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Abstract— Vibration is commonly used in industrial parts
feeding and alignment processes, and to provide energy to en-
courage mobility among self-assembling parts. We are studying
a simple model of agitation where planar parts are repetitively
thrown by a simple one-degree-of-freedom throwing surface,
caught, and allowed to settle. Throwing actions result in non-
linear discrete-time maps in the parts’ configuration space,
exhibiting behaviors such as unique fixed points and uncertainty-
reducing forward limit sets with large basins of attraction. We
show how to shape these maps by choosing the arm geometry,
throwing velocity, and mass parameters of the parts. In some
cases, we can design a single map that is guaranteed to uniquely
position and orient a part. In other cases, we can design multiple
maps, corresponding to different throw velocities, such that the
composition of the maps can be used to drive multiple parts
to a desired assembly. Switching between the throw actions is
triggered by simple sensors that recognize when the system
has achieved a configuration in the basin of attraction of a
subsequent map.

Index Terms— parts handling, self-assembly, stable limit sets,
sensorless manipulation, throwing and catching.

I. INTRODUCTION

Traditional robot assembly relies on a monolithic robot to
sequentially assemble individual parts into a growing assem-
bly. With an eye toward future micro- and nano-scale devices
consisting of large numbers of parts, self-assembly aims to
distribute the assembly program, typically concentrated in
the powerful robot manipulating the “dumb” parts, to the
parts themselves. While a great deal of work in self-assembly
focuses solely on designing parts so that they only bond in
ways consistent with a desired static assembly, the design
space of self-assembling systems can include the following
dimensions:

1) Part physical characteristics such as shape, mass prop-
erties, friction, restitution, wetability, charge, chemical,
and other properties.

2) Local sensing, communication, computation, and actu-
ation by the parts, creating interaction rules beyond
those that can be implemented by the part physical
characteristics alone.

3) Properties of the environment such as templates, fix-
tures, shaped force fields, and energy input such as

heating or agitation.
4) Centralized feedback control where the actuation of

the environment is based on the sensed state of the
assembly process.

Most work on small-scale self-assembling systems focuses
on item 1. Ongoing efforts to develop “smart” parts are aimed
at taking advantage of the capabilities in item 2 to achieve
more flexibility in the self-assembled structures. Studies in
pattern formation in granular flows attempt to develop expla-
nations for the effects of characteristics in items 1 and 3 on the
spontaneous formation of patterns in agitated heterogeneous
granular media. Sensorless robot manipulation focuses on de-
signing fixtures and open-loop motions of manipulators to sort
or feed parts (item 3), while one goal of minimalist robotics
is to design the simplest sensors necessary to create useful
feedback controllers (item 4) [15]. One assumed property
of centralized feedback control (item 4) is that the sensory
information and control authority is limited; otherwise the
environment could directly and independently actuate the
parts, and we would be back to the traditional model of
robot assembly. Even though the centralized control authority
is limited, it can play a useful role. Consider, for example,
a sensor-based annealing pattern, where the environment is
actuated with high energy when the parts are far from forming
an assembly, but with lower energy as the assembly forms.
We consider just such an example in this paper.

Just as traditional assembly sequences can be planned
automatically, ideally we would be able to automatically
distribute the “assembly program” for a desired assembly
into the characteristics of the parts, the environment, and the
centralized feedback controller. This is far beyond our current
capabilities. To begin to gain insight into the tradeoffs offered
by the design dimensions described above, in this paper we
study simple examples of self-assembly combining the design
of part physical characteristics (item 1), properties of the
environment (item 3), and centralized feedback (item 4).

Our interest in this paper is in the assembly of rigid parts,
mesoscale or larger, under low-degree-of-freedom external
forcing of the parts’ support surface. In short, the goal is to
literally throw together an assembly: to design the properties
of the parts, and the geometry and motion of the parts’ support
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Fig. 1. The Sony APOS parts orienting system (from [34]).

surface, such that there is a single, globally attractive fixed
point of the dynamical system — the desired assembly. The
idea is related to one considered by Penrose and Penrose in
1957 [41], who showed that multiple copies of two specially-
designed complementary planar parts on a horizontal track
“assemble” into linked pairs under horizontal shaking of the
track (but only if the system is first seeded with one or more
assemblies).

The problem of throwing together an assembly is challeng-
ing, particularly considering that the only “binding” forces
between parts are due to local potential wells induced by
gravity and complementary part-part or part-environment ge-
ometries. Nonetheless, such a system is not completely with-
out precedent. The commercial Sony APOS parts orienting
system (Fig. 1) produces a tray of oriented parts by a simple
agitation strategy [24]. Parts wash over the vibrating tray, and
the tray has part-shaped depressions such that parts that fall
into the depressions in the right orientation stay there, and
those that fall in the wrong orientation pop back out. These
parts continue into a return bin and then are dumped over
the tray again. This process continues several times, with
no sensing, and the result is a tray of oriented parts (with
perhaps a small number of empty depressions). This is a kind
of templated self-assembly. The design problem is to find
an appropriate depression shape and vibration profile for the
given part. Currently this problem is solved by experimental
trial-and-error.

A. The Example System

Consider the following scenario. Two rigid planar polygo-
nal parts in a gravitational field rest on a support surface.
The support surface is a one-degree-of-freedom arm that
throws the parts, lets them settle to a new configuration,
then repeats. The system is a driven, dissipative, nonlinear
dynamical system, with dynamics determined by repeated
impacts, friction, and gravity. The goal is to bring the two
parts into a desired relative configuration (i.e., an assembly).

Although this system is simple compared to many ex-
isting industrial feeding devices, the dynamics are highly
complex, and it is difficult to apply the model-based rational

mechanics approach, which has had significant success in
kinematic, static, and quasistatic manipulation planning (see,
e.g., [34]). This approach is based on precise knowledge of
part geometries, mass properties, and friction and restitution
coefficients, and uses Newton’s laws, Coulomb friction, and
various models of impact. For systems of many interacting
parts, though, this level of modeling may be too fine. Just
as Newton’s laws are more useful than quantum mechanics
for understanding rigid body dynamics, a higher level of
modeling may be more appropriate in the design of self-
assembling systems.

This issue was addressed by Berkowitz and Canny [5],
Mirtich et al. [36], Gudmunddson and Goldberg [19], and
Moll and Erdmann [37], who suggested methodologies for
parts feeder design based on statistics accumulated during
actual experiments or simulations. Because of the complexity
of the dynamics, the feeders are treated as black boxes, and
the behavior of the system is modeled simply by statistics.
This is a high-level description of the system dynamics, with
limited power to suggest changes in design to achieve desired
behavior.

In this paper we look for an intermediate level of modeling,
more abstract than the low-level rational mechanics model
but more useful for design than input-output statistics. In
the present work and in [39], [40], our approach is to use
qualitative features of the induced dynamical system, such
as ergodicity or the existence of limit sets or fixed points.
Each throw and catch of the parts induces a discrete-time
throw map that maps the initial resting configurations of the
parts to new resting configurations. Although simulation or
experiment may be required to get the details of a throw
map, the existence of certain qualitative features of the map
is robust, such as a small number (perhaps just one) of
entropy-reducing [52] forward limit sets for all possible initial
configurations of the parts. In this paper, we show that it is
sometimes possible to create throw maps with unique stable
fixed points, with large basins of attraction, by designing
the mass properties of the parts (item 1) and the throwing
velocity and geometry of the arm (item 3). When this is not
possible, we can design multiple throw maps, differing only
by the throwing velocity, where each map can be viewed as a
“funnel” that collapses a relatively large basin of attraction
into a smaller set in the configuration space. This results
in a partial ordering of funnel maps, where the “spout” of
a funnel is inside the “mouth” (basin of attraction) of a
funnel of higher priority, and the highest priority funnels
have spouts consisting of the desired assembled state. Sensors
(item 4) need only recognize when the system is in the
basin of attraction of a higher-priority funnel, allowing for
the design of very simple sensors [15]. This view of sensor-
based composition of dynamical systems is explored in detail
in [11].

Figure 2 gives a conceptual example in a one-dimensional
configuration space. In this example, there are three throw
maps: one low-priority high-energy map (not shown) that
randomizes the configuration; one medium-priority map (Fig-
ure 2 (left)) that collapses a large volume of the configuration
space to a forward limit set consisting of a period-two orbit;
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Fig. 2. Conceptual one-dimensional discrete-time throw maps. Left: A
medium-priority map from the initial part state x to the state T (x) after
a throw and catch. This map yields a forward limit set consisting of a period
two orbit with a basin of attraction as indicated. Right: A high-priority map
with a stable fixed point with the basin of attraction indicated.

and one high-priority low-energy map (Figure 2 (right)) that
collapses a small volume of the configuration space to a single
fixed point (the desired assembly). This last funnel map is
designed so that one of the points of the period-two spout of
the medium-priority map is in its mouth. In this case, sensors
need only recognize when the system configuration is in the
basins of attraction of the medium-priority and high-priority
funnel maps. Provided the randomization map is guaranteed
to eventually bring the system in the basin of attraction of
the medium-priority map’s basin of attraction, assembly is
guaranteed. (See [14] for more on the utility of randomization
in robot manipulation.)

This simple example avoids two basic complications of the
assembly problems we are interested in: (1) the composite
configuration space for multiple parts may be high dimen-
sional, and (2) real throw maps are effectively stochastic
at the resolution with which the system can be sensed and
controlled. The second issue argues for stochastic represen-
tations and estimates on the likelihood of assembly as a
function of time. This does not affect the essential funneling
behavior, however, even if it is expressed in terms of funneling
probability mass. The more serious issue is the first. Higher-
dimensional configuration spaces allow for significantly more
complex dynamical behavior, including chaotic behavior,
strange attractors, and a number of coexisting funnels with
mouths and spouts of different dimensions within a single
throw map. Our approach has been to focus on small numbers
of parts (one or two) and low-energy throws, where these
behaviors are rarely observed. High-energy throws are used
simply for randomization. The relatively low dimension of
our configuration spaces means that the mouths of some low-
energy funnel maps have significant measure in the parts’
resting configuration space, so that randomized actions are
likely to find these basins of attraction.

B. Contributions and Overview

The work in this paper builds on [31], where it was
observed that a single planar part, subjected to repeated
identical throws by a one-joint arm, will enter a unique

forward limit set from almost any initial configuration on the
arm. The specific contributions of the current paper are:

• Constructive controllability of a single part. We begin by
showing that a single polygonal part can be repetitively
thrown to reach a desired position and orientation on
the arm. This controllability result is suggestive of the
feasibility of subsequent assembly tasks.

• Design of a part and fixture to achieve a globally
attractive fixed point. By modifying the mass properties
of the part (item 1) and adding a fixture to the arm (item
3), we can transform the forward limit set of a single
throw map into an essentially globally-attractive fixed
point.

• Sensor-based self-assembly of two parts. By introducing
feedback with a simple one-bit sensor (item 4), we
switch between a low-priority high-energy randomiza-
tion throw map and a high-priority low-energy assembly
throw map to achieve global “self-assembly” of two
triangular parts into a rectangle.

• An intermediate level of modeling. We combine low-level
rational mechanics modeling with an intermediate level
of modeling based on robust qualitative features of the
throw maps.

In Section III we describe the experimental system, estab-
lish notation, and review a previous experiment in repetitive
throwing and catching of a single part that led to the exper-
iments in this paper. In Section IV we derive constructive
controllability conditions for our sample system and use
these to derive feedback throwing controller to position a
part on the arm using only two one-bit sensors. Section V
describes the techniques used to design the forward limit set
behavior of a polygonal part. By the addition of a fixture,
the globally-attractive forward limit set can be turned into
a globally-attractive fixed point of the configuration of the
part. In Section VI, we demonstrate the assembly of two
triangular parts into a rectangular part in a potential well
created by a fixture. The assembly process consists of two
throwing actions: a high-energy low-priority throwing motion
that randomizes the configuration of the parts, and a low-
energy high-priority throwing motion that induces the two
parts to assemble. A simple sensor is used to detect when
the parts are in the basin of attraction of the assembly under
the low-energy throwing motion. Conclusions are given in
Section VII.

II. BACKGROUND: SENSORLESS ASSEMBLY AND
SELF-ASSEMBLY

*** We should work these reference into the introduc-
tion and eliminate this section.

Despite the many advances in recent years in understanding
the mechanics of sensorless manipulation and the computa-
tional aspects of motion planning (at the macro [21], [29],
[38] and micro [17] scales), we are still not very close to
understanding manipulation systems that manipulate large
numbers of parts, such as the Sony APOS system [24].
This is largely because the complications associated with
impact, friction, dynamics, elasticity, and other effects make
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simulation difficult and direct analysis nearly impossible in
all but the simplest of cases. Assumptions, such as flat sur-
faces, minimal impact, zero friction, and others, are typically
employed to make the analysis more tractable. However, this
to a large extent invalidates the rational mechanics approach
to understanding these systems, as there is little formal
connection between the simplified systems and their more
complex relatives, either in the analysis or in the simulations.
Researchers have already recognized and addressed some of
these obstacles [2]–[6], [12], [16], [18], [36], [37], [42], [43],
[48], [58].

Self-assembly has recently become an area of intense study,
particularly as it relates to micro- and nano-scale systems.
In such systems, the program that encourages the system to
self-assemble must in one way or another be encoded into
the dynamics of the system. This includes biological and
molecular self-assembly [20], [30], [56], [59], where self-
assembly is seen as a minimum energy problem. These min-
imum energy configurations are caused by capillary forces,
Van der Waals potentials, chemical bonds, electrostatic forces,
etc. The ideas discovered in this context have been extended
to other systems, such as magnetically induced self-assembly
[25] and wetability induced self-assembly [7], [49], [50], [55],
[57]. More recently, there has been progress on designing self-
assembling systems using graph grammars [27], [28].

Other work has focused largely on pattern formation. These
are largely scientific and phenomenological studies, interested
in understanding the mechanisms behind the patterns that
arise under different environmental forcing, rather than how
to explicitly produce a particular kind of pattern. However,
these are extremely valuable in that they investigate how
the environment and external forcing affects the evolution
of a given pattern. Good examples include investigations
into pattern formation and segregation in mixing of granular
materials in rotating drums of various geometries [8], [13],
[22], [23], [26], [35], [44], [47], [53], [60].

The work presented here falls at the intersection of several
of these areas, having characteristics of classical sensorless
manipulation, self-assembly, and pattern formation. In partic-
ular, the manipulation is intrinsically dynamic (i.e., no quasi-
static description can capture the behavior of the system),
sensorless or with only minimal sensing, and limit sets (e.g,
patterns) are the useful description of the system. These limit
sets can be designed to follow a set of rules that can be
used for the purpose of self-assembly. In particular, limit sets
can be designed so that almost all configurations “reject”
assembly and the desired configuration “accepts” assembly.

Analyzing manipulation in terms of limit sets is not new. In
particular, juggling involves stabilizing a cyclic trajectory for
an object [1], [32], [46], [51], [54]. Koditschek and colleagues
studied two- and three-dimensional juggling by batting in
a series of papers [9], [10], [45]. both in two and three
dimensions. Rather than batting, our system “throws” and
“catches” the polygons, but the philosophy is similar.

III. BACKGROUND: LIMIT SETS IN MANIPULATION

The Flatland testbed for assembling planar parts by throw-
ing and catching is shown in Fig. 3. The Flatland setup is

Camera
Lighting

Air 
Table

Pivot

Angle 
adjustment

Frame

Lighting

Fig. 3. The Flatland experimental system consists of an air hockey table
used as an air bearing, a single-degree-of-freedom robotic arm that can throw
parts, and a camera used for data acquisition.

composed of a large air hockey table that supports objects
with a nearly frictionless air bearing. The angle of the table
is adjustable, providing control of the effective gravity in
the support plane. Parts rest on a 1DOF rotary arm, and
the motion of the arm is controlled to throw the parts. The
parts then settle on the stationary arm. The arm is covered
in a thin layer of high-friction slow-recovery foam (Lendell
Mfg, type PHS-14) and is driven by a 6W Harmonic Drive
RH-8 3006 gearmotor. The air table supports an extruded
80/20 aluminum superstructure on which lights and camera
are mounted. A Cognachrome vision board calculates the
positions and orientations of parts on the table for purposes
of data acquisition.

An initial experiment by Lynch, Northrop, and Pan [31]
studied impulsive throwing and catching of a single polygonal
part (Fig. 4). The “throw map” maps an initial configuration
of the part to a final configuration after the part settles.
The configuration space is R+×Nmod(n), where Nmod(n)
indicates the set of n stable sides the polygon can come to
rest on and R+ indicates the distance (“radius”) along the arm
from the joint. When the arm repetitively executes identical
impulsive throwing motions, it was shown that, for some arm
geometries and throwing impulses, the part eventually enters
the same limit set of resting configurations regardless of its
initial configuration. The cyclic pattern consists of “jogs”
(small translational motions away from the joint while the part
remains in the same orientation) and “flips” (counterclockwise
rotation that additionally moves the part back toward the arm
joint, seen in Fig. 4). A globally attractive forward limit set
for a triangular part can be seen in Fig. 5. With the resting
sides of the triangle labeled 0, 1, 2 in the clockwise direction,
the limit set consists of outward jogs on side 0 until the part
hits a critical radius at which it flips onto side 1. Then it jogs
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Fig. 4. A part is thrown by an impulse from the rotary arm, then settles
back to rest.

0

Horizontal Distance from Pivot Point

Si
de

 P
ar

t i
s R

es
tin

g 
O

n

Fig. 5. A simulated forward limit set for the thrower from Fig. 4. The
arrows indicate the motion of the part and its transitions from one side to
the next.

until it flips to side 2. Finally, it jogs outward until it flips
back to side 0, where the cycle repeats.

To understand this behavior, and to set the stage for our
new experiments, we describe the equations of motion for this
system.

A. Notation

We define an inertial xy coordinate frame at the axis of
the one-degree-of-freedom throwing arm, where gravity acts
in the −y direction (Figure 6). The throwing arm geometry is
described by the single parameter h, which gives the height
of the throwing surface (y = h) when the arm is horizontal.
We choose h < 0 to achieve desired limit set behaviors.

A part is a convex polygon, and its configuration at rest
on the arm is given by the side i on which it rests and the x
coordinate of its center of mass, denoted R. Thus a resting
configuration of the part is denoted (R, i) or (x, i). While
resting on edge i on the horizontal arm, the height of the
center of mass above the support surface is di > 0 and the
vectors from the center of mass to the left and right support
vertices are (ui

L, vi
L < 0) and (ui

R, vi
R < 0), respectively.

(Note di = −vi
L = −vi

R.) The side is stable in gravity if
ui

L < 0 and ui
R > 0. The part is assumed to have n stable

sides, so that its resting configuration space is R+×Nmod(n).
The mass of the part is m and its radius of gyration is ρ.

i

x

y

(u ,v )L L
i i

R
Part

Arm
θ h

(u ,v )R R
i i

d

Fig. 6. Part parameters. *** Maybe replace this figure with one that
shows h having the right sign, di as positive, and variables in the right
fonts.

B. Flight Equations

The arm throws the part with an impulse—it releases
the part at an angular velocity of θ̇r > 0 with negligible
displacement of the arm and no slipping of the part. During
flight, the configuration of the part is written [x(t), y(t), φ(t)],
where t = 0 at release and the angle φ is measured with
respect to the initial orientation of the part. The (integrated)
equations of motion of the part in flight are x(t)

y(t)
φ(t)

 =

 R− (h + di)θ̇rt

h + di + Rθ̇rt + 1
2gt2

θ̇rt

 . (1)

The location of the (initially bottom left) vertex can be written[
Vx(t)
Vy(t)

]
=

[
x(t)
y(t)

]
+

[
cos(φ(t)) − sin(φ(t))
sin(φ(t)) cos(φ(t))

] [
ui

L

vi
L

]
. (2)

Substituting Eq. (1) into Eq. (2) and knowing (by assumption)
that the time of impact will be when the left bottom vertex
hits the horizontal arm (Vy(t) = h), we solve

Vy(t) = h+di +Rθ̇rt+
1
2
gt2 +sin(θ̇rt)ui

L +cos(θ̇rt)vi
L = h

(3)
for the smallest positive value of t to get the flight time
timpact. Other possible solutions to this transcendental equa-
tion are discarded.

C. Impact Equations

When the part impacts with the arm after a throw, we
assume that friction is high enough and restitution is low
enough that the part does not slide or bounce. This is ap-
proximately realized in experiment by the thin layer of foam
covering the arm. Let the part pre-impact velocity at timpact

be [ẋ−, ẏ−, φ̇−], the post-impact velocity be [ẋ+, ẏ+, φ̇+],
and [rx, ry] be the vector from the center of mass to the
vertex that impacts the arm. By our no-slip no-rebound impact
assumption, the post-impact velocity is ẋ+

ẏ+

φ̇+

 =
1

ρ2 + r2
x + r2

y

 ry(ρ2φ̇− + ryẋ− − rxẏ−)
rx(−ρ2φ̇− − ryẋ− + rxẏ−)

ρ2φ̇− + ryẋ− − rxẏ−


(4)

(see [31] for details).
By assumption, after impact the part comes to rest on either

the initial stable side i (a jog) or on the next stable side i + 1
mod(n) (a flip). In the space of orientations of the part, there
is a potential energy peak at the critical angle where the part
balances unstably on a vertex between falling toward side
i or toward side i + 1. To determine whether the part has
sufficient post-impact energy to cross this peak, we evaluate
its post-impact potential energy −mry and its post-impact
kinetic energy 1

2m((ẋ+)2 + (ẏ+)2 + (ρφ̇+)2). Depending on
whether the part has enough energy to cross the peak, the
part rolls without slipping to rest on its new stable side, and
the new x coordinate of the part is calculated accordingly.
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D. Throw Map

The composition of the flight and impact equations yields
the throw map. Given an initial rest configuration (x0, i0), the
new configuration after a throw with angular velocity θ̇r is
written

(xf , if ) = T θ̇r (x0, i0)

or simply T (x0, i0) if the release velocity is implicit. If θ̇r

is small, the part jogs to a new position with if = i0. If the
throw energy is large, the part flips to a new side if = (i + 1)
mod(n).

The result of a sequence of k identical throws at angular
velocity θ̇r is written

(T θ̇r )k(x0, i0)

and the result of a sequence of k different throws,
{θ̇1

r , . . . , θ̇k
r}, is written compactly as

T θ̇k
r ◦ . . . ◦ T θ̇1

r (x0, i0) =
k∏

j=1

T θ̇j
r (x0, i0).

To discuss the result of a sequence of identical throws, we
use the following definition.

Definition 3.1: Consider a map b : Z → Z. The map b has
a forward limit point q ∈ Z of z ∈ Z if there exists exists
a sequence of positive integers Ni, i ∈ N such that bNi(z)
approaches q as i → ∞. The forward limit set for z is the
set of all forward limit points of z.

It was shown in [31], both theoretically and experimentally,
that a part will enter a unique uncertainty-reducing forward
limit set S under the repeated action of a throw map T for es-
sentially all initial part configurations, given an appropriately
chosen h (0 > h > −mini di) and θ̇r > 0. By choosing
h < 0, jogs are guaranteed to be outward (x coordinate
increasing), as the initial velocity of the left support vertex
has an outward component. By choosing h > −mini di,
the velocity of the center of mass during flight is inward,
guaranteeing that flips will result in a decrease in the x
coordinate. The result is that parts jog out and eventually
flip inward, creating a unique forward limit set such as that
illustrated in Fig. 5.

We define the unique forward limit set S associated with
a throw velocity θ̇r as S(θ̇r), where the arm geometry and
part properties are implicit. Where there is no possibility for
ambiguity, we simply write S. The limit set S is bounded
from above and below in the R+ component. It is usefully
characterized by the bounds supS and inf S, defined by

supS =
{

(ri)
∣∣∣∣ x < ri ⇒ T (x, i) = (x + δx, i)

x ≥ ri ⇒ T (x, i) = (∗, (i + 1) mod(n))

}
inf S = {(li) |x < li ⇒ (x, i) /∈ S }

where δx is some positive number and ∗ is arbitrary. Hence,
both supS and inf S consist of n numbers for a part with n
stable sides. Any throw T (x, i), where li < x < ri, results in
an outward jog (the part lands on the initial edge) while any
throw with x ≥ ri results in a flip (the part flips to a new
edge).

Beginning from this, we show how to alter the mass
properties of the part to change the shape of the forward limit
set, and how to add a fixture to change a globally-attractive
limit set into a globally-attractive fixed point. Before doing
this, however, we establish the constructive controllability of
the position and orientation of a part by throws.

IV. CONSTRUCTIVE CONTROLLABILITY FOR A SINGLE
PART

Our goal is to show that, for a fixed arm geometry h
(0 > h > −mini di), there exists a sequence of throws
to take the part from any initial resting configuration to a
desired final resting configuration (xf , if ) for any if and for
xf sufficiently large. The outline of the proof is as follows.
First we show that for a constant throwing velocity θ̇r, the part
will eventually achieve a configuration (x, if ) ∈ S(θ̇r), where
x < xf > lif

. Once the part has reached such a configuration,
there exists a sequence of throws that jog it to the desired
position (xf , if ). To implement a simple approximation to
the control, we require two one-bit sensors: one to tell us
when the part has reached a configuration (x < xf , if ) and
another to tell us when it has approximately (within ε) reached
its destination, where ε can be chosen arbitrarily small.

Lemma 4.1: For a given θ̇r and corresponding limit set
S(θ̇r), and any (x0, i0), for all if there exists a k such that
(T θ̇r )k(x0, i0) = (x, if ) ∈ S(θ̇r).

Proof: Note that in Eqs. (1) and (3), x(timpact) can be
determined by first solving Eq. (3) for timpact (the time the
part hits the arm) and then substituting into Eq. (1). We can
approximately solve this by the small-angle approximation
replacing sin(θ̇rtimpact)ui0

L with θ̇rtimpactu
i0
L and replacing

cos(θ̇rtimpact)vi0
L with vi0

L . Doing so, we get that

x(timpact) = R +
2
g
(h− vi0

L )(R + ui0
L )θ̇2

r .

This implies that x(timpact) depends linearly on R and
quadratically on θ̇r. This, along with the fact that x > 0,
implies that for any x0 and throw k, xk+1−xk > xk−xk−1.
Therefore, every throw increases x by some minimum amount
δ > 0. This implies that there are no equilibria (as was also
shown in [31]) before reaching the critical ri0 where it flips
from side i0 to side i0 + 1, and that the part reaches ri0 in
finite time. This is true for all stable sides, so the part must
eventually rest on all stable sides. �

Lemma 4.2: For any initial position (x0, i0) and any final
position (xf , if ) such that if = i0 and xf > x0, there exists
a sequence of throws {θ̇1

r , θ̇2
r , . . . , θ̇k

r} such that

k∏
j=1

T θ̇j
r (x0, i0) = (xf , if ).

Proof: *** I changed this proof. I think it is much
simpler now. The x coordinate of the left support vertex at
time t after release is

Vx(t) = R− (h + di0)θ̇rt + ui0
L cos(θ̇rt)− vi0

L sin(θ̇rt).

For a sufficiently small release velocity θ̇r, the flight time
timpact is also small, and the small-angle approximation
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allows us to write the net displacement after time timpact

as
∆Vx = −hθ̇rtimpact,

where timpact is monotonically increasing with the control
θ̇r. By our design choice of h < 0, we have ∆Vx > 0 (an
outward jog). By the Implicit Function Theorem [33], there
exists a δ > 0 such that for all x∗ ∈ (x0, x0+δ), there exists a
θ̇r such that T θ̇r (x0, i0) = (x∗, i0). We can connect together
open δ

2 neighborhoods from x0 to xf to create the sequence
of throws necessary. Note that the number of throws required
is bounded above by xf−x0

δ , so k is finite. �
Lemma 4.1 and 4.2 are combined in Proposition 4.3.
Proposition 4.3: Let S be a limit set for the input θ̇0

r and
li ∈ inf S. Then, for any initial position (x0, i0) and any final
position (xf , if ) such that xf > lif

, there exists a sequence
of throws {θ̇1

r , θ̇2
r , . . . , θ̇k

r} such that
k∏

j=1

T θ̇j
r (x0, i0) = (xf , if ).

Proof: This is a direct consequence of the two previous
Lemmas. Given an initial configuration (x0, i0) and a final
configuration (xf , if ), we can choose any θ̇r to get the part
to side if by Lemma 4.1, and we need only choose one such
that lif

, the lower bound in x for side if in the limit set, is
less than xf . Then, by Lemma 4.2, we can use a sequence of
low-velocity throws to jog from (x, if ) to (xf , if ). �

That is, the system is controllable from (x0, i0) to (xf , if )
provided that xf > lif

, the bound on the limit set.

A. Experimental Implementation

Notice that the proof of Lemma 4.2 implies that arbitrarily
small translations in x can be achieved. Therefore, if it is
sufficient that the part be within ε of xf , we can adopt a
simple feedback controller. First we repeatedly use a relatively
large release velocity to get the part to the desired side. This
is sensed with a one-bit sensor. Once on the correct side, we
switch to a low release velocity that slowly jogs the part to
the goal xf coordinate. If θ̇r is chosen sufficiently low, the
goal xf value can be reached with arbitrarily good precision,
where the presence of the part in the goal state is sensed by
another one-bit sensor. There is a tradeoff in this precision,
however; the smaller the required goal radius ε, the lower the
release velocity, meaning shorter jogs and a longer time to
reach the goal region.

We implemented this control strategy on the experimental
system. The part is a 30-60-90 triangle with a hypotenuse of
17 cm and a center of mass located 5 cm from the short side of
the right angle and 3 cm from the long side of the right angle.
The arm approximates an impulsive throw by recoiling a few
degrees and then controlling its angle to a setpoint (using a
PD controller) such that the maximum overshoot is when the
arm is approximately horizontal. The vision system acts as
the necessary one-bit sensors.

Fig. 7 (top) shows the stopped arm after the part has
reached the desired position and orientation. Fig. 7 (bottom) is
a plot of the configuration of the part during the run. We can
see the part starts on side 2 and jogs forward until its critical

Fig. 7. (Top) A part in its final controlled configuration. (Bottom) The trace
of the part’s configuration.

point. *** Todd: the figure doesn’t match the description;
it’s never on side 2. Also, maybe a more important issue:
everywhere else in the paper you show parts flipping to
edges of increasing number, but here the flips are to
decreasing numbers. What’s up? Note in our previous
TRA paper, we always flipped to edges of decreasing
number. At this point, the part flips counterclockwise and
onto side 1 where the controller switches to low amplitude
throws. The part jogs forward until it reaches the end of the
arm. This experiment was repeated 20 times with random
initial conditions (obtained by dropping the part onto the arm)
and resulted in the part being within 1 cm of the desired
position on the arm in the correct orientation 100% of those
times.1

*** experimental results would be stronger if (1) you
could give the release velocity, and (2) if the results
matched with simulations. especially later when you shape
limit sets; do you see experimentally the kind of shaping
you predicted?

V. SHAPING FORWARD LIMIT SETS

We now address the second contribution of this paper—
designing part properties and the throwing velocity to shape
the forward limit set of a throw map. In this case, we
will design supS to guarantee that a part can only reach a
particular location on the arm if it is in the desired orientation.
We first compute an approximation of the throw map mapping
an initial configuration (x0, i0) to final configuration (xf , if ).
We use this to compute the critical points at which the part
will change from jogs to flips. Then we use a nonlinear
root finding algorithm to solve for physical parameters given

1Movies of all experiments can be found at
http://ece.colorado.edu/∼murphey.
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desired critical points. The design of the parts handling is
therefore completely in terms of the critical points associated
with the limit set behavior. One can choose any number of
physical parameters to vary, including density, center of mass
location, throwing velocity, side length, etc. For concreteness,
we will focus on the choice of only three parameters, the
location of the center of mass and the throwing velocity, but
the approach outlined here is valid for other choices. ***
Todd: when you change the CM location, how are you
changing the inertia? are you keeping it fixed? note that
the chosen inertia and CM may not be compatible (i.e., no
way to get a large inertia if all the mass is near a corner
of the part). All that is required is that the mapping from the
parameter space to the desired critical points be surjective.2

In fact, we will see that this calculation comes down to an
implicit function of the form f(p, r) = 0 ∈ Rn, where n is
the number of stable sides a part has, p are design parameters,
and r = sup S. We want to solve for the parameters p given
a desired r in order to “design” a limit set S. The Implicit
Function Theorem from classical analysis [33] provides a way
of testing whether this is at least locally possible. If it is, then
a nonlinear root finder can be employed to find p given a
desired r.

A. Computing the Limit Set Critical Points

We need to find an approximate set of relationships be-
tween the physical parameters p we have control over and
the forward limit set (such as that found in Fig. 5). For every
stable side i, we want to compute ri ∈ supS such that for
all x < ri, T (x, i) is a jog, and for all x > ri, T (x, i)
is a flip, based on the equations in Eqs. (1-3). The part will
flip when its post-impact total energy (including potential and
kinetic energy) is greater than the critical potential energy
U i

crit needed to rotate to the new side.
Although we can certainly solve for a throw map numer-

ically, we are looking for design rules to help us iteratively
design the parameters p to achieve desired critical points
ri. We cannot solve analytically for the part post-impact
energy because of the sine and cosine terms, so we adopt the
small-angle approximation around θ̇rtimpact = 0. With this
approximation, solving for the impact time requires solving

Vy(t) = h + di + Rθ̇rt +
1
2
gt2 + θ̇rtu

i
L + vi

L = h

for t, which yields

timpact = −2θ̇r(R + ui
L)

g
.

*** Todd: looks like there might be technical errors in this
subsection. The kinetic and potential energies after impact
seem wrong, because the units are wrong or inconsistent.
Please go over or re-derive equations in this section.
Plugging this into Eq. (1) we get the impact configuration

2Because we use only three parameters in our example, we can indepen-
dently design at most three critical points in sup S.

[x(timpact), y(timpact), φ(timpact)] =
R + 1

g 2θ̇r

(
Rθ̇r + θ̇ru

i
L

) (
h− vi

L

)
− 1

g 2Rθ̇r

(
Rθ̇r + θ̇ru

i
L

)
+ 1

g 2
(
Rθ̇r + θ̇ru

i
L

)2

− vi
L

− 1
g 2θ̇r

(
Rθ̇r + θ̇ru

i
L

)
 .

Using Eq. (4) to solve for φ̇+ after impact, we get

φ̇+ = −

0@−ρ2θ̇r + ui
L

“
Rθ̇r − 2

“
Rθ̇r + θ̇rui

L

””
− θ̇rvi

L

`
−h + vi

L

´
ρ2 + (ui

L)2 + (vi
L)2

1A θ̇r.

With this we can determine the kinetic energy after impact
*** check!,

Ki =
ρ + m

`
(ui

L)2 + (vi
L)2

´
2

`
ρ2 + (ui

L)2 + (vi
L)2

´2

“
−ρ2θ̇r+

ui
L

“
Rθ̇r − 2

“
Rθ̇r + θ̇rui

L

””
− θ̇rvi

L

`
−h + vi

L

´”2
.

Moreover, the potential energy after impact is *** check!

U i = −gm

„
1

g
2Rθ̇r

“
Rθ̇r + θ̇rui

L

”
− 2

“
Rθ̇r + θ̇rui

L

”2
+ vi

L +
q

(ui
L)2 + (vi

L)2
«

.

Given the parameters p = [u0
L, v0

L, θ̇r], we can calculate the
function F i(p,R) = Ki(p, R)+U i(p, R)−U i

crit(p) for each
of the n stable edges, i = 0, . . . , n−1. The function F i(p,R)
evaluates to zero at (approximately) R = ri, the maximum x
coordinate belonging to the limit set S(p) for edge i, where
the part transitions from a jog to a flip. The goal is to choose
the parameters p such that F 0(p, r∗0) = F 1(p, r∗1) = . . . =
Fn−1(p, r∗n−1) = 0, where {r∗0 , . . . , r∗n−1} are the desired
transition points encoding the desired shape of the forward
limit set.

Defining F = [F 0, . . . , Fn−1], an iterative algorithm for
designing a forward limit set can be summarized as follows.

Algorithm for Designing Limit Sets

Given a desired limit set specified by supSd:
1) Choose a set of initial values for the design

parameters p;
2) Compute the critical points supS(p); if

supS(p) ≈ supSd, return the successful design
p, otherwise continue;

3) Approximate the throw map by linearization
and determine if the Jacobian ∂F/∂p is full
rank; if so, continue to step 4, otherwise abort;

4) Use a root-finding technique (such as Newton-
Raphson) to take a step in the parameter space
p ← p + δp to bring supS(p) − supSd closer
to zero;

5) Go to step 2.

Note that the rank of the Jacobian ∂F/∂p is limited by the
number of parameters p. We have chosen three parameters
(center of mass location and throwing velocity), so in our
example below, we design the three critical points of a
triangle’s throw map.
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B. Example: Designing a Triangle Limit Set

Our goal is to design the limit set for a triangle so that the
part can only appear at a particular location on the arm in a
particular orientation. We can then add a fixture to the arm to
transform the shaped globally-attractive forward limit set into
a globally-attractive fixed point: i.e., the open-loop motion of
the arm is guaranteed to uniquely position and orient the part.

*** Todd: perhaps rewrite this subsection to explicitly
give the dimensions of the triangle and its CM initially.
(still the 17 cm hypotenuse?) Then the figure showing the
design iterations should also show the designed part next
to the limit set, so we can see what the design procedure
is doing to the part. Is the experiment using the same
part designed in the figure showing the design iterations?

We now consider whether or not the function F = K +
U −Ucrit = 0 is locally solvable for p = [u0

L, v0
L, θ̇r] given a

set of desired critical points r∗0 , r∗1 , r∗2 . For instance, consider
a triangle like the one pictured in Fig. 4 with (u0

L, v0
L) =

(−2,−3.5) (with side 0 being the hypotenuse). Figure 8(a)
shows the corresponding limit set with θ̇r = 5.6 rad/s(=
320 deg/s). It is clear that one cannot predict the orientation
of a part purely by its location on the arm. Instead, we would
like a limit set that is skewed so that some areas on the
arm can only be reached in a particular orientation. That is,
our design criterion is that r0 � ri for i 6= 0. *** This is
inconsistent with the design iteration figure, that shows
that ri is largest for i = 2. I think you should define
somewhere how you are numbering edges (increasing as
you go CCW, for example), and stick to it through the
paper. The rank of the Jacobian ∂F/∂p is three near the
operating point [u0

L, v0
L, θ̇r] = [−2,−3.5, 5.6], so we can

locally deform the limit set. If we choose a desired limit set of
{r∗0 , r∗1 , r∗2} = {10, 10, 20}, we find (using the Mathematica
command FindRoot, which uses a damped Newton’s method)
that a choice of [u0

L, v0
L, θ̇r] = [−2.8,−3.8, 4.6] gives rise to

these critical points.
This is shown in Fig. 8 where Figure 8(b) shows an inter-

mediate calculation in this root finding process and Fig. 8(c)
the final limit set. Note that the linearized throw map leads
to some error; Fig.8(c) indicates that the final numerically-
simulated forward limit set has {r0, r1, r2} ≈ {14, 14, 20}.
Nonetheless, the approximate model was sufficient for creat-
ing the behavior we were looking for: if the x coordinate is
20 cm or more, we know the part is on side 2. As we see
in the experiment below, this property can be exploited by
adding a fixture to create a globally-attractive fixed point of
the throw map.

C. Experiment: Globally-Attractive Fixed Point

To test limit set design, we again used a 30-60-90 plexiglas
triangle with a hypotenuse of 17 cm. We attached a lead
weight to the triangle, allowing us to move the center of mass.
Following the recipe in Section V-B, we numerically found
that moving the lead weight into one of the corners helped to
extremize the limit set, so that r0 and r1 are small and r2 is
large. *** Can you give any numbers? Can you provide a
picture of the final design? which sides are 0, 1, and 2?

a)

1 3 2 5 4 6

7

b)
Fig. 9. By designing the limit set for one three-sided part, the part is “fed” at
a unique orientation off the end of the arm in a completely sensorless fashion.
The illustration shows the progress of a triangular part as it is thrown on the
arm. (Note that each jog shown actually corresponds to multiple throws.)

what is the throw velocity? Did you simulate the limit set
also, and does it look similar? To turn the globally-attractive
forward limit set into a stable fixed point, we designed a
cavity at the end of the arm (shown in Fig. 9(b)) to capture
the part in a unique configuration. Because of the shaped limit
set, the part only reaches the cavity on side 2, never on sides
0 or 1. The cavity is deep enough that subsequent throws
do not eject the part. This experiment was repeated 20 times
with random initial conditions and was successful 95% of
those times (19/20). The one experiment failed because the
part hit the wall of the cavity. *** It always hits the wall,
doesn’t it? What does the previous sentence mean? There
is a tendency for this to occur when the center of mass of the
part is very close to the end of the arm before the part falls
into the cavity. This indicates the need for a better design of
the cavity.

D. Experiment: Sequential Assembly

*** Todd: I don’t understand this experiment. Are the
parts put in sequentially? We might consider leaving this
experiment out, unless it adds something new. I find the
current description confusing.

For open-loop assembly we design the stable limit sets
independently such that both parts only enter the cavity in
a desirable configuration. For the first part, we use the same
triangle discussed above. For the second, we choose a four-
sided polygon that, when placed in the cavity, will perfectly
match with the sides of the cavity and the top of the triangle.
This is what we consider our “assembled” state. If the limit
set of the second part is designed correctly, the two parts will
fall into the cavity in the arm in the assembled state (Fig. 10).
We do not address the difficulty of inter-part interactions and
balancing between the extremes of very low energy throws
that do not provide stable limit cycle behavior and high energy
throws that eject the parts from the cavity. This experiment
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(c) Final Iteration

Fig. 8. A sequence of iterations in the numerical root-finding techniques used to determine the part shape. The first initial shape has the part reaching the
same location on the robotic arm for each side. That is, the part flips to a new side by the time it reaches 20 cm, regardless of what side it is on. By changing
the physical parameters (in this case the center of mass) one is able to compute a part that will only go to the end of the arm if it is on side 2. Hence, the
part has been designed to be “self-assembled” mechanically.

a)

5

4

1

1 3 2 4

3 2

b)
Fig. 10. By designing the limit sets for two parts (one three sided and one
four sided), two parts are also “self-assembled” in a completely sensorless
fashion. The illustration shows the progress of both parts as they are thrown
on the arm and eventually self-assemble at the end of the arm.

was repeated 20 times with random initial conditions and was
successful only 55% of those times (11/20). Two of the most
common failure modes included the second part being ejected
from the assembled state on the next throw and the second
part becoming stuck in the cavity in an incorrect orientation.
These failures are due to two main factors. First, we did not
analyze inter-part interaction, which needs further study. This
could be mitigated by having the parts handled separately
(either serially or in parallel by two different manipulators)
in the experimental implementation. Secondly, we did not
analytically design the cavity for capturing the parts, which
meant that sometimes the parts were ejected before they were
successfully assembled. Indeed, once the parts were in their
assembled state, the parts only remained assembled after the
next throw 85% (17/20) of the time.

VI. SELF-ASSEMBLY OF TWO PARTS

In this last experiment, two 30-60-90 triangles are as-
sembled into a rectangle. To do this, we use two throw
maps—one high-energy low-priority map to randomize the

a bab

Fig. 11. Self-assembly of two parts. Top left: the parts a and b are not
in the basin of attraction of the assembly throw map, so their configuration
is randomized by high energy throws. Top right: the parts are in the basin
of attraction. Middle left: The arm drops to a rest angle of α < 0. Middle
right: small jogs cause part b to reach the fixture. Bottom left: part a begins
to assemble under part b. Bottom right: assembly is complete.

parts configuration, and one low-energy high-priority map to
perform the assembly. A one-bit sensor recognizes when the
parts are in the basin of attraction of the assembled state in
the high-priority map.

To accomplish the assembly, we modify the arm to have a
fixture consisting of a vertical wall at the end of the arm. It
remains to design the high-priority throwing motion so that
the two parts assemble against the wall.

The two parts are uniform-mass 30-60-90 right triangles,
as shown in Figure 11. Each triangle is a reflection of the
other. The basin of attraction of the high-priority assembly
throwing motion has part a resting on its intermediate-length
edge wholly to the left of part b, which is resting on its
hypotenuse. This two-dimensional set of resting states has
nonzero measure in the space of all possible resting configu-
rations, and we have verified experimentally that randomizing
high-velocity throws eventually take the parts to this set.

When the sensor recognizes the system in the basin of
attraction of the assembled state of the high-priority map, the
arm changes its rest angle from horizontal to an angle α < 0,
so that the vertical wall at the end of the arm serves to create
a potential well (Figure 11). The arm then undergoes a series
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(a)

(b)

a

b

b

Fig. 12. To ensure proper assembly, (a) part b must not lean against the
fixture, and (b) part a should not slip out from under part b when the assembly
is only partial.

of low-amplitude throws that have the effect of causing part
b to jog outward until it reaches the wall, at which point
its discrete-time throw map becomes the identity map. Part
a moves outward more slowly, due to the fact that the jog
distance depends approximately linearly on the part’s distance
from the arm’s rotation joint. Part a eventually slides under
part b, as can be verified by a kinematic analysis of the initial
upward velocities of part a’s right support vertex and part b’s
left support vertex.

To ensure correct assembly, we have the freedom to choose
the arm angle α < 0 and the release velocity θ̇r > 0 for the
high-priority assembly map. We must ensure that part b does
not lean against the wall (Figure 12(a)), and that intermediate
assembly states, when part a is only partially under part b,
are stable (Figure 12(b)), so that assembly can proceed.

Figure 13 analyzes the possibility of leaning. Triangle b is
shown at top leaning against the wall at an angle β with the
gravitational force acting at an angle −α with respect to verti-
cal in the figure. Assuming a friction coefficient of µ between
the part and the arm and frictionless contact between the part
and the wall, Figure 13 graphically indicates the possible con-
tact forces on the part as moment-labeling regions [34]. The
resultant forces that can be provided by the contacts must pass
counterclockwise around the region labeled + and clockwise
around the region labeled −. Therefore, the contacts cannot
generate a force to resist the gravitational force, which passes
through the − labeled region. This indicates that the part must
fall. If the friction coefficient µ were significantly larger, the
part could remain stuck in the leaning position.

After a little manipulation, the condition that the gravity
vector pass through the − labeled region, and therefore part
b does not get stuck in a leaning position, can be written

− cos α((0.14 + µ) sinβ − 0.58 cos β)+
sinα(0.42 sinβ − 0.14 cos β) > 0.

This condition is plotted in Figure 13 for µ = 1, 2. Even for
the extremely high friction coefficient µ = 2, the part will
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Fig. 13. Top left: a triangle leaning against the wall with the arm declined
at an angle α < 0. Top right: the possible wall and arm contact forces,
represented as moment-labeling regions, and the gravitational force acting
on the part. The contacts cannot resist the gravitational force, and the part
must fall against the arm. Bottom: Leaning is impossible for the (α, β)
regions shown for two different friction coefficients.

not remain leaning for β < 0.25 rad for any reasonable tilt
angle α of the arm. This condition is enforced by limiting the
release velocity θ̇r, so the part never receives enough energy
to achieve a lean angle greater than 0.25 rad.

Figure 14 illustrates a partially assembled state. Part b leans
against part a at an angle γ ∈ (−30◦, 0◦), where γ = −30◦

is the fully assembled state. Assuming frictionless contact
between the parts and static stability of the partial assembly,
the contact force fc applied by part a to part b is completely
specified, as shown graphically in the free-body diagram for
part a. Stability of the partial assembly is guaranteed if the
force ftot acting on part a, consisting of the gravitational force
and the force −fc, can be resisted by contact forces with the
arm. Because the friction coefficient with the arm is large
(measured µ > 1 for our system), static stability is assured
for all reasonable choices of α and all γ ∈ (−30◦, 0◦).

For our experiments, we chose α = −10◦ and θ̇r =,
satisfying the “no lean” and partial assembly stability con-
ditions above. *** Todd, do we have these numbers? The
hypotenuse of each triangle was 17 cm. Three snapshots of
the assembly process are shown in Fig. 15. Data for one
experiment are shown in Fig. 16. The arm throws parts with
high amplitude throws until the 33rd throw, when the vision
system recognizes that they are in the basin of attraction of
the desired assembled state under the low-amplitude throwing
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Fig. 14. Top: a partially assembled state with part b rotated γ < 0
relative to the arm, which is declined at an angle α < 0. Bottom right:
The uniquely determined contact force fc part a applies to part b to keep
part b stationary. Bottom left: ftot is the sum of the gravitational force and
the force −fc applied by part b to part a. This force can be resisted by the
feasible contact forces with the arm (shown as moment-labeling regions), so
the partial assembly is stable.

motions. The controller switches to low-amplitude throws
until the two parts converge into their assembled state.

This experiment was repeated 20 times with the same initial
conditions *** Same initial conditions? Not randomized?
what was the initial condition? and was successful 70% of
those times (14/20). The two reasons for failure were faulty
detection of the controller switching condition and disruption
of the orientations of the parts at the switch due to lowering
the arm to angle α too rapidly. *** Hmmm... these problems
seem easily fixed; will the reviewer say “why didn’t you
fix them?” or were there more fundamental problems?

VII. CONCLUSIONS

In this paper we proposed a technique for part manipulation
and assembly that relies on the limit set behavior that parts
experience during repeated throws. In order to successfully
analyze an example system, we made many assumptions in
the physical modeling and in the numerical techniques we
employed, but we found that these assumptions successfully
predicted our ability to design the limit set behavior in
the part. This suggests that the limit set behavior is quite
robust with respect to the specifics of materials used and
other experimental particulars. Hence, we hope that these
techniques may be extended beyond their current preliminary
stage to develop self-assembly design techniques for a broader
class of systems.

We develop a design technique that only relies on the gross-
level features of the dynamics, which we can expect to be
characteristic of many different part types, materials, contact

Fig. 15. Three snapshots of the two parts being assembled. Top: parts are
in the basin of attraction of the assembled state under the high-priority low-
energy throwing map. Middle: a partial assembly. Bottom: the final assembly.

Fig. 16. A plot of distance on arm versus number of throws. Triangles
denote the location of one triangle while squares denote the location of the
other triangle. Assembly was achieved in this particular experiment after fifty
throws.
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dynamics, etcetera. This differs from traditional approaches
in that it does not require accurate representations of the
dynamics and moreover does not rely on any “quasi-static”
assumption.

In this paper, we use the existence of limit sets in a
particular, very simple experiment to show that parts will
eventually land in configurations suitable for assembly. We
then validate that this approach can produce stable assemblies
for this experiment. However, it is certainly true that this
approach is not generic, and it is additionally true that there
are many more high-level dynamical structures (e.g., bifurca-
tions, weakly invariant sets, etcetera) that could be exploited.
Nevertheless, our hope is that the technique presented here
may be further explored as a means for developing generic
methods for design of mechanical systems that will “self-
assemble” under external forcing.

For parts sorting and feeding, the proposed approach seems
to work very well, and experiments matched analytical pre-
dictions quite well. For open-loop assembly, more work must
be done. The fact that the open-loop assembly worked at
all experimentally when only using rigid body properties of
the parts and arm indicates the strength of these techniques.
However, the fact that it only works a little more than half
of the time indicates the need to have better models of inter-
part impacts and to design the trapping mechanism. Moreover,
the ultimate goal of this research is to be able to successfully
self-assemble hundreds of parts, again indicating that inter-
part interaction must be a fundamental aspect of further study.
This will mean that the explicit integration of the equations of
motion (such as that done in Section V-A) will be impossible,
leading to the need for implicit techniques that only depend
on analyzing the nonsmooth equations of motion for the parts.
This will be the object of future study.
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