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Abstract— Modeling of cable dynamics in cable-suspended
robots traditionally focuses on implicit usage of Hamilton’s
principle or variational calculus to derive a PDE that governs
the cable’s evolution. An alternative formulation allows one
to explicitly use the variational statement to directly calculate
the cable’s configuration update. Moreover, constraints on
cables can experience numerical drift because of the indirect
method by which constraints are represented in a PDE setting.
Variational methods directly implement the constraint, ensuring
that a constraint is satisfied for all time. Variational methods
also allow the implicit treatment of constraints through gener-
alized coordinates. In this paper, a special class of integrators
known as variational integrators are used to simulate simple
cable dynamics, including cables that have multiple constraints,
including the catenary as an example.

I. INTRODUCTION

Robotic simulation at times relies heavily on accurate
modeling of cable dynamics [15]. Physical plausibility of
a resulting solution is key, and indicated by the energy
behavior of the system over time. Traditionally, any large di-
vergences between the anticipated solution and the calculated
simulation are attributed to the difficultly in representing
forces and constraints. The inherent problem in maintaining
constraints in ODE and PDE structures is that they set the
velocity and other higher derivatives of the body’s constraint
to zero. The position of the body being constrainted, how-
ever, fails to have explicit representation in ODE and PDE
structures. We seek a numerical integration technique that
explicitly represents and maintains the constraint, resulting
in a plausible solution.

Such a technique is developed by using an alternative
method that explicitly represents the equations of motion
from an energy perspective, generating a Lagrangian func-
tion. This is contrary to force balance methods employed by
ODE and PDE structures. The integral of the Lagrangian is
called the action, which we extremize to form equations of
motion. These equations of motion are called the Continuous
Euler-Lagrange equations or their discrete counterpart, the
Discrete Euler-Lagrange equations, both of which can be
numerically integrated to solve for the time evolution of the
system.

To construct the Lagrangian and the corresponding action,
a generalized coordinate structure is used. In a generalized
coordinate structure, constraints between different bodies
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of the system are implicitly maintained by the coordinate
representation. This enables the different segments to stay
constrained to each other and not subject to numerical drift.

Given the action we create a numerical update scheme,
called a variational integrator. Variational integrators [7],
[11], [9] are derived using Hamilton’s Principle by mini-
mizing the action integral of the Lagrangian. After utilizing
Hamilton’s Principle, equations of motion are created and
can be integrated numerically. Additionally, these equations
can be extended to include forces and constraints. This paper
develops such a variational integrator, and demonstrates its
use in a variety of simulations. Throughout this paper, we
use methods and notation from [14] and [18].

Additionally, this paper employs Finite Element Methods
to calculate the potential energy due to elasticity and bending
forces. The symbolic integration between variational meth-
ods and finite element methods has been explored in several
texts [1], [10], [12], [6], [8]. These techniques, however,
would be computationally expensive to implement, and not
the most practical way to solve dynamics problems.

The paper is organized as follows: Section II discusses
a simple example of a one-dimensional pendulum, first
deriving the Lagrangian by hand, and then the corresponding
continuous and discrete Euler-Lagrange equations. These
equations are used in a traditional numerical integration
scheme and a variational integrator, respectively. Section
III discusses the coordinate representation and structure
mentioned earlier needed to represent a multi-dimensional
configuration space. Section IV develops a more general
method of calculating the Lagrangian for an n-dimensional
system. Section V takes the Lagrangian and derives the
continuous and discrete Euler-Lagrange equations to be used
in an n-dimensional variational integrator. We conclude the
section with simulation of a ten segment non-extensible
cable. Section VI considers elastic cable dynamics including
axial tension. We introduce the FEM approach to model-
ing axial elongation and bending forces. The variational
integrator is then expanded to incorporate constraints. This
section is concluded with a simulation of a constrained cable.
We then conclude our work and make acknowledgments in
Sections VIII and IX, respectively.

II. MODELING OF A ONE DEGREE OF FREEDOM
PENDULUM

We first consider a one degree of freedom pendulum
swinging with no dissipative forces, as the expected solution
is intuitive. In particular the equations of motion generated by
calculating the kinetic and potential energies can be derived
by hand using energy methods or τ = Jα. With this example



we have an excellent opportunity for comparing variational
integrators against other more common numerical integration
techniques.

We consider the coordinate representation with θ being
the angle of the pendulum from the x-axis and fixed length
of the pendulum set to 1. For simplicity in our illustrative
example, the mass of the pendulum is additionally set to
1. The Lagrangian, from which the equations of motion are
derived, is simply calculated as the kinetic energy of the
system minus the potential energy of the system.

L(q, q̇) = K(q, q̇)− V (q) (1)

The kinetic energy of our one degree of freedom pendulum
is 1

2 θ̇
2. The potential energy or the system involves cal-

culating the z-component of the pendulum and multiplying
by gravity. Expressed in θ coordinates: g(1 − cos(θ)). The
Lagrangian can now be calculated.

L(θ, θ̇) =
1

2
θ̇2 − g(1− cos(θ)) (2)

In solving the one degree of freedom pendulum, we first
must utilize the Euler-Lagrange (EL) equations for purposes
of generating an ODE which uniquely describes the system.

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= 0 (3)

For our simple one degree of freedom pendulum, we obtain
one ordinary differential equation.

θ̈ + gsin(θ) = 0 (4)

The Euler-Lagrange equation can be solved with the numer-
ical integrator of our choosing, whether it be implicit Euler
integration, Runge-Kutta integration, or other methods.

For the purpose of implementing a variational integra-
tor, the Lagrangian must be discretized. The discretized
Lagrangian is formulated by modifying the continuous La-
grangian using a backward-difference formulation for θ̇, θ̇ →
θk−θk−1

ts
, where ts denotes the timestep used. . Additionally,

we must now utilize the Discrete Euler-Lagrange (DEL)
equations, discussed in Section V.

D1Ld(qk−1, qk) +D2L(qk, qk+1) = 0 (5)

Equation (5) uses the configuration state at times k − 1,
k, and k + 1. D1, D2 represent the partial derivatives with
respect to the first and second arguments, respectively [18].

For our one degree of freedom configuration space in θ,
we generate one Discrete Euler-Lagrange equation.

θk−θk−1

ts
− θk+θk+1

ts

ts
− g ∗ sin(θk) = 0 (6)

Eq. (6) can then be used as a variational integrator after
setting θ0 and θ1. After initializing with θ0 and θ1 in (6),
we are able to calculate θ2 using a root-finding method and
we can the reuse (6), plugging in our known values of θ1
and θ2 to solve for θ3 and so on in an iterative fashion. Note
that the backward difference acceleration approximation can

Fig. 1. Euler Integration and Variational Integrators in Modeling a 1 Degree
of Freedom Pendulum

Fig. 2. Error Between Euler Integration and True Solution

directly been seen on the left in Eq. (6) and therefore we see
the direct correspondence between Eqs. (6) and (2).

Figures 1, 2, and 3 show three different figures relating the
effectiveness of the variational integrator modeling the one-
link pendulum. The first figure shows high resolution (ts =
10−2) solutions produced by the variational integrator and
explicit Euler integration. The solutions are not in agreement,
with the explicit Euler integration diverging significantly
even before the completion of one period.

This significant divergence is surprising as the time reso-
lution is high and we are only considering a short interval
of time. Figure 2 shows the root mean squared error of the
Euler method compared to a benchmark numerical solution
calculated from Eq.(3) on the interval ts ∈ [0, 10]. The third
figure shows the variational integrator generated solution
with ts = 0.2, a low resolution. The solution has not diverged
from the expected sinusoid. In fact, ts can be increased
to even greater amounts while still generating a plausible
solution. We note, however, that the generated solution at
the low resolution is phase shifted from the true solution.

It can be clearly seen that compared to conventional
integration methods, variational integrators have a distinct
advantage in generating a plausible solution and can even

Fig. 3. Low Resolution Simulation Generated by Variational Integrator



compute plausible solutions in a low-resolution setting.

III. COORDINATE REPRESENTATION

Generalized coordinates allows different bodies of a me-
chanical system to be expressed relative to one another,
instead of independently. Therefore, considering a two-link
system as an example, the first link would be expressed
relative to the origin, while the second link would be
expressed relative to the first link. With the links expressed in
this manner, the connections between the links are preserved
throughout simulation. This is in contrast to using Euler
integration on the PDE structure, where due to numerical
drift, links of the body separate and produce non-plausible
results.

The transformations we consider between two bodies are
rigid body transformations. In the XYZ coordinate system,
rotations will be expressed as their corresponding Euler
angles [14]. A transformation matrix is created to transform
one set of coordinates to another to represent one body’s
position relative to the body before it. We first introduce q,
which holds all of the configuration variables of interest.

q = {q1, q2, . . . , qn} (7)

We additionally introduce a twist, which represents
the body velocity. A twist is of the form. ξ =
{TX , TY , TZ , RX , RY , RZ}T ∈ <6×1 [14], where Ti and
Ri are translations and rotations about the ith axis. For
example, a revolute joint rotating about the Y axis with
velocity θ̇, as in our one degree of freedom example, has
a twist ξ = {0, 0, 0, 0, 1, 0}θ̇.

The last tool we need to construct our forward-kinematic
representation of the mechanical system is ξ̂, as defined in
(8) where ai represents the ith variable of ξ.

ξ̂ =


0 −a3 a2 a4
a3 0 −a1 a5
−a2 a1 0 a6

0 0 0 0

 (8)

In homogeneous coordinates, a transformation matrix
ga,b ∈ <4×4 transforming a body from frame a to frame
b contains a rotation matrix of size Ra,b ∈ <3×3 besides a
pa,b ∈ <3×1 translation vector.

ga,b =

[
Ra,b pa,b

0 1

]
(9)

We can compound transformation matrices using Eq. (10),
which expresses the ith element relative to spatial frame s.

gs,i = eξ̂∗q1 · eξ̂∗q2 · . . . · eξ̂∗qi (10)

The transformation matrix (10) is generated using twist
notation from Eq. (8).

IV. CALCULATING THE LAGRANGIAN

A Lagrangian, as previously defined in (1) requires calcu-
lations of the kinetic energy and potential energy.

A. Kinetic Energy

In calculating the kinetic energy, we first introduce the
Adjoint, Adga,b

∈ <6×6. This matrix is used to transform
twists represented in coordinate frame a to an equivalent
twist relative to coordinate frame b.

Adga,b
=

[
Ra.b p̂a.bRa,b

0 Ra,b

]
(11)

Where p̂a,b is of the same form as the upper-left 3 × 3
matrix in (8).

We are now able to take advantage of representing coor-
dinate transforms as twists and introduce the body velocity
Jacobian, which will help us map velocities of subsequent
elements up to the element of interest as seen in Eq. (12).
The columns of the body velocity Jacobian utilize the Adjoint
defined in (11).

Jb = [Adg1 · ξ1|Adg2 · ξ2| · · · |Adgn · ξn] (12)

The transformation matrix gi(q) is calculated using Eq.
(13).

gi = eξ̂i · e ˆξi+1 · . . . · e ˆξn−1 · eξ̂n · g(0) (13)

In Eq. (13), i is the index of the configuration variable of
interest and n represents the final configuration variable. The
individual columns of the body velocity Jacobian are used
to take the ith configuration variable and create a twist that
can be used to calculate the kinetic energy of element i
while considering the effects of the subsequent configuration
variables. The body velocity Jacobian is then used to map q̇
to the velocity of the body (14).

V b = Jbq̇ (14)

Additionally note that (13) is different from (10) as in
(10) transformations begin at the spatial frame and end at qi
and (13) begins its transformation at qi and ends at qn, the
end-effector.

The kinetic energy of the body can now be calculated.

KE =
1

2

∑
elements

V Tb ·M · Vb (15)

M denotes the body-fixed inertia tensor matrix, a constant
diagonal matrix which can be encoded to incorporate ele-
ments of varying sizes and shapes.

B. Potential Energy

The potential energy due to gravity is easily calculated
by creating a transformation from the spatial frame to the
ith element as in (10), multiplying it by the generalized
coordinate representation for a point, p = {0, 0, 0, 1}T ,
and extracting the z-coordinate, as represented by the third
element in the point vector p. This is in parallel to the one
degree of freedom pendulum example. Potential energy due
to other sources, such as electric and magnetic fields may
also be calculated, and the potential energy due to springs is
derived in VI-A.



⇒ δ
∫ tf
t0 L(q, q̇, t)dt = 0 δ

∑n−1
k=0 L(qk, qk+1) = 0

⇒ δ
∫ tf
t0 (

∂L(q,q̇)
∂q

δq + ∂L(q,q̇)
∂q̇

δq̇)dt = 0 ⇒ ∑n−1
k=0(D1L(qk, qk+1)δqk +D2L(qk, qk+1)δqk+1

) = 0

⇒
∫ tf
t0 (

∂L(q,q̇)
∂q

δq + ∂L(q,q̇)
∂q̇

d
dt
δq)dt = 0

⇒
∫ tf
t0 (

∂L(q,q̇)
dq
− d

dt
∂L(q,q̇)

dq̇
)δqdt = 0 ⇒ ∑n−1

k=1([D1L(qk, qk+1) +D2L(qk−1, qk)]δqk) = 0

⇒ ∂L(q,q̇)
∂dq

− d
dt

∂L(q,q̇)
dq̇

= 0 ⇒ D1Ld(qk−1, qk) +D2L(qk, qk+1) = 0

TABLE I
DERIVATION OF CONTINUOUS (LEFT) AND DISCRETE (RIGHT) EULER-LAGRANGE EQUATIONS. THE FIRST AND SECOND STEPS USE COMMUTATION

OF MIXED PARTIALS. WE THEN INTEGRATE BY PARTS IN THE CONTINUOUS CASE AND RE-INDEX FOR THE DISCRETE CASE, FOR THE SECOND TO

LAST STEP. FINALLY, FOR THE INTEGRAL ON THE LEFT AND THE SUM ON THE RIGHT TO BE ZERO THROUGHOUT ALL TIME, THE ARGUMENT MUST

EQUIVALENTLY BE ZERO.

V. LEAST ACTION APPROACH TO CONTINUOUS AND
DISCRETE MECHANICS

With the continuous Lagrangian properly defined, we are
now able to manipulate the Lagrangian to provide us with
equations that can update the configuration space. To this
end, we utilize the Least Action Principle which extremizes
the action integral by taking the total derivative of the action
and setting it to zero. Recall the action integral is defined
as the integral of the Lagrangian on [t0, tf ]. The resultant
equations are called the continuous Euler-Lagrange Eqs. (3),
as introduced in the example of the one degree of freedom
pendulum in Section II. Table I goes through the derivation
of the EL equations on the left hand side, and a parallel
derivation of the DEL equations on the right hand side. Note
that the derivation of the equations assume that the endpoints
are fixed, although they don’t necessarily need to be so [18].
Additionally, integration by parts and its discrete counterpart,
re-indexing, are used to complete the derivations for the EL
and DEL equations respectively. In summary of Table I, we
arrive at the Continuous (3) and Discrete (5) Euler-Lagrange
Equations.

A. Variational Integrators

Equation (5) can be used as a numerical integrator to solve
for the state of the configuration space throughout time using
a root-finding algorithm, in exactly the same fashion as Eq.
(6) modeled a one degree of freedom pendulum. The only
information required are as many initial configuration states
as necessary to uniquely define the discretized velocities
of the configuration variables. The conventions used in this
paper specify only two initial states necessary to initialize the
variational integrator as velocities were approximated using
a backward-difference rule.

B. Example: Non-Extensible Cable

The structure in our variational integrator is now appro-
priate to model a non-extensible cable discretized into 10
sections with revolute joints. Figures 4(a), 4(b), and 4(c)
show the initial state of the a 10-segment cable and two other
configuration states taken at 2 and 4 seconds into the evolu-
tion of the system initially at rest. A simulation of this system
over time can be found at http://robotics.colorado.edu/VICM.

VI. VARIATIONAL INTEGRATORS WITH CONSTRAINTS
AND AXIAL STIFFNESS

In other papers on modeling cable dynamics (e.g., [16],
[17]), differential equations are used to model the evolution
of the cable. Some papers utilize non-Euclidean coordinates
[3], mainly in the application of various rotation matrices,
but again, only an implicit use of Hamilton’s Principle is
used. Additionally, the coordinate representation is unique to
the problem, and not generalized. Furthermore constraints in
these structures are not represented explicitly. We, however,
in Section VI-B, derive a method to implement constraints
in a generalized coordinate structure.

A. Potential Energy due to Elasticity

Assume we are to discretize a rubber band or wire into
segments to form a mass-spring mesh. Hooke’s Law is a con-
venient and intuitive method for modeling axial elongation
of a spring. Now consider a steel cantilever beam; Hooke’s
law fails to incorporate the stiffness of the beam. For this
reason we turn to the finite element method to express the
potential energy due to elasticity in generalized coordinates
[13]. We first consider a stiffness matrix, K, which allows us
to map nodal displacement of the element of interest from
equilibrium (for this example, a segment of the cable), to
potential energy due to elasticity and stiffness (16). E is
Young’s modulus of elasticity, L, and A denote the length
and area of the element of consideration respectively, and I
represents various moments of inertia.

K =



A∗E
L 0 0 −A∗E

L 0 0
0 12∗E∗I

L3
6∗E∗I
L2 0 − 12∗E∗I

L3
12∗E∗I
L2

0 6∗E∗I
L2

4∗E∗I
L 0 − 6∗E∗I

L2
2∗E∗I
L

−A∗E
L 0 0 A∗E

L 0 0
0 − 12∗E∗I

L3 − 6∗E∗I
L2 0 12∗E∗I

L3 − 6E∗I
L2

0 6∗E∗I
L2

2∗E∗I
L 0 − 6∗E∗I

L2
4∗E∗I
L

 (16)

x =


∆xi(gi)
∆yi(gi)
∆θi(gi)

∆xi+1(gi+1)
∆yi+1(gi+1)
∆θi+1(gi+1)

 (17)



(a) (b) (c)
Fig. 4. (a) Initial Configuration of a 10-link Non-Extensible Cable, (b) 10-link Non-Extensible Cable at 2 Seconds, (c) 10-link Non-Extensible Cable at
4 Seconds. These can be found at http://robotics.colorado.edu/VICM.

(a) (b) (c)
Fig. 5. (a) Initial Configuration of Cable, (b) Cable Simulation at 1.5 Seconds, (c) Cable Simulation at 3 Seconds. These can be found at
http://robotics.colorado.edu/VICM.

Notice that nodal displacement representation (17) is
different from the representation we used to calculate the
kinetic energy of the system. Fortunately, the generalized
coordinate structure allows us to map one end of the seg-
ment of consideration to the origin. In particular, for each
segment of the system specified by {θi, Li}, we create a
transformation matrix associated with those two elements.
This is viable as nodal displacements of one segment of
the cable are independent from the nodal displacements of
the other segments. After creating our transformation matrix
and multiplying it by the generalized coordinate represen-
tation for a point, the rigid body is mapped to the origin.
Therefore, (17) has only two non-zero elements, ∆θi(gi) and
∆xi+1(gi+1). ∆θi(gi) directly is θi, while ∆xi+1(gi+1) is
calculated in (18) assuming p(θi,Li) = gs,(θi,Li).{0, 0, 0, 1}.
Note than in (18), we subtract the equilibrium length of the
element, denoted Leq from the actual length of the element
as determined by the simulation. With this structure, we can
retain our use of generalized coordinates and still be able to
express the potential energy due to elasticity. Additionally,
this same structure can be extended into 3 dimensions.

∆xi+1(gi+1) = ‖p‖2 − Leq (18)

The potential energy due to elasticity and stiffness is
calculated using Eq. (19).

V =
1

2

∑
elements

xTKx; (19)

B. Incorporating Constraints

To effectively model constraints associated with a cable,
the continuous and discrete Euler-Lagrange equations need

to be modified ((20) and (21), respectively). Following the
same derivation for creating the Euler-Lagrange and Discrete
Euler-Lagrange equations as before, we can account for
holonomic constraints. Lagrange multipliers are introduced
and used to impart enough force on the system to enforce
the constraints.

∂L(q,q̇)
∂dq − d

dt
∂L(q,q̇))

dq̇ = λω(q)T

d
dt (ω(q)q̇) = 0

(20)

D2Ld(qk−1, qk) +D2L(qk, qk+1) = 〈λ,∆g(qk)〉
g(qk+1) = 0

(21)

We note that in Eq. (20), the constraint is “maintained”
with d

dt (ω(q)q̇) = 0. Unfortunately, this does not directly
represent the constraint, and only represents the velocity of
the constraint. Subsequently, due to numerical imprecision
in computing and resultant errors, the constraint can undergo
numerical drift and the generated solution fails to be plau-
sible. Variational integrators in Eq. (21), on the other hand,
represent the constraint with g(qk+1) = 0, a direct method
which perfectly maintains the constraint as we will see in
Figure 6 as discussed in Section VI-C.

C. Results

A elastic cable constrained at both ends modeled us-
ing a variational integrator is represented in three differ-
ent states at time 0, 1.5, and 3 seconds in Figures 5(a),
5(b), and 5(c). A simulation of this cable can be found at
http://robotics.colorado.edu/VICM. The constraint error cal-
culated from the difference between the simulated constraint
from the actual constraint is seen in Figure 6. The constraint



Fig. 6. Error Constructed from the Difference Between the Simulated
Constraint and the Actual Constraint

Fig. 7. Entirely Numerical Simulation of Mechanical System

is perfectly maintained, as throughout the entire simulation
of 500 data points, the error is on the order of 10−15.

VII. EFFICIENT IMPLEMENTATION

Calculating the Lagrangian as developed above is compu-
tationally expensive in the symbolic nature in calculating the
Lagrangian. However, new methods for numerically calculat-
ing the Lagrangian and all the partial derivatives associated
with the Discrete Euler-Lagrange equations have been de-
veloped and are quite fast [4], [5]. Figure 7 shows a system
with a configuration space modeled with this completely
numerical variational integrator, using a software package
called trep (available at http://robotics.colorado.edu/trep.
The model has 34 configuration variables, 2 constraints, and
with ts = 0.02, takes 79.91 seconds to simulate a 30.0
seconds of motion.

Note that with free-body modeling, there would be 204
degrees of freedom corresponding to each of the elements
in the ξ vector. We would additionally have 172 constraints
resulting from the two imposed constraints and for ξ vector,
5 of the elements inside the vector must be set to 0, so that
only rotations about one axis are permitted.

Other software packages, such as MAMBO have been
developed to simulate mechanical systems, but fail to use
generalized coordinates, resulting in initialization procedures
that are tedious [2]. Additionally, MAMBO simulates motions
desribed by differential equations, which we have shown to
be less effective at gerenting plausible solutions.

VIII. CONCLUDING REMARKS AND FURTHER
DEVELOPMENTS

Variational Integrators as a numerical integration scheme
are an elegant tool in solving both simple and complex
dynamic systems with the benefits in generating plausible
solutions with good energy and momentum behavior and
perfect maintenance of constraints. It has been shown here
that the Lagrangian can easily be expanded to include other
potential energy sources, such as energy resulting from
axial elongation and bending. Furthermore, this structure is
entirely scalable to larger systems and three dimensions.

The real elegance of variational integrators for cable
modeling are presented in their perfect maintenance of holo-
nomic constraints. This emerges in the explicit expression
of the constraint in Eq.(21). Additionally, the generalized
coordinate structure inherent in the Lagrangian mechanics
generates a cable simulation with the different bodies of the
system staying connected to each other and the ends of the
cable remaining fixed.

There are many more considerations that need to be rep-
resented in the variational representation of cable dynamics.
Such considerations include slip-stick kinematics, contact
dynamics, and constraints that are unilateral, as this paper
only utilized continuous constraints.
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