanner et. al. in [11]. A control input
u and Lyapunov functionV are presented (we have changed
the notation slightly to match the conventions used here):

ui = −
∑

j∈Ni

(ẋi − ẋj) −
∑

j∈Ni

∇P (xi,xj)

whereP is some potential function that approaches infinity
as xi approachesxj , and has a unique minimum when
agentsi and j are at a desired distance.Ni is the set of
neighboring agents within some threshold distance of agent
i. The Lyapunov function is then

V =
1

2

∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi)

]

and
V̇ = ẋ

T Lẋ

whereL is the Laplacian of the neighbor graphGN .
It is simple to add an energy reserve toV, with di =

ẋi − ẋj . This modifies the Lyapunov function as shown:

V =
1

2

∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi)

]

+ E

V̇ = (1 − ke)ẋ
T Lẋ

This change carries through the rest of the analysis. The
results in [11] are preserved with the addition of an energy
reserve, which allows for more flexibility in specifying a
switching function.

For some systems, using the modified switching function
may have implications for collision avoidance. If its energy
reserve is depleted, an agent may not allow a switch that
is necessary in order to prevent a collision. However, it is
possible (and fairly straightforward) to design a system that
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Fig. 1. Simulation of Gabriel graph maintaining connectivity. (Agent
orientation is indicated by the small black line pointing in the direc-
tion the agent is facing.) Figures (a) and (b) shows links being created
between nearby agents, but the long link connecting the two groups is
being filtered byχ until Figure (c). After they have connected, they
come closer together in (d). Movies of this simulation may be found at
http://robotics.colorado.edu/AMAI2007.

does not depend on switching for collision avoidance. For
example, consider the following control law:

ui =
[

∑

j∈Ni

∇P1(xi,xj)
]

+
[

∑

k∈R

∇P2(xi,xk)
]

− kdẋi

whereNi is the set of neighbors according to some relation
(such as a Gabriel graph), andR is the set of all agents.
Suppose thatP1 andP2 are both conservative functions, and
that P2(xi,xk) approaches infinity asxi approachesxk. It
may be the case thatP2 is a “short-range” potential–it rapidly
becomes small as the distance between the agents increases.

Similar to our previous examples, this system satisfies
all of the requirements for Theorem 4.1. In addition, since
P2 affects all pairs of robots at all times, no collision can
occur without overcoming an infinite potential. (We choose
P2(xi, xj) = 1/‖rij‖ for purposes of simulation, where
rij is the distance from agenti to agentj.) A continuity
argument such as that given in [11] is adequate for showing
that collisions are avoided.

It should be noted that some care must be taken to ensure
that a collision-avoidance term does not cause unintended
consequences. For example, a poorly-chosen control law may
avoid collisions but allow undesired local minima in the
potential function. While terms such asP2 do not affect
our ability to cause convergence, they may alter system
performance.

A. Simulation of Filtered Gabriel Graph interactions with
Underactuated Dynamics

A group of six mobile agents with dynamics in Eq. (15)
are given initial conditions in the region(−600, 600) ×

Fig. 2. The energy reserveE for agent 3 versus time. Drops in the value
indicate that there is enough energy reserve to incorporatea new link with
another agent.

(−200, 600) cm such that two groups of three are substan-
tially separated, as seen in Fig. 1(a). The Gabriel graph
structure dictates that a link must be established between the
two groups if they are within sensing range of each other.
However, first the two groups separately create connections
separately (seen in Fig. 1(b)) as the Gabriel graph will inject
too much energy into the system to be able to guarantee
convergence. Then, after the energy reserve condition is met,
the connection between the two groups is made in Fig. 1(c),
after which the two groups converge together, as seen in
Fig. 1(d).

Figure 2 shows the energy reserve for agent 3. Near
time zero, connections are made to both agents 1 and 2,
substantially increasing the potential energy. Then the energy
reserve remains flat while the vehicle re-orients itself. Then,
it must wait until the first drop is seen to create the link
between the two groups. Without the consensus algorithm
in Eq. (16), this could have taken longer to take place,
but it would have nevertheless eventually created the link.
This simulation was additionally performed on a hardware
test-bed the Roomba robotic vacuum cleaner manufactured
by iRobot as a base. This provides for an inexpensive
hardware platform that can integrate sensors and distributed
computing. The Roomba measures 32cm across and uses
a simple differential drive system. (Hence, its dynamics
are underactuated as in Eq.(15).) We are using a Linux-
based board (the TS-7260 from Technologic Systems) as
the deployed computer. We use wireless for broadcasting
configuration data to neighbors. The experimental results are,
perhaps not surprisingly, nearly identical to those seen in
Fig.1.

B. Potentials and Simulations for Target Tracking

Consider a system in which there are potentials between
the agents, as well as between the agents and targets in
the environment. It may be the case that targets can appear,
disappear, change position, and/or change characteristics in
such a way as to inject large amounts of virtual energy
into the system. Our technique can be applied to prevent
destabilization of the system due to target behavior or false
generation of targets.

For example, letR be a set of agents andT a set of targets,
each of which may appear and disappear arbitrarily. Let the



(a) (b)

(c) (d)

Fig. 3. Simulation of Gabriel graph tracking an intruder. This is similar
to Fig.1, but here we see that agent 5 is unable to track the intruder
(agent 6) immediately. Nevertheless, agents 1,2,4 and 5 are eventually
tracking the intruder convergently. Movies of this simulation may be found
at http://robotics.colorado.edu/AMAI2007.

control law for agenti be the following:

ui =
[

∑

j∈Ni

∇P1(xi,xj)
]

+
[

∑

k∈N

∇P2(xi,xk)
]

+
[

∑

k∈T

∇PT (xi)
]

− kdẋi

whereP1 = ‖rij‖ is the potential function acting between
the agents due to the Gabriel graph,P2 = 1/‖rij‖ is the
potential function acting between the agents for purposes of
collision avoidance, andPT is the potential function acting
between agents and targets.

If there are no restrictions on the appearance of targets,
then targets may inject an arbitrary amount of energy into the
system. This is not desirable, as the continued appearance
of targets, or the appearing and disappearing of a few
targets in an unfortunate pattern, could destabilize the system
and/or cause collisions between the agents. Modifying the
switching function according to our technique will remove
this problem.

In the simulation seen in Fig. 3, a group of five mobile
agents with dynamics in Eq. (15) are given initial conditions
in the region(−600, 600) × (−200, 600) cm such that two
groups are substantially separated, as seen in Fig. 3(a) and
another vehicle (agent 6) is passing through them that needs
to be tracked. Initially, only agent 1 tracks agent 6, but
soon agent 2’s energy reserve is large enough for it to track
agent 6 as well (seen in Fig. 3(b)). Because of the rapid
switching that occurs for agent 5 between creating a link

with agent 2 and agent 6, agent 5 must wait longer to make
these connections (seen in Fig. 3(c)). At the end, agent 6 has
been handed off to agents 2,4, and 5 successfully, as seen in
Fig. 3(d).

VI. CONCLUSIONS

In this paper we have introduced an approach to coop-
erative control that focuses on monitoring and filtering the
admissible changes in network graph topology used in a
cooperative control law according to a stability criterion. This
method can be distributed across a network of agents by
additionally using consensus algorithms like those found in
[8]. This approach leads to a flexible method of guaranteeing
convergence for arbitrary network graphs, and explicitly
avoids instabilities due to the graph topology switching.

The results presented here allow one to use arbitrarily
chosen proximity graph definitions in the control law spec-
ification, which allows more flexibility in task specification.
Moreover, the presented approach can be adapted to hier-
archical heterogeneous systems almost without modification
[12], where there are different types of agents with different
priorities. However, this work only addresses convergence
under arbitrarily switching graph structures, not configuration
stability (which will be a focus of ongoing research).
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