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Abstract

Multiple contact interaction is common in many robotic applications. These include
grasping, wheeled vehicles, and distributed manipulation. All of these applications
are capable of experiencing stick/slip phenomena at the contact interfaces. In partic-
ular, when there are more kinematic constraints than there are degrees of freedom,
some contact interfaces must slip. Moreover, this stick/slip behavior is difficult to
predict a priori due to strong sensitivities with respect to friction modeling and nor-
mal forces. Motivated by a simple multi-point manipulation device, we discuss how
these effects can be accounted for and mitigated using tools from hybrid systems
theory and multiple model adaptive control both for analysis and control design. In
the context of the multi-point manipulation example, we show how multiple model
supervisor-based adaptive control can provide stabilizing controllers for such sys-
tems. Our results are validated with simulations that both illustrate the need for
these techniques and show their effectiveness.
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1 Introduction

A manipulation system consisting of many points of contact typically exhibits
stick/slip phenomenon due to the point contacts moving in kinematically in-
compatible manners. We call this manner of manipulation overconstrained
manipulation because not all of the constraints can be satisfied. This paper is
concerned with systems that have multiple points of contact, all of which are
frictional and adequately described by either constraint forces (when there is
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no slipping at the point contact) or by the slipping reaction force. Prototypes
of this situation include multi-point manipulation systems, such as those found
in [8,7], as discussed in Section 2.

This paper is organized as follows. Section 2 discusses multi-point manipu-
lation in more detail, and discusses the experimental implementation used
before in [8]. Section 3 describes a control approach for this system using
multiple model adaptive control [4,1,3,10,2,12] and gives an example simula-
tion for this experimental system when the contact states are assumed to be
known perfectly. We then illustrate how variations in the contact state can,
not surprisingly, degrade the performance of the algorithm. Section 4 gives the
necessary background for understanding stability of switching control system,
such as that described in [1,4], and proves the relevant stability properties.
We also discuss the implementation of this adaptive control method to the
multiple point manipulation example and show in simulation that the original
algorithm performance is indeed recovered even when the contact states are
not known a priori.

2 Motivation: Multi-point Manipulation

The work in [8] describes an experimental test-bed (seen in Fig.1) that was
designed to evaluate and validate control schemes for multiple point manipula-
tion. In such systems friction forces and intermittent contact play an important
role in the overall system dynamics, leading to non-smooth dynamical system
behavior.

Fig. 1. The Caltech Distributed Manipulation System and Mathematica simula-
tion visualization. In the visualization a box is shown supported by four wheels
and the bottom and top of the box are transparent to help with visualizing
the motion of the wheels. Movies of simulations in this paper can be found at
http://robotics.colorado.edu/∼murphey/MCM.

A photograph of the apparatus can be seen in Figure 1, along with the visu-
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alization we use for simulation purposes. The design is a modular one based
on a basic cell design. Each cell contains two actuators. One actuator orients
the wheel axis, while the other actuator drives the wheel rotation (see Figure
1(b)). These cells can easily be repositioned within the supporting structure to
form different configurations. The system shown in Figure 1(a) is configured
with a total of nine cells—though more can be easily added. The position and
orientation of the manipulated object is obtained and tracked using a camera.
To enable visual tracking, a right triangle is affixed to the moving object. For
more details on the experimental setup, please refer to [8].

3 Modeling and Analysis Using Multiple Model Systems

The four-actuator multiple point system seen in Section 2 can be modeled as
a hybrid mechanical system with four inputs that can then be reduced to a
hybrid kinematic system of the form

ẋ = fσ
1 uσ

1 + fσ
2 uσ

2 + fσ
3 uσ

3 + fσ
4 uσ

4 (1)

where x = (x, y, θ) is the configuration (of x and y planar translations and
of θ planar rotation) and σ ∈ {1, 2, 3, 4} is the contact state of the system,
of which there are in total four. Moreover, fσ

3 = −fσ
1 , fσ

4 = −fσ
2 , and this

system can be stabilized to x = {0, 0, 0} by setting uσ
1 = −uσ

3 and uσ
4 = uσ

2 .
Then the system is of the form ẋ = fσ

1 uσ
1 + fσ

2 uσ
2 , where fσ

1 and fσ
2 are found

in Table 1. Also found in Table 1 is a stabilizing control law for each σ found
by solving V̇ = −V where V = x2 + y2 + θ2. Details of this analysis can be
found in [8,9]. Lastly, we assume that σ has a time hysteresis constant due to
friction, as is commonly the case [11].

If we define η = ArcTan( y
x
), then the power dissipation method [8,9] predicts

that σ has the following dependency on η:

σ =



1, η ∈ (0, π
2
)

2, η ∈ (π
2
, π)

3, η ∈ (π, 3π
2

)

4, η ∈ (3π
2

, 2π)

(2)

and η is indeterminate on the boundaries. It will be important to our stability
results that the system not be able to go to infinity in finite time, which for
the system in Eq.(1) is equivalent to requiring that neither u1 nor u2 go to
infinity. Note that the control law for a given σ only blows up when η is not
in the range appropriate for that σ. For instance, uσ=1

1 blows up when η = 3π
4

or 7π
4

, neither of which are conditions that lead to σ = 1. Moreover, since
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σ Equations of Motion Control Law

(u3 = −u1 and u4 = −u2)

1 q̇ =


−1

−1

0

u1 +


1

−1

1

u2

u1 =
−kθ (θ+x−y)+k (θ2+x2+y2)

x+y

u2 = −kθ

2 q̇ =


−1

−1

−1

u1 +


1

−1

0

u2

u1 = kθ

u2 =
kθ (θ+x+y)−k (θ2+x2+y2)

x−y

3 q̇ =


−1

−1

0

u1 +


1

−1

−1

u2

u1 =
kθ (θ−x+y)−k (θ2+x2+y2)

x+y

u2 = kθ

4 q̇ =


−1

−1

1

u1 +


1

−1

0

u2

u1 = −kθ

u2 =
−kθ (−θ+x+y)+k (θ2+x2+y2)

x−y

Table 1
The four actuator manipulation surface shown in Fig.1 has all kinematic states,
many of which are redundant. This figure shows the four distinct equations of motion
that can occur in different contact states. This, combined with a choice of hysteresis
constant (typically based on friction modeling [11]), completely defines the equations
of motion. Note that all the controls grow quadratically with the the state so long
as their denominators do not go to zero.

the system is only asymptotically stable, it does not reach the xy origin in
finite time. That is, it converges to the xy origin, but (x(t), y(t)) 6= (0, 0) for
all time. Hence, for small variations of how σ varies with η the controls will
remain bounded, and we will assume that this holds for the subsequent results.

Note that the control laws in Table 1 are not only nonlinear, they are not even
smooth. In fact, they have discontinuities that coincide with the boundaries
and, in particular, discontinuities at the origin (the point towards which we
are stabilizing). Also note that σ is observable just from the θ dynamics so
long as u1 (= −u3) and u2 (= −u4) are nonzero and not equal.

If one estimates the model properly, one can get good control performance.
For instance, if the coordinate axes are hybrid transitions for the multiple
model system (such as happens in the case of uniform friction distributions–
see [8]) then the control laws perform quite well. Figure 2 shows a simu-
lation. The initial condition is {x0, y0, θ0} = {−1.5,−1, π} This, and the
other simulations, were all done in Mathematica, using Euler integration in
order to avoid numerical singularities when crossing contact state bound-
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(a) (b)

(c) (d)

Fig. 2. Simulation of multi-point manipulation when the contact state is known
perfectly, a time hysteresis constant due to friction of 0.01s, and σ changes whenever
the trajectory crosses the coordinate axes (as predicted by the power dissipation
method [8,9]). The bottom four plots are plots of (a) (x, y) trajectory in the plane,
(b) θ trajectory versus time, (c) the Lyapunov function versus time, (d) σ, the
hybrid state of the system, versus time. Note that the rate of switching for σ does
not significantly change over time.

(a) (b)

(c) (d)

Fig. 3. Simulation of multiple point manipulation when the contact state is esti-
mated is incorrectly estimated. The object is only barely stabilized to the origin
due to the contact state being varying from the nominal value and the Lyapunov
function does not monotonically decrease. However, the rate of switching in σ does
not change significantly.

aries. (A movie of this simulation and other simulations may be found at
http://robotics.colorado.edu/∼murphey/MCM.) In Fig. 2, the object is sta-
bilized to (x, y, θ) = (0, 0, 0) with no difficulty. It is worth noting that the
addition of noise could potentially make this system hit the origin. However,
because all the configurations near the origin result in finite input magnitudes,
we simply use the fact that the probability of hitting the origin due to noise
is zero. Because of this, we do not consider the effect of additive noise in our
model. If, however, the configurations where the controller goes to infinity had
finite measure, more consideration would need to be made. Note also that the
Lyapunov function is monotonically decreasing, and the switching signal σ
continues switching, but does not increase the rate at which it switches. In
the simulation in Fig.2 its average rate of switching is typically less than 20
switches per second, but by our assumptions on a friction hysteresis of 0.01s
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the switching cannot be more than 100 switches per second. Hence, our stabil-
ity results will often be conservative, as they rely on this upper bound, which
the system does not typically approach.

In the simulations the constraints are enforced separately from the control
law, allowing the control to switch at different times from the constraints.
In particular, if the boundary that determines the physical contact state is
allowed to vary while the control laws only change at the estimated boundaries,
then the performance degrades substantially. Starting the object at an initial
condition of {x0, y0, θ0} = {−1.5,−1, π}, Fig. 3 shows this degradation in
comparison to Fig. 2, although the system is still stable. In the case of Fig. 3,
the controller is assuming that the contact state changes when the center of
mass of the object crosses the line x = 0, whereas the contact state is actually
changing when the line x = −0.3y is crossed. This is precisely the difficulty
fixed in Section 4.

4 Stability Conditions

Now we move on to set this problem up more formally, roughly following
[5,1,4]. Suppose that we have a family of plants indexed by p ∈ P, all of which
are stabilized by a control law with Lyapunov function Vp. Switching between
plants is governed by the switching signal σ. Such systems can be written as:

ẋ = Fσ(x,t)(x, t) σ(x, t) ∈ P (3)

where P is an index over the set of all admissible plants. This system is there-
fore a generalization of Eq. (1). We assume that the Fp satisfy the follow-
ing Lyapunov criteria; that there exist for all p ∈ P differentiable functions
Vp : Rn → R, positive constants λ0, γ and class K∞ functions α, α satisfying:

V̇p =
∂Vp

∂x
Fq ≤ −2λ0Vp for p = q, (4)

V̇p =
∂Vp

∂x
Fq ≤ 2λF ′Vp for p 6= q, (5)

α(‖x‖) ≤ Vp(x) ≤ α(‖x‖), (6)

Vp ≤ γVq, (7)

for all x ∈ Rn and p, q ∈ P. These are relatively standard requirements for
Lyapunov functions, except for the condition in Eq.(5) (which requires that
whenever the plant and the controller are not matched the resulting instability
is bounded by some growth rate). Also, note that for the example system
in Section 2 these conditions hold trivially with α = α = Id, γ = 1, and

λF ′ ≤
√

u2
1 + u2

2 (which is bounded if σ’s dependence on η does not cause the
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controls to blow up). However, for general manipulation problems this will
not typically hold, particularly when a common Lyapunov function does not
exist, thereby causing γ < 1.

Switching signals σ are assumed to be a piecewise continuous (and therefore
measurable) function coming from a family of functions S. We say that Eq.(3)
is uniformly exponentially stable over S if there exist positive constants c and
λ such that for any σ ∈ S we have

‖Φσ(t, τ)‖ ≤ ce−λ(t−τ) ∀t ≥ τ ≥ 0.

Here Φσ(t, τ) denotes the flow (given σ) of Eq.(3). For such a system we say
that λ is its stability margin.

To characterize and distinguish different families of functions S, we employ
the following definitions (from [5]). Given σ ∈ S, we define Nσ(t, τ) to be
the (integer) number of switches or discontinuities in σ in the interval (t, τ).
Given two numbers τAD and N0, called the average dwell time and chatter
bound respectively, we say that Save[τAD, N0] is the set of all switching signals
satisfying Nσ(t, τ) ≤ N0 + t−τ

τAD
. We will assume for the rest of the present work

that switching signals σe (the external switching determining the contact state)
can be characterized in this way.

Assumption 4.1 Assume σe switching satisfies

Nσe(t, τ) ≤ N e
0 +

t− τ

τ e
AD

for some N e
0 > 0 and τ e

AD.

This assumption can be physically related to the example system in Section 2
through two main facts. First, switching only occurs when the system crosses
the coordinate axes. Hence, if the system is spiraling in towards the origin the
average dwell time will be reasonably long. Secondly, the frictional hysteresis
bounds the average dwell time. Note that, if necessary, we can similarly require
that the signal σc (the switching signal that dictates the current controller)
also satisfy dwell-time requirements (i.e., Nσc(t, τ) ≤ N c

0 + t−τ
τc
AD

) to ensure that

the control switching does not destabilize the system.

4.1 Nominal Stability Conditions

It is well known that switching between a set of stable linear systems may
well yield an unstable system [6]. This means that even in the most moder-
ate case, where estimation of the contact state is perfect and there are no
latencies in sensing or actuation, our multiple contact system can in principle
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be destabilized by switching contact state. Our purpose in this section is to
apply some results from the theory of switching systems to understand physi-
cally meaningful conditions that will guarantee stability for a multiple model
system (even those without a common Lyapunov function). In particular, we
will characterize such a condition in terms of the average dwell time as it was
described above.

First, the following result from [5] will be helpful. It states that for a collection
of stable plants as Eq.(3) a bound on the average dwell time can be determined
such that the hybrid system is stable.

Lemma 4.1 ([5]) Given a system of the form in Eq. (3) such that Eqs. (4),
(6), and (7) hold, there is a finite constant τ ∗AD such that Eq.(3) is uniformly
exponentially stable over Save[τD, N0] with stability margin λ ∈ (0, λ0) for any
average dwell time τAD ≥ τ ∗AD and any chatter bound 0 < N0.

In particular, the average dwell time must satisfy τAD > log γ
2(λ−λ0)

. Note that if
we have a common Lyapunov function, then γ = 1 ⇒ log γ = 0 ⇒ τAD = 0
satisfies the stability requirements. Hence, common Lyapunov functions are
highly desirable, if they can be found. A corollary of this result relevant to the
multiple point contact example is Corollary 4.2.

Corollary 4.2 If the system in Eq. (1) satisfies:

(1) It is stabilized with a quadratic Lyapunov function Vp for every p;
(2) The switching signals are equal σe = σc (i.e., the observer is perfect);
(3) The physical hysteresis is such that σe ∈ Save[

log γ
2(λ−λ0)

, N0] for some N0;

(4) The environmental switching signal σe varies according to the rule in
Eq.(2);

then Eq. (1) is exponentially stable with stability margin λ. Moreover, for the
particular choice of controllers shown in Table 1, the system is stabilized for
any τ e

AD > 0.

What does this mean for a multiple model system where there are external
signals determining the switching, such as is the case in a multiple contact
system? It means that so long as there are no latencies, no errors in estimation,
and no noise in the sensors, the multiple model system is stable so long as the
external switching signals σe are kept sufficiently slow on the average. How
slow depends on how the controllers for each plant are designed and, more
importantly, how they are related to each other. The closer γ can be kept to
1, the more quickly σe may switch without destabilizing the system.

What happens if there is noise, latencies, and time delays causing the controller
switching σc to not coincide with the environmental switching σe? Most of
these issues are adequately addressed in [1,4]. However, if σc 6= σe, fundamen-
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tal instabilities due to temporary mismatch between controllers and plants
can occur. As mentioned in [4], even traditional adaptive control systems
with smoothly varying parameters may have situations where the supervi-
sor switches to a controller whose feedback connection with the current plant
is unstable. In our case this can happen because the physics change before the
controller can change due to time delays. The next section is dedicated to un-
derstanding the consequences of controller/plant mismatch. In it, we extend
Lemma 4.1 to the case where there is a time delay during which the con-
troller/plant feedback connection is unstable. The basic result of the analysis
is roughly that the longer the time delay, the slower the external switching
must be in order to maintain stability.

4.2 Stability with Controller/Plant Mismatch

We now move on to address how to guarantee stability in the case where our
system switches between two types of plants, one stable and one potentially
unstable. The stable plants correspond to the case where the controller is
properly chosen to be stable at a particular time. The potentially unstable
plants correspond to the case where, due to any number of factors such as time-
delays, actuation latencies, controller design, etcetera, the feedback connection
is unstable.

Assume we have equations of motion of the following form:

ẋ =

 F ′
q(x, t) on [ti, ti + dσ)

Fp(x, t) on [ti + dσ, ti+1)
(8)

where (for each p) ẋ = Fp(x) is asymptotically stable and (for each q) ẋ =
F ′

q(x) is potentially unstable but has a bound on the rate of growth λF ′ . Note
that our example system in Section 2 satisfies these requirements because all
the Fp are stable by design. Again, let {t0, . . . , tn} denote the times we switch
away from a plant of the form Fp and assume that for some time dσ a plant
of the form F ′

q describes the state evolution. Then, at time ti + dσ the system
switches back to a plant of the form Fp. This is exactly what will happen if
the physical switching sequence σe does not exactly coincide with the control
switching sequence σc.

It is now useful to extend Lemma 4.1 to accommodate dσ. The resulting trade-
off is not surprising–the larger dσ becomes, the more slowly σe is allowed to
switch. In particular, we find that in the course of the following proof that
choosing

τ e
AD >

log γ
2

+ 2λF ′dσ

(λ0 − λ)
(9)
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where τ e
AD is the average dwell time of the switching signal σe, γ is the bound

on the Lyapunov functions for the stable plants Fp p ∈ P, λF ′ is the maximum
rate of growth across all F ′

q q ∈ Q, λ0 is the minimum stability margin for
Fp p ∈ P, and λ is a number chosen in the interval [0, λ0).

Lemma 4.3 Given a system of the form in (8) such that all the Fp satisfy
Eqs. (4), (5), (6), and (7), there is a finite constant τ ∗AD and a finite constant
dσ such that Eq.(8) is uniformly exponentially stable over Save[τAD, N0] with
stability margin λ, for any average dwell time τAD ≥ τ ∗AD, any chatter bound
0 < N0.

PROOF. We follow the basic methodology laid out in [5], adapting it for the
case of delays causing incompatibility between the current plant determined by
σe and the current controller determined by σc. Assume an arbitrary switching
signal σe that on an interval [t0, T ] is discontinuous at times:

{t0, t1, t2, · · · , tNσe (t0,T )−1, T}.

Now we define

v(t) = e2λ0tVσ(t)(x(t)).

This function is piecewise differentiable, so

v̇ = 2λ0v + e2λ0t ∂Vpi

∂x
F ′

pi
for t ∈ (ti, ti + dσ)

v̇ = 2λ0v + e2λ0t ∂Vpi

∂x
Fpi

for t ∈ (ti + dσ, ti+1)

∀i < Nσe(t0, T ). This implies that

v(t)≤ e2λF ′dσv(ti) for t ∈ (ti, ti + dσ)

v(t)≤ v(ti + dσ) for t ∈ (ti + dσ, ti+1)

∀i < Nσe(t0, T ). Therefore, we have that

v(t) ≤ e2λF ′dσv(ti) for t ∈ (ti, ti+1)

∀i < Nσe(t0, T ). Moreover,

v(t) = e2λ0ti+1Vpi+1
(x(ti+1))

≤ γe2λ0ti+1e2λF ′ ti+1Vpi
(x(ti+1))

= γe2λ0ti+1+2λF ′ ti+1Vpi
(x(ti+1))
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Due to the fact that Vpi
is continuous, we get that

v(ti+1) ≤ γe2λF ′ ti+1v(ti+1).

Iterating from i = 1 to i = Nσe(t0, T ), we get

v(T ) ≤ γNσe (t0,T )e2λF ′dσNσe (t0,T )v(t0).

This gives us

e2λ0T Vσ(T )(x(T )) ≤ γNσe (t0,T )e2λF ′dσNσe (t0,T )Vσ(0)(x(0))

⇒
Vσ(T )(x(T )) ≤ e−2λ0(T−t0)+Nσe (t0,T ) log γ+2λF ′dσNσe (t0,T )Vσ(0)(x(0)).

Therefore,

‖x(T )‖ ≤ α(e−2λ0(T−t0)+Nσe (t0,T ) log γ+2λF ′dσNσe (t0,T )α(‖x(t0)‖)).

which, for a constant q (determined in [5], implies that

‖x(T )‖ ≤ qe−2λ0(T−t0)+Nσe (t0,T ) log γ+2λF ′dσNσe (t0,T )‖x(t0)‖.

To get a stability margin of λ one need only satisfy the following equation:

−2λ0(T − t0) + Nσe(t0, T ) log γ + 2λF ′dσNσe(t0, T ) ≤ k − λ(T − t0)

for some value of k > 0. This is equivalent to

Nσe(t0, T )(
log γ

2
+ 2λF ′dσ) ≤ k − λ(T − t0),

which is equivalent to

Nσe(t0, T ) ≤ k + (λ0 − λ)(T − t0)
log γ

2
+ 2λF ′dσ

.

If we set

N0 =
k

log γ
2

+ 2λF ′dσ

τAD =
log γ

2
+ 2λF ′dσ

λ0 − λ

we get the condition that

Nσ(t0, τ) ≤ N0 +
T − t0
τAD

, (10)

so whenever the triple (N0, τAD, dσ) satisfies the relation in Eq. (10), we have a
stable system with stability margin λ. Just as in [5], by choosing k sufficiently
large, we can accommodate any chatter bound. 2

The following corollary is an immediate consequence of Lemma 4.3.
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Corollary 4.4 If the system in Eq. (1) satisfies:

(1) It is stabilized with a quadratic Lyapunov function Vp for every p;
(2) The time delay between σe and σc is less than some dσ and τAD and dσ

satisfy Eq.(9);

(3) The physical hysteresis is such that σe ∈ Save[
log γ

2
+2λF ′dσ

(λ0−λ)
, N0] for some

N0;
(4) u1(t) and u2(t) are finite for all time;

then Eq. (1) is exponentially stable with stability margin λ. Moreover, for the
particular choice of controllers shown in Table 1, the system is exponentially
stabilized.

Corollary 4.4 indicates that if the contact states change slowly enough (i.e.,
τ e
AD is large) and supervisory feedback is fast enough (i.e., dσ is small), then

the system can be controlled using an estimate from an estimator E that is
estimating the contact state on-line. Among other things, this means that one
does not have to concern oneself with the friction model to establish where
switching occurs. Instead, the contact states can change arbitrarily, so long
as they do so sufficiently slowly on the average. Also note that if there is a
common Lyapunov function and dσ = 0, then log γ = log 1 = 0, and the
system will be stable for any switching signal. In situations where this is not
the case, it would be useful to know if a combination of physical geometry and
controller choice can guarantee a lower bound on τ e

AD, but for now we leave
it as a standing assumption that it can be bounded (typically based on our
understanding of the hysteresis due to friction).

4.3 Simulation and Verification using Multiple Model Control

Now we apply the results of the previous analysis to the example in Fig.1, 2,
and 3.

PC

D

E

Fig. 4. A multiple model control system

Efforts in the adaptive control community have already created a frame-
work appropriate to addressing the problem of estimating and accommodating
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changes in contact state. In particular, supervisory control (as in [4,1,3,10,2,12]
and elsewhere) is an effective technique to use when a system is a linear mul-
tiple model system. Fortunately, our system, when reduced to a kinematic
system using the power dissipation method, is a first order system with con-
stant vector fields. (In fact, not only is it linear, it does not even have drift.)
When one includes the feedback laws, the system is nonlinear and nonsmooth,
but satisfies all the Lyapunov assumptions found in Eqs. (4), (5), (6), and (7).
Hence, this supervisory framework easily answers how to estimate the current
contact state based on the output (in this case the entire state x = {x, y, θ})
of the system as well as stabilize the outputs to x = {0, 0, 0}.

Consider the block diagram representation of a supervisory control system
found in Fig. 4. Denote the set of possible admissible plants by P. Each model
in P represents a contact state of the overconstrained system. Assume that
associated with each plant Pσ coming from P there is a known stabilizing con-
troller Cσ. Denote the set of these controllers by C. To determine which model
in P most closely “matches” the actual model, the input-output relationships
for all the plants in P will need to be estimated. Hence, the need for the esti-
mator, denoted by E, which will generate errors between the predicted output
for each plant and the actual output of the multiple model system. E liter-
ally compares the estimated output of every model to the actual output (in
this case (x, y, θ)) and chooses which model most closely matches the output
(using the metric ‖x‖2 = x2 + y2 + θ2). For a multiple model system with a
common Lyapunov function, E typically looks like

E(y) = arg min
σ
‖yσ − y‖

where yσ is the computed output of a plant pσ ∈ P and y is the physical
output. (Hence, the output of E is the σ that best represents the systems
dynamics at any given time.) More sophisticated version of this estimator
exist for systems that do not have common Lyapunov functions [4], but they
are basically simple adaptations of this equation. Based on E, the controller
chooses the controller. Additionally, there is an environmental signal generator
D creating σe. D represents the externally driven switches in contact state.

Now apply this supervisory approach to the four actuator array from Section 3.
Replace the boundary x = 0 with the boundary x = −0.3y, and allow the
estimator E to estimate the contact state. In this case (found in Fig. 5) the
performance is considerably better than that found in Fig. 3 and resembles the
performance found in Fig. 2. In these simulations we have found that adding
relatively small amounts of sensor noise to the output and time delay in the
system does not substantially affect the performance, which corroborates the
results in [1,4] on the robustness of this approach.

We must emphasize that although the previous analysis assumed the exis-
tence of a stabilizing controller for each plant (hence allowing us to treat p
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(a) (b)

(c) (d)

Fig. 5. Simulation of multiple point manipulation when the contact state is esti-
mated on-line, using the supervisory control methodology. A time-delay of dσ = 0.05
is used in this simulation. Here the performance is much closer to that seen in Fig. 2,
the case where our knowledge of the state is perfect, including the fact that the Lya-
punov function now monotonically decreases. Moreover, the rate of switching for σ
does not change significantly.

stable plants), we cannot naively design the estimator for determining which
control law to use. When two models in P are very closely related, their out-
puts will be very close. Hence, small amounts of sensor noise can cause rapid
switching between the “best” fit for the output signal. This rapid switching
could then destabilize the system, particularly if the controllers for each plant
were designed independently of each other. This can be addressed using a
generalization of Fig. 4 found in [4,1].

5 Conclusions

In this paper we have introduced the use of multiple model adaptive control
[1,4,6] for stabilization of manipulation problems that involve multiple con-
tacts. We show in simulation that this technique works well in the context
of a simple example (based on prior experimental work [8]). The problem of
contact state estimation and accommodation is clearly important for systems
in which stick/slip phenomena play a dominant role. Indeed, for the multiple
point manipulation experiment described here, manipulation tasks are actu-
ally impossible without the constant trade-off between sticking and slipping.
Moreover, the model/controller presented here does not include any explicit
model of friction, making the proposed techniques applicable to cases where
an unstructured environment makes it unlikely that one can model frictional
interactions accurately.

Ultimately, the analytical techniques presented here should be extended to the
more geometric setting of grasping and manipulation in the presence of gravi-
tational forces. In particular, cases where a common Lyapunov does not exist
should be examined in depth using the analytical techniques developed here.
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In the meantime, these results will be implemented on a second generation
version of the experiment discussed in Section 2.
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