
Discrete and Continuous Mechanics for Tree

Representations of Mechanical Systems

Elliot R. Johnson and Todd D. Murphey

Electrical and Computer Engineering

University of Colorado at Boulder

Boulder, Colorado 80309

erjohnso@colorado.edu and murphey@colorado.edu

Abstract— We use a tree-based structure to represent me-
chanical systems comprising interconnected rigid bodies. Using
this representation, we derive a simple algorithm to numerically
calculate forward kinematic maps, body velocities, and their
derivatives. The algorithm is computationally efficient and
scales to large systems very well by using recursion to take
advantage of the tree structure. Moreover, this method is less
prone to modeling errors because each element of the graph is
simple.

The tree representation provides a natural framework to sim-
ulate mechanical dynamics with numeric computations rather
than large symbolically-derived equations. In particular, the
representation allows one to simulate systems in generalized
coordinates using Lagrangian dynamics without symbolically
finding the equations of motion. This method also applies to
the relatively new variational integrators which numerically
integrate dynamics in a way that preserve momentum and
other symmetries. We show how to implement both integration
schemes for an arbitrary system of interconnected rigid bodies
in a computationally efficient way while avoiding symbolic
equations of motion. We end with an example simulating a
marionette; a mechanically complex, high degree-of-freedom
system.

I. INTRODUCTION

Euler-Lagrange simulations are often preferred for

robotics and controls applications because they work directly

in the generalized coordinates used to analyze the system and

specify desired trajectories. Moreover, they provide a certain

level of automation to derive correct equations of motion.

For complex mechanical systems, however, the necessary

symbolic equations become unwieldy and the resulting sim-

ulations are typically slow.

The popular alternative to Euler-Lagrange simulation is

the Newton-Euler force balance approach. Newton-Euler

simulations have a larger configuration space than Euler-

Lagrange simulations (typically (R3 × SO(3))n vs. gener-

alized coordinates) and hide the mechanical structure in the

constraint definitions. However, there are extremely fast and

efficient implementations [1] [13]. Much of the performance

comes from working with simple, general equations that can

be efficiently implemented and evaluated rather than deriving

large symbolic equations of motion. These smaller equations

can be efficiently implemented and optimized by compilers.

Euler-Lagrange simulations [2] [9], on the other hand,

typically rely on symbolic equations of motions that are

numerically integrated. Our approach avoids such symbolic

computation by representing a mechanical system as a hi-

erarchical tree structure. The representation leads to simple

recursive equations that can be used to numerically simulate

an arbitrary system of rigid bodies without deriving symbolic

equations. This method yields excellent performance while

the simulation still takes place in generalized coordinates.

Although we do not discuss it here due to space limitations,

constraints (both holonomic and nonholonomic) and external

generalized forces can also be included in a very straight-

forward fashion.

The tree representation is an intuitive description of many

mechanical systems like robots or humans. They are used

extensively in motion capture and computer animation and

have been applied to dynamics[10][3]. The use of recursion

greatly improves the simulation’s efficiency[4]. In a simula-

tion of a robotic arm, for example, the equations of motion

for the hand and forearm will both implicitly include the

kinematics of the upper arm. In a recursive approach, the

dependence on the upper arm becomes explicit. We can then

perform its calculations only once and reuse them when

needed. The recursive derivation automatically makes these

and similar optimizations wherever appropriate, even in non-

obvious places.

The tree representation is not tied to Euler-Lagrange

simulation. It provides a foundation for efficiently calculating

fundamental quantities used in many methods. In particular,

we can implement a variational integrator for arbitrary sys-

tems of rigid bodies.

Variational integrators are a powerful new tool for simu-

lating dynamics [8] [7]. They are a class of integrators de-

rived using a specific method that introduces the variational

principle after the continuous-to-discrete approximation. In

contrast, the traditional approach introduces an approxima-

tion after the variational principle by numerically integrating

a continuous ordinary differential equation (ODE). Varia-

tional integrators preserve important symmetries, including

momentum, for conservative systems. Unlike ODE methods,

they are also well suited for systems with impacts and non-

smooth mechanics.

II. TREE REPRESENTATIONS

A tree representation is a tree sub-graph of a graph

that describes all the interconnections between rigid bodies.



Fig. 1. A humanoid system is naturally described using the tree represen-
tation.

We represent the mechanical system as a collection of

coordinate frames with a hierarchical organization. Each

frame is defined as a rigid body transformation (typically

depending on parameters) relative to a parent frame. Hence,

all tree sub-graphs provide generalized coordinates for a

given mechanical system; whatever parameters the rigid

body transformations depend on are these coordinates. (We

assume that we have already chosen a tree representation.)

Frames can have an unlimited number of child frames. At

the top of the hierarchy is the stationary world coordinate

frame. Masses can be attached to each frame in the system.

A simplified example of a tree representing a mechanical

system is shown in Fig. 1.

The rigid body transformations are defined and represented

using homogeneous coordinate transformations in SE(3).
See [9] for an in-depth discussion.

Table I defines the notation used throughout the paper. We

will typically drop the explicit dependence on q and qi for

visual clarity (e.g. gs,i rather than gs,i(q)).
We make the following assumptions about the mechanical

system.

1) Frames are related to their parents through six basic

transformations: Translations along the parent’s X, Y,

and Z axes and rotations about the parent’s X, Y, and

Z axes.

2) Each configuration variable drives only one transfor-

mation.

3) Masses are always attached to a frame’s origin with

the principle axes aligned with the frame’s axes.

These assumptions are not required for this approach. They

are included only to simplify the resulting equations.

Assumption 1 implies that each transformation depends on

only one real number. For moving joints, they depend on a

single real-valued configuration variable. Fixed transforma-

tions are parameterized by constants.

The biggest drawback of assumption 1 is forcing three-

dimensional rotations to be parameterized by three Euler

angles rather than a global SO(3) parameterization. If a

global representation of SO(3) is required, this assumption

can be removed and the equations re-derived.

Assumption 2 prevents using the same configuration vari-

able to drive multiple transformations, which is useful for

modeling systems with parallel linkages. Parallel linkages

TABLE I

NOTATION USED FOR THE TREE REPRESENTATION.

qi(t) ∈ R Configuration variable of the i-th frame.

q(t) ∈ R
n Configuration vector comprising q0, q1, ... ,

qn.

mi Mass of the i-th frame.

Mi ∈ R
6x6 Inertia Tensor of the i-th mass in body frame

coordinates.

gs,i(q) ∈ SE(3) Configuration of the i-th frame relative to the
spatial reference frame.

gj,i(q) ∈ SE(3) Configuration of the i-th frame relative to the
j-th frame.

gi(qi) ∈ SE(3) Configuration of the i-th frame to its parent
frame.

vb
i ∈ TeSE(3) Body velocity (i.e., an element of the Lie

algebra) of the i-th frame relative to the
spatial reference frame.

ps,i(q) ∈ R
3 Position of the i-th frame relative to the

spatial reference frame.

anc(i) The ancestors of the the i-th frame are the
frames passed while moving up the tree
from the i-th frame to the spatial frame. For
example, frame 6 has ancestors {1, 2, s}.

par(i) Immediate parent frame of the i-th frame.
For example, the parent of frame 6 is frame
2.

and closed chains can instead be handled by connecting open

chains with constraints.

Assumption 3 guarantees that the inertia matrix, Mi, for

each mass is diagonal and that the kinetic energy can be

expressed as vbT
i Miv

b
i [9].

III. FRAME POSITIONS AND DERIVATIVES

Given the above representation, the configuration of any

frame with respect to the spatial reference frame is easily

calculated. For the spatial reference frame, the configuration

is the identity transformation, I . Otherwise, the configuration

of frame k is the parent frame’s configuration gs,par(k)

transformed by the local transformation gk. This results in a

piecewise expression for gs,k(q)1:

gs,k(q) =

{

I k = s

gs,par(k)gk k 6= s
(1)

1The piecewise equations presented in this paper have a specific ordering.
For cases that can be simultaneously satisfied, the top-most case always
takes precedence.



Eq. (1) defines a recursive algorithm to numerically calculate

the configuration of any frame in the system. We can also

find derivatives of frame configurations.

∂
∂qi

gs,k(q) =

{

∂
∂qi

I k = s
∂

∂qi

[

gs,par(k)gk

]

k 6= s

=











0 k = s
∂

∂qi

[

gs,par(k)

]

gk

+gs,par(k)
∂

∂qi
gk

k 6= s
(2)

Assumption 1 guarantees ∂
∂qi

gk(q) = 0 when i 6= k.

Assumption 2 implies ∂
∂qi

gs,par i(q) = 0 since gi(q) is the

only frame that depends on qi.

∂
∂qi

gs,k(q) =











0 k = s
∂

∂qi
gs,par(k)gk i 6= k

gs,par(k)g
′

k i = k

(3)

where g′k = ∂
∂qk

gk(qk). The second derivative is calculated

using a similar procedure.

∂2

∂qj∂qi
gs,k(q) =



















































0

k = s

i /∈ anc(k)

j /∈ anc(k)

gs,par(k)g
′′

k i = k = j
∂

∂qj
gs,par(k)g

′

k i = k 6= j
∂

∂qi
gs,par(k)g

′

k i 6= k = j
∂2

∂qj∂qi
gs,par(k)gk i 6= k 6= j

(4)

Eq. (1), (3), (4) allow us to calculate the configurations of

any coordinate frames in the system along with their first and

second derivatives with respect to any configuration variable.

Note that these are exact derivatives and not approximations.

IV. FRAME BODY VELOCITIES AND DERIVATIVES

The body velocity of a frame is the velocity of its parent

frame transformed into the local coordinates plus the velocity

of the frame with respect to the parent:

v̂b
k(q, q̇) =

{

0 k = s (5a)

g−1
k v̂b

par(k)gk + g−1
k ġk k 6= s (5b)

where ġk = ∂
∂t

gk. Assumption 1 allows the second term in

(5b) to be expressed using a twist ξ̂ [9]:

v̂b
k(q, q̇) =

{

0 k = s

g−1
k v̂b

par(k)gk + ξ̂k q̇k k 6= s
(6)

Note that the expression g−1
k v̂b

par(k)gk could be replaced

by an Adgk
vb

par(k) transformation. Indeed, all the following

equations can be modified to use their intrinsic counterparts.

However, we focus here on as transparent an approach as

possible and do not use any differential geometric formality.

Derivatives of the body velocities are straightforward to find.

∂
∂qi

v̂b
k(q, q̇) =



















0
k = s
i /∈ anc(k)

g−1′
k v̂b

par(k)gk + g−1
k v̂b

par(k)g
′

k i = k

g−1
k

∂
∂qi

v̂b
par(k)gk i 6= k

(7)

∂2

∂qj∂qi
v̂b

k(q, q̇) =






















































0
k = s
i /∈ anc(k)
j /∈ anc(k)

g−1′′
k v̂b

par(k)gk + 2g−1′
k v̂b

par(k)g
′

k

+ g−1
k v̂b

par(k)g
′′

k

i = k = j

g−1′
k

∂
∂qi

v̂b
par(k)gk + g−1

k
∂

∂qi
v̂b
par(k)g

′

k i 6= k = j

g−1′
k

∂
∂qj

v̂b
par(k)gk + g−1

k
∂

∂qj
v̂b
par(k)g

′

k i = k 6= j

g−1
k

∂2

∂qj∂qi
v̂b
par(k)gk i 6= k 6= j

(8)

∂2

∂q̇j∂qi
v̂b

k(q, q̇) =


































0

k = s
k = j,
i /∈ anc(k)
j /∈ anc(k)

g−1′
k

∂
∂q̇j

v̂b
par(k)gk + g−1

k
∂

∂q̇j
v̂b
par(k)g

′

k k = i

g−1
k

∂2

∂q̇j∂qi
v̂b
par(k)gk k 6= i

(9)

∂
∂q̇i

v̂b
k(q, q̇) =



















0
k = s,

i /∈ anc(k)

ξ̂k i = k

g−1
k

∂
∂q̇i

v̂b
par(k)gk i 6= k

(10)

∂2

∂q̇j∂q̇i
v̂b

k(q, q̇) = 0 (11)

Eq. (1) through (11) define recursive algorithms for calcu-

lating quantities that are needed to simulate a mechanical

system. These equations are derived using the normal deriva-

tive. If an application requires higher derivatives, we can

continue finding expressions without changing the approach.

The new expressions are still numerically evaluated and

can take advantage of previously computed values through

recursion.

V. PRIMITIVE TRANSFORMATIONS

Many of the equations include terms that we have not

explicitly shown how to calculate (ie, g′k, g′′k , g−1
k , g−1′

k ,

g−1′′
k , and ξk). These are found manually for each of the

primitive transforms (Assumption 1). For the transformations

used here, they take on simple forms. For example, the

inverse of any primitive transformation is trivial: g−1(x) =
g(−x).

Terms involving pk and derivatives are trivially obtained

from the related gs,k calculations. pk comprises the x, y,

and z coordinates of a frame in the spatial frame. These

are simply extracted from the appropriate gs,k matrix. The

derivatives of pk (as appear in (16)) are similarly extracted

from corresponding derivatives of gs,k.



VI. CONTINUOUS LAGRANGIAN DYNAMICS

The Euler-Lagrange equation provides a somewhat auto-

mated way to generate the equations of motion for a me-

chanical system. Given a system with generalized coordinate

vector q, the dynamics are given by the Euler-Lagrange

equation:

∂

∂t

∂L

∂q̇
(q, q̇) −

∂L

∂q
(q, q̇) = ~u(q, q̇, t) (12)

where L(q, q̇) is the system’s Lagrangian and ~u(q, q̇, t)
are externally applied forces expressed in the configuration

coordinates. We can expand this equation using the chain

rule.
∂2L

∂q̇∂q̇
q̈ +

∂2L

∂q∂q̇
q̇ −

∂L

∂q
= ~u(q, q̇, t) (13)

where the dependence on q and q̇ has been dropped. If the

operator ∂2L
∂q̇∂q̇

is invertible2, (13) can be solved to find q̈:

q̈ =

(

∂2L

∂q̇∂q̇

)−1 (

~u(q, q̇, t) +
∂L

∂q
−

∂2L

∂q∂q̇
q̇

)

(14)

If we can evaluate all of the terms in (14), we can integrate

the equation to simulate the system over a period of time.

For complex systems, we typically generate a symbolic ex-

pression for Lagrangian and find (14) with symbolic algebra

software. This does not scale well. The equations tend to

grow quickly with the number of bodies in the system. They

are difficult to work with and are slow to evaluate.

Alternatively, we can evaluate the terms of (14) numeri-

cally using the tree representation. Not only does this avoid

symbolic calculations, but it also takes advantage of the tree

representation’s efficiency.

A. The Continuous Lagrangian

To bridge the gap between (14) and (1)-(11), we expand

the Lagrangian:

L(q, q̇) = Kinetic Energy(q, q̇) − Potential Energy(q)

=

masses
∑

k=0

1
2vbT

k Mkvb
k + ml~g · pk (15)

where ~g is the gravitational force vector.

We will need to find ∂L
∂qi

(q, q̇) to evaluate (14):

∂L

∂qi

=
∂

∂qi

[

masses
∑

k=0

1
2vbT

k Mkvb
k − ml~g · pk

]

=

masses
∑

k=0

1
2

∂

∂qi

vbT
k Mkvb

k + 1
2vbT

k Mk

∂

∂qi

vb
k−

ml~g ·
∂

∂qi

pk

=

masses
∑

k=0

vbT
k Mk

∂

∂qi

vb
k + ml~g ·

∂

∂qi

pk (16)

2This is the system’s inertia matrix expressed in generalized coordinates.

Similar derivations yield the remaining expressions that are

needed:

∂2L

∂qi∂q̇j

=

masses
∑

k=0

∂vbT
k

∂q̇j

Mk

∂vb
k

∂qi

+ vbT
k Mk

∂2vb
k

∂qi∂q̇j

(17)

∂2L

∂q̇i∂q̇j

=

masses
∑

k=0

∂vbT
k

∂q̇j

Mk

∂vb
k

∂q̇i

+ vbT
k Mk

∂2vb
k

∂q̇i∂q̇j

(18)

Assuming we can numerically evaluate ~u(q, q̇, t), these

equations allow us to calculate q̈ in (14) given t, q, and

q̇ without symbolically deriving the equations of motion.

Constraints can also be imposed using this method with no

modifications, but are not shown for space limitations.

VII. DISCRETE LAGRANGIAN DYNAMICS

There has recently been a great deal of research in novel

methods of numeric integration for mechanical systems.

A result of this research is a class of integrators called

variational integrators, so named because they compute state

updates directly from a variational principle. Variational

integrators conserve (or nearly conserve, depending on the

integrator) structural quantities like momentum and energy

[8]. They are also well suited for problems involving impacts

and non-smooth phenomenon [5].

In discrete mechanics, we find a sequence

{(t0, q0), (t1, q1), . . . , (tn, qn)} that approximates the

actual trajectory of a mechanical system (qk ≈ q(tk)).
For simplicity, we assume a constant time-step

(tk+1 − tk = ∆t ∀ k), but in general, the time-step

can be varied to use adaptive time-stepping algorithms.

The variational integrator is derived by defining the dis-

crete Lagrangian to approximate the action integral over a

short interval.

Ld (qk, qk+1) ≈

∫ tk+1

tk

L(q(τ), q̇(τ))dτ (19)

Using the discrete Lagrangian, the system’s action integral

is replaced with an action sum.

S(q([t0, tf ]) =

∫ tf

t0

L(q(τ), q̇(τ))dτ

≈

n−1
∑

k=0

Ld (qk, qk+1) (20)

Minimizing (20) with a discrete variational principle leads

to an implicit difference equation known as the discrete

Euler-Lagrange (DEL) equation3:

D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0 (21)

This equation uses the previous two states to find the

next state, similarly to how the continuous Euler-Lagrange

equations are integrated forward. The simulation finds qk+1

by using a root-finding algorithm to solve (21). The time

index, k, is incremented and the process repeats. Note that

3Dnf(. . . ) is the derivative of f(. . . ) with respect to its n-th argument.
This is sometimes called a slot derivative



the derivation of (21) is exactly analogous to the variational

principle used to derive (12).

We have omitted forcing and constraints for clarity, but

the variational integrator framework is capable of handling

both [8] [12], and will be included in the expanded version

of this work.

A. Numeric Variational Integration

Implementations of variational integrators are currently

derived symbolically. For complicated mechanical systems,

the equations tend to scale better than the corresponding

continuous differential equations, but still become too large

for practical use. The tree representation allows us to instead

implement variational integrators numerically.

As an example, we consider a simple variational integrator

that uses a generalized midpoint approximation for the

discrete Lagrangian.

Ld(qk, qk+1) = L
(

qk + α (qk+1 − qk) , qk+1−qk

∆t

)

∆t (22)

where α ∈ [0, 1] is an algorithm parameter and α = 1
2 leads

to second order accuracy [12].

Continuing with our typical approach, (22) is used in (21)

and expanded with the chain rule.

D1Ld (qk, qk+1) =

∂L

∂q

(

qk + α (qk+1 − qk) ,
qk+1 − qk

∆t

)

(1 − α)∆t

−
∂L

∂q̇

(

qk + α (qk+1 − qk) ,
qk+1 − qk

∆t

) (23)

D2Ld (qk, qk+1) =

∂L

∂q

(

qk + α (qk+1 − qk) ,
qk+1 − qk

∆t

)

α∆t

+
∂L

∂q̇

(

qk + α (qk+1 − qk) ,
qk+1k − qk

∆t

) (24)

Eq. (23) and (24) allow us to evaluate (21) numerically

using the values derived earlier for the continuous equations.

Eq. (21) is solved for qk+1 using a numeric root-finding

algorithm which, in general, need derivatives of the function

to work. The standard Newton-Raphson method, for exam-

ple, uses the gradient of the function to find the step direction

[11]. We can directly calculate the derivative instead of

resorting to a numeric approximation. First, we define the

function to be solved:

f(qk+1) = D1Ld (qk, qk+1) + D2Ld (qk−1, qk) (25)

The derivative is then

Df(qk+1) = D2D1Ld (qk, qk+1)

= ∂2L
∂q∂q

(

qk + α (qk+1 − qk) , qk+1−qk

∆t

)

(1 − α)α∆t

+ ∂2L
∂q̇∂q

(

qk + α (qk+1 − qk) , qk+1−qk

∆t

)

(1 − α)

− ∂2L
∂q∂q̇

(

qk + α (qk+1 − qk) , qk+1−qk

∆t

)

α

− ∂2L
∂q̇∂q̇

(

qk + α (qk+1 − qk) , qk+1−qk

∆t

)

1
∆t

(26)

Despite the intimidating appearance of (26), every term can

be numerically evaluated using previous equations.

The integrator is initialized with the previous configu-

ration, the current configuration, and a time-step. A root-

finding algorithm finds the next configuration by solving

(21) using (26). The solution is incremented so that the

current configuration qk becomes the previous qk−1 and

the configuration qk+1 found by the root-finder becomes

the current configuration qk. The process is then repeated

until the desired simulation time is reached. Just as in the

ODE case, higher-order and adaptive time-stepping may be

implemented as well without any adaptation to the basic

procedure given here.

VIII. EXAMPLE: MARIONETTE

Fig. 2. The tree representation can handle the complex dynamics of a
marionette.

Recently the authors have been engaged in a project for

simulation and control of marionettes [6], partially moti-

vating the current work. Marionettes have many degrees of

freedom, typically 40 or more. Moreover, they have highly

coupled dynamics, partially because of their limited actua-

tion. Hence, they are excellent examples of complex mechan-

ical devices. Figure 2 shows a marionette being simulated

using a variational integrator based on the tree representation.

The simulation includes dissipative forces and constraints.

The constraints use kinematic configuration variables [6].

The mixed dynamic-kinematic modeling technique used for

the strings are implemented without modifying either the

tree representation or the constrained variational integrator,

though we do not focus on this here.

The simulation takes place directly in the marionette’s gen-

eralized coordinates. This is convenient for motion planning

and optimal control where the desired trajectory or state is

usually specified as joint angles rather than the positions and

orientations of each body part.

IX. CONCLUSIONS AND FUTURE WORKS

The tree representation provides a strong foundation for

simulating mechanical systems. It provides remarkably sim-

ple equations and obvious avenues for numerical optimiza-

tion. The method of specifying the model is also less error-



prone because every component of the tree is a simple

transformation. For many of the same reasons, we find that

even if an error is made in the specification of the system,

it is easier to find the error in this setting.

The presented method also uses a systematic process to de-

rive higher order derivatives of the forward kinematic maps.

This is particularly well suited to variational integration.

Better integrators are derived using better quadrature rules

for (19), but may lead to higher order derivatives in the

resulting equations. Similarly, we could use a better root-

finding algorithm that needs a higher order derivatives of

(21) to converge faster. The key is that the need for higher-

order derivatives does not pose any difficulty in this setting.

The recursive equation definitions are also advantageous

from a numerical efficiency standpoint. Once a value has

been calculated, it can be cached and reused for later calcu-

lations. For example, the frame configurations, gs,k, are used

by all of the tree representation equations. Once they have

been calculated, their numerical values can be reused when

evaluating derivatives later. This explicitly avoids duplicating

calculations that are otherwise repeated in purely symbolic

equations.

In practice, this leads to significant speed improvements.

Fig. 3 shows the results of simulating N -link pendulums

over a ten second period. The dotted line indicates the

computational time when caching is not used, which is

similar to the case of a symbolically derived variational

integrator. The solid line indicates the computational time

when caching is used. Even with 19 links, the simulation

takes less than 20 seconds.

b b b b b
b

b

b

b

b

b

b

b

b

0 5 10 15 20
0

250

500

Pendulum Links

T
im

e
(s

)

Fig. 3. Simulation times for pendulums of different links. The dotted line
indicates the performance without caching.

In this paper, we have only discussed unconstrained

mechanical systems of rigid bodies. These techniques can

also be extended to include forcing and constraints (such

as springs, damping, and non-slip constraints). The Euler-

Lagrange equations will have additional terms, but the basic

approach is the same. The tree representation requires no

modification.

While we have made several assumptions to simplify our

equations, they are not required by this representation. Many

of the assumptions can be safely removed so long as the

derivatives are re-derived from the base equations, (1) and

(5). Most importantly, the equations could be derived to allow

direct SE(3) parameterization of three dimensional rotations.

X. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-

tional Science Foundation under CAREER award CMS-

0546430. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the

National Science Foundation.

We would additionally like to acknowledge useful conver-

sations with Prof. Magnus Egerstedt at the Georgia Institute

of Technology.

REFERENCES

[1] D. Baraff. Non-penetrating rigid body simulation. In State of the Art

Reports, 1993.
[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun. Principles of Robot Motion. The MIT Press,
2005.

[3] A.C. Fang and N.S. Pollard. Efficient synthesis of physically valid
human motion. 2003.

[4] R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic
Publishers, 1987.

[5] R.C. Fetecau, J.E. Marsden, M. Ortiz, and M. West. Nonsmooth
lagrangian mechanics and variational collision integrators. SIAM

Journal on Applied Dynamical Systems, 2003.
[6] E.R. Johnson and T.D. Murphey. Dynamic modeling and motion

planning for marionettes: Rigid bodies articulated by massless strings.
In International Conference on Robotics and Automation, Rome, Italy,
2007.

[7] L. Kharevych, Weiwei, Y. Tong, E. Kanso, J. E. Marsden, P. Schroder,
and M. Desbrun. Geometric, variational integrators for computer
animation. Eurographics/ACM SIGGRAPH Symposium on Computer

Animation, 2006.
[8] J. E. Marsen and M. West. Discrete mechanics and variational

integrators. Acta Numerica, pages 357–514, 2001.
[9] R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to

Robotic Manipulation. CRC Press, 1994.
[10] Y. Nakamura and K. Yamane. Dynamics computation of structure-

varying kinematic chains and its application to human figures. IEEE

Transactions on Robotics and Automation, 16(2), 2000.
[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C Second Edition. Cambridge University Press,
1992.

[12] Matthew West. Variational integrators. California Institute of Tech-

nology Thesis, 2004.
[13] A. Witkin, M. Gleicher, and W. Welch. Interactive dynamics. In

Computer Graphics, 1990.


