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Abstract— Stability analysis of decentralized control mecha- specific potential function on the unit-disk graph, and the
nisms for networked, coordinating systems has generally focused results in [16] apply to another particular potential fuoot
on specific controller implementations, such as nearest neighbor on a Voronoi graph. The difficulty associated with these prio
and other types of proximity graph control laws. This approach works is that the stability results leave little room for kas
often misses the need for the addition of other control structues 0 y i
to improve global characteristics of the network. An example of Specification; tasks must be framed in terms of what can be
such a situation is the use of a Gabriel graph, which is essentially achieved in a stable manner and may therefore be limited
a nearest neighbor rule modified to ensure global connectivity of to stable area coverage or “flocking” through a series of
the network if the agents are pairwise connected through their obstacles. Moreover, the task specification will likely che

sensor inputs. We present a method of ensuring provable stability ti thus introducing di te ch into the ¢ t
of decentralized switching systems by employing a hysteresisover Ime, thus Introducing discrete changes Into tne en

rule that uses a zero-sum consensus algorithm. We demonstrate Of motion. Finally, heuristics that are not easily combineéth
the application of this result to several special cases, including these approaches are often helpful for various tasks, ssich a

nearest neighbor control laws, Gabriel graph rules, diffuse tar@t  collision avoidance and other safety-critical elementshef
tracking, and hierarchical, heterogeneous systems. task specification.

The key point is that the control mechanism should dictate
task specification to the minimum extent possible. To thi en
we have developed a more general method of proving conver-

Recent advances in integration and wireless communicatigence, focusing on ease of implementation and genericity of
have increased interest in the control problem associatttd Woroximity graphs to which it is applicable.
large numbers of cooperating agents. Although there is aOne general method for proving stability for a control
significant body of previous work dealing with coordinatiorsystem is to find a Lyapunov function. This is simply a
of relatively small teams of agents, e.g. [1]-[5], largentsa potential function that is always positive and decreasing,
present new challenges. We are particularly interestethén fexcept at the desired stable point, where it is zero. If such a
problem of fully decentralized control (in some commursitiefunction exists, then over time, the system must evolve ¢o th
referred to asswarming, in which highly structured and stable point. Finding a Lyapunov function becomes difficult
potentially useful formations are created without any @nt however, for hybrid systems that can switch between many
ized coordination. Computation, communication bandwidtBtates with differing dynamics. In fact, traditional apacbes
and range constraints make effective decentralized #@lhgosi to stability of hybrid switching systems typically requitieat
necessary when the number of agents is large. one find a common Lyapunov function for all possible hybrid

To address this challenge, there has been significant odseatates of the system [25]. This is often an intractable bl
into behavior-based and virtual-physics based controhfd for systems with large numbers of hybrid states. Coordihate
teams of agents [6]-[11]. Additionally, the control foutida control systems are in this class of systems, having as many
of these systems has been explored extensively [12]-[16§(n — 1)! states forn agents.

Each proposed system, of course, has its own advantages arwell-time analysis, such as described in [23], seeks to
drawbacks. provide stability for a more general class of systems by
Many decentralized control algorithms are modeled afténposing restrictions on the (global) switching rate. Weeda
phenomena observed in nature, such as the flocking behawor work on these initial results. We extend the results to
of birds, or the schooling behavior of fish [17]. Others arapply this type of analysis to decentralized systems, where
based on simulated physical systems, such as cellular @ach agent has access only to local information. In addition
tomata in crystals [18] or biological cells. Common to thesee demonstrate how to use a consensus algorithm as part of

approaches are simple local control laws implemented kye hysteresis-generating function in order to deceatale
each agent, and designed in such a way that desirable gladggproach.

behaviors emerge. Descriptions of such systems are given irDur work thus takes advantage of the intuition behind dwell-
[6] and [7], among others (e.g, [9], [10], [19]). time analysis to produce a general technique for proving

There are many approaches to formally show stabilistability in the sense of convergence (like that used inaline
properties in a variety of switched and decentralized syste systems) using only local information. For our purposes, we
e.g. [12]-[16], [20]-[24], but typically these proofs img® are interested only in stabilizing the kinetic energy of the
constraints on the dynamics of the system and the proximgystem; that is, we prove that the agents converge to some par
graph. For example, the results in [21] apply only to &cular state, but do not specify that state directly. ladtehe

I. INTRODUCTION AND RELATED WORK
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velocity, N; is the set of springs connected to this agent, and
V,; is the unit vector from ageritto agentj. Control constants
are the natural spring lengthy), the spring stiffnessk(), and
the damping coefficientk(;). We require that the system be
symmetric: if an agent. has a spring connected to agent
then agenb must have a spring connected to agent

It is straightforward to show that such a system is stable in
the absence of switching; that is, when springs are neither
created nor destroyed (see [26]). The standard Lyapunov
approach simply requires us to find a potential function that
is always positive and decreasing, except at the stablet poin
(where it is zero). This is the primary motivation for using
a virtual physics model-the virtual kinetic energy prowde
natural Lyapunov function candidate even for very complex
systems. However, it is often useful to allow the creatiod an
destruction of springs. For example, when the proximitypgra
is changing dynamically over time, springs will be creatad a
Fig. 1. Gabriel graph example: final formation after deployimgally from  destroyed [26].
a tight cluster Let R be the set of agents. Let thsensor graphG's be a
graph whereR is the vertex set, and there is an edge between
two verticesr; andr, € R iff agentsr; andr, can both
sense each other. Let tikentrol graph(also referred to as the
rPfeighbor graph G be a graph wher& is the vertex set, and

final state is dictated by the properties of the specific sydte
which our technique is applied. Thus, we can take any insta

of at large clzsts of ?lmpltlat,.pterhaps qeurlsnfallyt-:ntvent[m tthere is an edge between two vertiecgsaandr, € R iff agents
systems, and transtorm 1t into a simiiar system that guasmt -, ro are interacting for control purposes. This graph is

. . . T
convergence to some configuration. The transformatlonstakréOt static; rather, its edge set varies over time according t

the form of a straightforward modification of the SWitChingsomeswitching function which determines the state of the

function. In cases (such as area coverage) where configuratédge set at any particular time. To simplify notation, wel wil
stability is not required, the simplicity and flexibility ayur understands to be the edge set afs and N to be thé edge

approach makes_ it easier to desigr_1 a_practical SYSte'T”- set of Gn. N (and therefore> y) will be defined by a time-
Throughout this paper, the motivating example will be garying switching functiorr, which we will describe in terms

switching function that produces a Gabriel graph, which w . . . .
describe in more detail in [26] and [27]. This Gabriel grap Szg;gf;gonstructmn algorithm. Note thaitis necessarily

switching function is described briefly in Section Il. Seci In prior work [26], [27], we introduced a switching function

”II and ;V dettall th? gler:jgralltzrfd I’eStl',I|t tt.hat appllesl tOS@d’i.r that creates a Gabriel graghy [28]-[30]. Gy dictates which
class of systems, including the motivating example. SBslOq ., g incorporated into the control laws. In particul&we t

V-A, V-B, and Vi present_add|t|0nal examples of commo itching function dictatesV. With this switching function,
situations where this techniqgue may be put to use. Sectibn tr\(lere is a spring between agents and B if and only if

addresses collision avoidance, and the implications aiein for all other agentsZ, the interior angle/AZB is acute
sensor range are discussed in Section VIII. We briefly disc uivalently, there is'a spring between agertsand B iff )
the impact of our technique on performance in Section IX AMfere are no’ other agents within the circle with diametét.

conclude in Section X. A simulated example of deployment using the Gabriel graph
switching algorithm is shown in Figure 1.
II. MOTIVATING EXAMPLE: VIRTUAL PHYSICS SPRING The Gabrie' graph Switching function provides many ad_
MESH vantages; chief among these is provable connectivity of the
In previous work [26], [27], we analyzed a decentralizeg@raph [29]. The Gabriel graph is also well-suited to prowigli
control system employing a virtual physics model of a springniform coverage of an area, as it creates a mesh of acute
mesh. In this example, each agent is treated as a particle ifiiangles. The Gabriel graph is a planar graph [29], so itsdoe
simulated system, with virtual springs acting between ifigec not suffer from high edge density when the agents are close
pairs of agents. The appeal of this control law is partiatty i together. However, the Gabriel graph depends on springg bei

conceptual simplicity and ease of implementation. created with_non-zer_o virtual potential. This complicatey
For a fixed set of springs, the control law for each agentproof of stability, as virtual energy may be added to theesyst
is as the topology changes.

. In order to prove stability in the presence of time-varying
Xi = W (1) topology, we modify the switching algorithm in a manner

Jp— i k R | — l vl — k < - . . ' X . .
ui = [ Ejen, Falllxi = x5 = lo)¥35] = kaki inspired by dwell-time analysis. It has been shown in severa
wherex; represents the Cartesian coordinates describing tteses that if all members of a given class of linear systems ar
agent’s positionk; is the agent’s acceleratioR; is the agent’s stable, then arbitrary switching among those systems tsesul
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in a stable hybrid system, provided that the switching ratelationship holds:

is “slow-on-the-average” [23]. Essentially, the proof wiso .

that the rate of decrease of the Lyapunov function due to the D_si= glffi(va(f))
dissipation is greater than the rate of increase of the Lyapu ek

function due to switching, as long as the averageell time Additionally, let

between switches is sufficiently long. di = —ka%; "%

In-our approach, instga}d of computing a limit on th@yherexi represents the position of agentThe quantityd;
switching frequency explicitly, we use a notion of a globglyesents the rate of virtual energy dissipated by damging
energy reserve” to create the same limiting effect on theyeny; 1t is a direct consequence of the static stability proof

switching rate. (The idea behind this name is that if a SWitGR" 1o6] that on any interval between switches, the following
will increase the value of the Lyapunov function, there mu uality holds:

be enough energy reserve to compensate for this increase.) Zd’ _v

We find this approach intuitive and more straightforward to ! o)
implement in our decentralized system, in which switchin
events are detected locally. Although any global quantiy c

— lim (V,
A (Vo)

i€R
‘cllhis result follows from the fact that the virtual physics is

be problematic, we will demonstrate that a local estimate BS€d On & spring mesh system, where all energy dissipation
this quantity based upon a zero sum consensus algorithn{Siglue to damping, and the total energy damped is the sum of
sufficient to establish stability. the energy damped at each node of the mesh.

Consider a set of agents € R. Let the time-varying signal ; 'i‘rt] this poin:, efac_ht aglent can ?#atn_tifybit_s OV\én cont(rjibutitonf
o(t) be the switching function for a Gabriel graghy (i.e., 0 the amount ot virtual energy that IS being damped out o

o determines the time evolution afy). For convenience, the system, as well as the amount that is being created or

we will denote this function ag : ¢ — Gy, as it takes ?eztroyfed bytswnchln% éntliglvelslﬁ vvlet\t/voulillke the foerdn
t as an input to producé’y as an output. Note that is 0 be of greater magnitude than the fatter when averaged over

constant except for discrete changes at timest,,. For any aIITe;]gents fok; some Ienglg_thho(fj tlt;ne. intaini |
time intervalt; = (;...t;11), let V() be a global potential is can be accomplished by maintainingazal energy

function. It is shown in [26] that a function exists with the€server; at each agent (the local reserve will be related to a
following properties: consensus-based global reserve in Section &/)s initialized

) N . to an arbitrary nonzero value. As virtual energy is damped
1) Vo(s,) is positive-definite. out of the system, a fraction of that energy is added to the
2) Vo(r,) is negative semi-definite. reserve. When a switch occurs, the virtual energy created by
3) V() is bounded. the switch is removed from the reserve. As long as the energy

These conditions imply that the system is stable during tiiéserve is not allowed to drop indefinitely, the system wl b
intervals between switches. This is due to Barbalat's lemrsable. This inspired us to create thedified Gabriel graph
[31], which states that iff(¢) is lower bounded,f(t) is switching functiors’(t), which is identical tar(t) except that
negative semi-definite, angi(¢) is uniformly continuous (or an agenti may not create a spring if that operation would
equivalently, f(¢) is finite), then f(¢) approaches zero as causeE; to become less than zero. A more precise definition
approaches infinity. of o/ (t) will be given in Section IlI.

We define the overall potential functidv,  to be equalto ~ Notice that preventing spring creation requires the cooper
V, (-, on the intervalt;..t;1], for all j. We will generalize ation of two agents (one on each end), since the properties of
this in Section IlI. Since it is possible to evaluate the ptitd Vo (-,) given above depend upon symmetry in the springs (that
associated with every spring at any time, each agent migyGx must be an undirected graph). Thus, spring creation is
maintain an estimate of the current potential of all springgohibited when either agent hd$ < 0.

connected to that agent. We will call this valUe. A stability proof specific to a spring mesh with the modified
Gabriel graph switching function is given in [26]. Howevire
U, = Z lks(”X’i — x| = lo)? underlying concept does not rely on that particular switghi
heN, 2 function, or on the spring mesh dynamics. The following

_ ) section generalizes the proof in [26], of which the Gabriel
whereN; is the set of springs connected to agentvhenever graph is a member.

a switch occurs, the value &f, may instantaneously change
according to the potential created or destroyed by springs

S ’ ; ; IIl. GENERAL RESULT
coming into and out of existence. Define the quantitysuch . )
that: We will now present a formal proof that applies to our

motivating example, as well as a large class of similar sveitt
> systems. Note that while this proof is clearly applicable to
many systems that use interaction graphs as the basis for the
This quantity captures the instantaneous change in patensiwitching function, other types of switching functions als
due to the spring switching. The factor of 1/2 is presefiave the required properties.
because each spring connects to two agents, and thus wilConsider a set of agent®8 and a time-varying switching
be counted twice. It is thus easy to show that the followingjgnalo that is constant except for discrete changes whenever

1
SL(t) = - <~hm Uz — ~hIIl U7

2 \i-t+ it
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a switch occurs. Assume that the state for each agést In our motivating example, the potential of each spring
X € M, the governing equations ake= f(x), and that the is known precisely. If each agent computes the change in
switching function changeg over time,o : (x,t) — f. We potential caused by the creation and destruction of springs
assume the following properties: for which it is an endpoint, the sum of the local estimates

Al For any time intervalt;..4;,1) on whicho is constant will exactly equal the actuallchange_ in pote.ntial. Simjfetd
(we will call this interval ;), there exists a global PropertyA3, a lower bound is sufficient, which should make

potential functionV,,,) such thatV,,., is positive- practical implementation more straightforward.

deﬁnitelva(ﬂ is negative semi-definite, anﬁlg(T,.) is PropertyA5 tells us that the theominalswitching function
bounded. We define the overall potential functidp, ¢ (which is based on the sensor graphy and is typically
to be equal to the union of all functioré, ). designed a priori to satisfy network topology requiremettis

A2 For all imest, lim; - vg({) = lim;_,+ VJ@_ Gabriel graph is just one example of such a graph) may

A3 At every timet, each agent can determine a quantity P& implemented using modifiedswitching functiono’. The
d; such thatd, is boundedy", ., d; > Va(t) andd; < modified svx_/ltchmg functions’ is what is actually used in
0. Note thatVU(t) is negative semi-definite, sd; is t_he generation of control Iavys for each agent. The _modlflca-
bounded above by zero and below W(t)- tion of o allows for separating the control design into two

A4 At every timet, let there be a quantity; for each agent components; the_ low-level control architef:_ture, and _tfg;hhi
such thay ;. , s = limy_ 4 (V, ) —lim_, (V, 5)- level topology built upon the Iow-IeveI_ stab|!|ty propers. The
Each agenzt6 can determine an estimégesuch that r_ne.ta—level c_ontroller th."?‘t. transformsmtpq uses only very
Y s> s limited sensing capabilities (e.g., proximity bgt not drsq:e

A5 Aé\e/\ﬁtchat tir%egfj for which 3; > 0 for anyi € R may ©" 9rdgrmg). .I\'levertheless, we will see that it is crucial to
be prohibited. More precisely, theominal switching maln.talln stability. . . )
function o may be replaced in the control laws by a It is important tq pote.that the ability to prohlblt_e} switch
modified switching functiono’ : (x,t) — f which myst only be satisfied in cases_wheiqe > 0. Intwhyely_,
behaves likes, but with the added property that’ this means that only switches theicreasethe potential in

may (or may not) delay or omit a switch for whichthe system must be controllable. In our motivating example,
3; > 0 for anyi € R. The modified switching function it is possible for environmental conditions to cause a dwitc

o is actually used for control rather than the nomind@s with the loss of a communication link, for example) that

o, which may be thought of as a reference switchin%a””m be prevented. However, these uncontrollable sestch
function. ave 3; < 0 by design; the loss of a link can onljecrease

the system potential. If communication is re-establistibd,

o S . . . . Gk is not necessarily added back into the control graph;
of switching. This is typically simple to verify using steard thus, it is possible to control the switch in the positive

Lyapunov function techniques, and holds in the case of Yfrection. In general, it is necessary to define systems thath

motivating example. , . .__uncontrollable events cannot increase the overall patenti
PropertyA2 allows switches to cause discrete changes in the L o
potential of the system, but not in the damping rate. A simple If eagh of these properties is satisfied, then th? overgll
way of ensuring that Propery2 is true in practice is to define mthod IS appl_maple, and the §ys§em may.be stabilized with
a switching function that cannot have any instantaneoessff a S|mple_ modlffcatlon to the switching functpn, a_s follows.
on damping. This is done in our motivating example, where ASSociate with each agenta value E; which is called
switches affect the amount of stored energy in springs, d{i local energy reserveand is defined as the solution to a
not the kinetic energy of the agents, which is the term thdifferential equationE; has an arbitrarily chosen nonnegative

controls damping. initial value and evolves according to the following:
Property A3 involves the agents’ local estimates of the )

amount of virtual energy that is being damped out of the Ei(t) = —kedi(t)if s;(t)=0 2

system. If PropertyA3 is satisfied, then the sum of the local E;j(t) = lim E;(I) — s,(t) otherwise ©)

estimates does not collectively over-estimate the amoéint o t—t-

damping that occurs.

Our motivating example satisfies this property, because thewvherek, is a global constant) < k. < 1. Notice thatF; is
total damping is equal to the sum of the damping at eadfitialized to a nonnegative value and then evolves acogrdi
individual agent-a quantity which is known precisely at th#® Equation 2 as long as; is zero (that is, on intervals with
agent. However, only an upper bound is necessary; it may @ switches). Whenevey; # 0 (there is a switch)E; is re-
beneficial to underestimate the damping in a practical impl#itialized to the value given in Equation 3.
mentation, in order to more easily ensure that the propsrty i Each agent maintains a local estimatg which is initially
satisfied in the face of constraints such as imprecise sgnsigreater than zero and evolves as follows:

Property A4 involves the agents’ local estimates of the
potential created by switching. If Prope is satisf_ied, then E;(t) —  kodi(t) if (1) =0 (4)
the sum of the local estimates does not collectively under- . Bz

estimate the actual potential created by a switch. i) = Jlim B() - &(¢) otherwise ®)
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Let the global value€ and E be defined such that Thus, at any instant when a switch occurs (that is, when
any s; # 0),
E— Z E; (6) y s; # 0)
i€R lim V'(#) = lim V(f Z
R . t—tt t—t— en
E=)E @
ieR Substituting forE' from Equation 3,
We will call £ the global energy reserve lim V/(7) = lim V(i 4 lim E(F) — (t
This brings us to the simple change necessary to stab|I|zet+ 1) = t—l»rtn— g}; t—lgl— ®) ;Sz( )
the system. Thenodified switching function’ : (o,x,t) — f (9)

is an identity ono, except for the added condition that anyvhich simplifies in the following way:
switch that would causé; < 0 for any agent is prohibited, ) . ] ) -
as described in Proper5. Note that the value of; cannot 1M+ V(1) = lim;_,— V(t) +lim;_,— E(f) (10)

decrease in the absence of switching, becaljs€ 0 for all = limg_, V'(t)

i (see PropertyA3). Also, this computation is decentralized;—rhus, the discontinuity iV’ has been removed, as the limits
the agents only need access to the local valigs!;, ands;.

from both sides are the same. We know from Propa&ythat
switches do not cause discontinuities\i either, so Equation
o (x,1) = { o(x,t) _fE >0 for all 4 8 holds true at all times.

lim; ,,- o’(x,t) otherwise Further, sinceV is negative definite (from Propert1),

The immediate consequence of modifyiagn this way is 0<ke<landV < Z/?ERk ed;i < 0 (from PropertyA3), it
that £ > 0, since it is the sum of all nonnegative terms. INUSt be the case that” is negative semi-definite.
follows from Equations 6 and 7 and the definitionsspfand BecauseV is bounded (Propertj1) andd; is bounded for

3, (see Propertyd) that £ > E. Thus if £ > 0, thenE >0 all 7 (PropertyA3), we also knowV" is bounded.

as well. We now have sufficient information to satisfy Barbalat's
Theorem 3.1:In any system satisfying Assumptionsl- lemma. We knowV’ is lower bounded by zerd/’ is negative

A5 and using the modified switching functiarf, all agents semi-definite, and/’ is bounded, so Barbalat's lemma implies

eventually reach a state of unchanging potential. That atV’ — 0 ast — co. It follows directly thatV .,y — 0 as

|Ya/(t) —al — 0 for somea € R and, in particular, ¢ — °°-

V "(t) — 0. . .

For purposes of notational simplicity, we will tak& Note that in the proof of Theorem 3.1 we are effectively
to denoteV,.(, for the remainder of this section unles$hanging both where the switch inis allowed to occur and
otherwise specified. potentially which switches are allowed to occur.

Proof: Our approach invokes Barbalat's lemma, which Remark 3.1:While our proof based on Barbalat's lemma is
states that iff(t) is lower bounded.f(t) is negative semi- convenient for smooth potentials, it is not the only techiq
definite, andf(t) is uniformly continuous (or equivalently, that is compatible with the energy reserve approach. For
f(t) is finite), then f(t) approaches zero ais approaches €xample, consider the work of Tanner et. al. in [21]. A cohtro
infinity. We will apply Barbalat's lemma to a potential furmt  INPut v and Lyapunov functionV are presented (we have
V’, thereby showing thaV’ goes to zero, which implies thatchanged the notation slightly to match the conventions used

all agents reach a state of unchanging potential. here):
We will show stability of the system using thmodified
potential functionV’, defined as: U = — Z ; — X;j) Z VP(x;,x;)
V =VLE JEN; JEN;

) ) N o where P is some potential function that approaches infinity
Since V is positive-definite (by Propertpl) and £ > 0, a5 x,; approachesx;, and has a unique minimum when

it is clear thatV’ > 0. agentsi and j are at a desired distancéV; is the set of
Differentiating, we see that on any interval on which thergeighhoring agents within some threshold distance of agent
are no switches: . i. VP represents the gradient &f with respect tox.
V' =V+F
Substituting forE: V= %Z | Z P(xi,%x;) + %] %;)]
i€R jEN;
=V 4+ —ked; ®) .
i€R VvV =x"Ix

To handle switches, we must look back to the definition in 'vvhereL is the Laplacian of the neighbor graph (the neighbor
PropertyA4: graph is defined by the union d¥; for all agentsi).
lim V(f) = lim V(&) + Z silt I.t is simple to gdd an energy reserve\_t’owith d; = %;—%;.
f—tt f—t- ey This would modify the Lyapunov function as shown:
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Note that

V== P(xi,x;) + %X/ %;)| + F . . -
iez;a[jezz;i o) + %% E=) E =Y —ked;i+u; =Y —ked;
. o i€R i€R i€R

V= (1= ke)x L% because of the zero-sum property. Hence, Equation 8 remains

This change carries through the rest of the analysis. Sinsinchanged. Since Equation 3 is also unchanged, the result
larly to our results, the results in [21] are preserved witl t in Equations 9 through 10 also stands as before. The system
addition of an energy reserve, which allows for more flekipil evolves somewhat differently, as the times when we must
in specifying a switching function. prohibit a switch have changed due to the differiocal values

Remark 3.2:In our motivating example, it is the case thabf £, but the system meets all the conditions necessary for the
the trajectories for all agents are defined for &ll This proof in Section Il because thglobal behavior ofE still has
will also be the case for the example systems presentedtfie required properties. However, as described in [33]pfll
Section V; however, it is possible to construct a system thgie local energy reserves will now converge to a single value
meets the assumptions presented here and yet does not defime consensus function given here is just one example of a
the trajectories of all agents at all times. This can occwalid consensus function. In fact, any consensus algonititm
because switches between states of equal potential maghappe zero-sum property described in Equation 15 is acceptabl
arbitrarily fast, potentially resulting in an infinite nuebof The consensus ot is independent of the normal control
switches. of the system, although a faster consensus will improve

In the event that a system cannot be designed to avoid sy@iformance in terms of convergence rate. What we have
a situation, infinite switching may be prevented by adding gshown is the following:

small cost to each switch. Precisely, replace Equation 8 wit Corollary 4.1: In any system satisfying assumptioh$-A5

the following: where Egs.(12)-(14) replace Egs.2 and 4, all agents evntua
Ei(t) = lim E;(f) — si(t) — e (11) reach a state of unchanging potential.
t—t—
wheree is a very small but finite constant. This modification V. EXAMPLES

ensures that the number of switches is finite, so existence of ) )
solution can be proven using existing methods (e.g., sé [32\- Nearest Neighbors and Gabriel Graphs
One common switching function is the nearest-neighbors
IV. ENERGY RESERVECONSENSUS function, in which agents interact with all neighbors withi

Although the decision to prohibit a switch is made by eackome threshold distance. While proofs of stability for sfieci
agent based on its local energy reserve, it may be desirabl&ystems using nearest-neighbor rules exist (e.g. [348seth
allow switches to occur whenever tigobal energy reserve is proofs typically do not generalize. Our technique applies t
sufficiently large. That is, we do not want to prevent a switch broad class of systems using nearest neighbor rules. For
due to low energy reserves in one part of the system, whexample, consider the system with the following control:law
there are sufficient energy reserves unused somewhere else.

Thus, we need some mechanism for sharing information about % =
the energy reserve levels between agents.

We will take advantage of thaverage-consensusggorithm u; = [ Z VP(x;, xj)] — kagx; (16)
described by Olfati-Saber and Murray [33]. This algorithm JEN,

allows a decentralized set of agents to reach a consensus ol

. o . I3 Pere N; is the set of neighboring agents within some
a common global value, while sharing information only with . ) . .
. . . - . : threshold distance of agefitand P is some continuous, con-
their local neighbors. We will apply this algorithm in a nbve

. . . . :Tervative function representing the potential betweemisge
way, in order to comblne.local energy reseives Into a SINY%€onservative” here is used in the sense of a conservative
global reserve. If an agerithas a set of neighbors; that it field—the integral over any two paths with the same endpoints

can sense, )
is the same.
_ For each intervalr; between switches, let the potential
= E, — E. : J J
Wi Z( ) (12) function be:
lesS;
We then replace Equations 2 and 4 with the following: Vo) =2 [ Y P(xix;) + %] %]
Ei = —ked;i+7 (13) e JEN:
E = —kod + (14) Since P is conservative, it can be shown that:
Equations 3 and 5 remain unchanged. We require that the VU(TJ) = Z—kdk?ki (17)
neighbor relation is symmetric (if € Sy, thenb € S,,). This i€R
symmetry provides the following zero-sum property: Thus, this definition oV, satisfies Propertpl. Prop-
Zﬂi -0 (15) erty A2 is clearly satisfied, because the neighbor set does not

n appear in Equation 17.
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(a) Initial state

Fig. 2. Nearby neighbors example: agents start in severalragpclusters

(a) Intermediate state (b) Final state

Fig. 3. Gabriel graph switching function with initial coidins from Fig 2

The damping term makes it easy to satisfy Prop@&@ywe a single connected graph so long as the associated senphr gra
simply let: G is sufficiently connected.
di = —ka%; T %4
B. Target Tracking
Since we can evaluat® at any point, satisfying Property

A4 is also straightforward. We define such that: Consider a system in which there are potentials between

the agents, as well as between the agents and targets in the
environment. For example, one might model agents as pesitiv
si= Y P(xix;)— Y P(xi,x;)) charges and targets as negative charges (similar to [9]), so

jeN; JEN that the agents normally disperse but are attracted tottarge
o ) areas. It may be the case that targets can appear, disappear,
where N;" represents the limit ofV; from the right, andV;™  change position, and/or change characteristics in suchya wa
represents the limit ofV; from the left. as to inject large amounts of virtual energy into the system.

PropertyAS is true because agents may agree not to interagtr technique can be applied to prevent destabilizatiomef t

with each other at will. Having met all the conditions, we gpp system due to target behavior.

our technique to construct a stable SyStem with a modiﬁedFor example, lef? be a set of agents arid a set of targets]

switching function. each of which may appear and disappear arbitrarily. Let the
We have shown the following. control law for agent be the following:
Corollary 5.1: With the nearest neighbor graph topology .

from (16) whereo’ is substituted as described in Section I, Xi =W

all agents eventually reach a state of unchanging potential
Simulation results for such a system are shown in Figure
2. In this example, a simple spring potential identical tatth Wi = [Z VP (xi,x;)] + [Z VPr(xi,xp)] — kak;
used in Section Il is used. However, any potential could be JER keT
used, such as the one in [21]. where Pg is the potential function acting between the agents,
For comparison, a simulation with the Gabriel graph switctand Pr is the potential function acting between agents and
ing function and the same initial conditions is shown in Feyu targets.
3. This shows the benefits of a switching function that hasIf there are no restrictions on the appearance of targets,
specific topological properties—in this case, the conwmiggti then targets may inject an arbitrary amount of energy inéo th
property of the Gabriel graph dictates that the agents wiithf system. This is not desirable, as the continued appeardnce o
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Fig. 5. Agents mapping multiple diffuse targets

Fig. 4. Agents mapping a complex diffuse target switching function. Explicit heterogeneity is considered
Section VI.

The combination of changing spring parameters and switch-
targets, or the appearing and disappearing of a few targatg would normally be difficult to analyze. However, by
in an unfortunate pattern, could destabilize the systentoandapplying the above technique, it is possible to decouple the
cause collisions between the agents. Modifying the switghianalysis of varying spring parameters from that of varying
function according to our technique will remove this prable topology. As long as the system is stable in the absence of

Recalling Section Ill, Properties1 andA2 are met because switching, we can ensure that the switching function doés no
the potential functions are conservative and the systemiligroduce any instability.
damped independently of the targets (a proof of this is eahitt
for brevity, but is fairly straightforward). We can meet Pesty

A3 with the following (reasonable) choice: VI. HIERARCHICAL HETEROGENEOUSSYSTEMS

Suppose we have agent$ € R, (the lower hierarchy)
and r € R, (the upper hierarchy) with stateg and x
iraeispectively. Accordingly, all agents iR; are only equipped
with short-range sensors and all agentsHp are equipped
with long-range sensors. Moreover, all agentftinemploy a
nearest neighbor (NN) control that includes all agents ith bo
R; andR,,, and all agents iR, employ a Gabriel graph (GG)
appears, and agents may elect not to track a given targeF?{' trol law with other agents irit, and & nearest neighbor

’ control law with agents ink?;. We would like to know if the
necessary. raph is connected (thereby utilizing the differences imsggy

Since each of the properties are satisfied, our techniqgﬁ,l"ty)
may be applied. With the modified switching function, if the '
target pattern is ever such that the system would destabilizf h . r te th inwise int i b
then the agents will ignore the targets that would have cchus?ezt ?, connections. If we note e pairwise Interactions by
destabilization to OCCur. ri,ri) =T (wherez andy are eitheru or [ andT is either

Further examples of target tracking are shown in FiguresNzl\I or GG), note that
and 5. In these cases, the targets are diffuse and reprelsente1 (TévTé') =NN
by an intensity map. These simulations use the spring-mesh2 (7i,7%) = (r}’,7}) = NN
control law and Gabriel graph switching function from Seoti 3 (ri'.7}) = GG
1, but with adaptive spring lengths so that the density afrlg so symmetry is maintained. For any particular static gré t
increases with the target intensity. is stable, so the resulting graph with switching from the NN

Figure 5 shows an interesting emergent property of tleed GG rules will be stable in the sense of Theorem 3.1, so
Gabriel graph algorithm. There are groups of agents trackifong as each agent is using and Eqgs.(12)-(14) to monitor
each target, and there are also some agents spread betvileerswitching. Simulations of this scenario are depicted in
the target areas to maintain connectivity. This is a usefiilgure 6. If the gaink on the nearest neighbor control
formation, as it allows most of the available agents to belustaws is much lower than the gaikf’“ on the Gabriel graph
for target tracking, but reserves some agents to maintaircentrol laws, then the system is still stable, but it can beeo
communications path. The “division of labor” in this exampl disconnected, as shown in Figure 6. If, howew&t < kNN,
is not explicit; it emerges as a result of the Gabriel graphen the system stabilizes in a globally connected manner.

di = —ka%i "%

PropertyA4 is met because we can evaluate the potent
functions Pr and Pr at any point. Thus, we can assign=
Pr(x;,xx) when targetk appears, and; = —Pr(x;,Xx)
when target: disappears.

Property A5 is met because; > 0 only when a target

The key to using Theorem 3.1 is to maintain the symmetry
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.. °
o" °®
:"o'.o
o
o..' .:
(X ] .
(@) Initial state (b) Final state kNN > kGG (c) Final state NNV < kGC
Fig. 6. Heterogeneous agents, some with long-range sensdrsome with short range sensors.
° o
®
L J ® L L ® ®
L
®
o ® ® L ® ®
®
¢ .
(a) snapshot 1 (b) snapshot 2 (c) snapshot 3
Fig. 7. Agents on collision course, with no collision term
®
®
®
® ® ® L ® L
L ® Y
. ¢ i
® ® ] ® ® ®
®
®
L
(a) snapshot 1 (b) snapshot 2 (c) snapshot 3

Fig. 8. Agents on collision course, with collision term irfesft
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VII. COLLISION AVOIDANCE

For some systems, using the modified switching function
may have implications for collision avoidance. If its energ

reserve is depleted, an agent may not allow a switch that goz
is necessary in order to prevent a collision. However, it is g
. . . . @ 0.08
possible (and fairly straightforward) to design a systet th .
does not depend on switching for collision avoidance. For 5§,
example, consider the following control law: éo.oz
0.2
Xz = u; 01
0.15
0.05
f 008 Spring Constant
Damping Constant pring
w; = [ Z VPl(xi,xj)] + [Z VPQ(X,;,xk)] — kaX; Fig. 9. Fraction of switches prevented
JEN; kER

where N; is the set of neighbors according to some relation Consider the following system:
(such as a Gabriel graph), ané is the set of all agents. '

Suppose thaf’; and P, are both conservative functions, and X, =
that P»(x;,x;) approaches infinity ax; approachesgy. It ri; = |lxi — %]
may be the case thdt, is a “short-range” potential—it rapidly .
becomes small as the distance between the agents increases. Wi = [Z VP(rij)] — kaki

Similar to our previous examples, this system satisfiesfall o JER )
the requirements for Theorem 3.1. In addition, sifseaffects P(ry;) = { Ul(rij) !f Tij < Tmaz
all pairs of robots at all times, no collision can occur witho U(rmaz) 1 7ij 2 T'maa
overcoming an infinite potential. In a sense, there are two Ulry) = ke 1.,

. : “ " Tij) = 3 ksz‘j

proximity graphs superimposed, represents the “normal r 2

behavior of the system and involves sw@chlng, dﬁdwhm.h where &, is some positive constanty; — k. if j € N,
only acts over short range to prevent collisions, neverches. . .
Figures 7 and 8 show the effect of the collision avoidan@d ki = ¢ otherwise, withe << k. N; represents the
. . . o heighbors of agent according to some proximity graph, such
term P,. In this case,P; is the simple spring-like poten- 9 9 9 P y grap

) . . X : s a Gabiriel graph.
tial used previously N |5701Ief|ned by_a Gabriel graph, and” The potential functionP meets the criteria for the non-
Py(x;,%x;) = kc(||xi—x;]])~", wherek, is a constant. Initially,

the upper and lower groups of agents are heading towards earghooth potential function described in [21]. However, the

other at high velocity, which puts the two middle robots ogainki; switches according to the proximity graph, becoming
L , . essentially zero and leaving only the collision-avoidateren
a collision course. Figure 7 shows the result withéut and

Figure 8 shows the result wit in effect. Whgn 'therle is no c;orrespondmg edge in the graph. Th|s
switching is constrained by the energy reserve, preventing

I ShOU|d. b_e noteq that some care must be taken tp ENSHfom destabilizing the system. Thus, the stability résnl
that a collision-avoidance term does not cause uninten ] stands, the agents’ behavior is dominantly controligch
consequences. For example, a poorly-chosen control law Xximity graph that may be chosen arbitrarily, and the tgen

avoid _coII|S|oqs but e}llow undesired local minima in th eyond a range of,,,, may be ignored without impact on
potential function. While terms such d@% do not affect our the system

ability to stabilize the system, they may alter its perfonce
In our example P, was chosen carefully to be insignificant in
the normal case (when collision is not imminent), so its @ffe
on the system’s behavior is minimal. Since modifying the switching function affects the behavio
of the system, it is important to know just how often switches
are really prevented by insufficient energy reserves. Omgiimi
expect that with conservative gains and damping, the energy
Due to the realities of limited sensing, it may be desirablecovered from damping will generally be great enough to
to ignore interactions with agents beyond a certain thiesha@over the energy needs of switching. Only when operating
range. The ability to cut off interactions beyond a finitevith high gains and relatively little damping would one egpe
range, while still maintaining stability of the system, ikey the energy reserve to truly come into play.
advantage of the non-smooth potential function described b This is in fact what occurs. Figure 9 shows the fraction of
Tanner et. al. [21]. As mentioned in Remark 3.1, the resuksvitches prevented by insufficient energy reserves for & tes
in [21] are compatible with an energy reserve, which makesdase with 32 robots using the modified Gabriel graph switchin
possible to introduce an additional type of switching ledit function. When the damping constari,;) is high and the
by the energy reserve. spring constanti(;) is low, no switches are prevented. Only

IX. How OFTEN DOES¢’ PLAY A ROLE?

VIII. L IMITED SENSORRANGE
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when the gain is relatively high and the damping constant[is] J. Cortes, “Characterizing robust coordination aigons via proximity
relatively low are there a large number of switches prewénte

This result is highly intuitive—when we “push the enveldpe 16]
with higher gains, we take greater risks with stability. The
modified switching function comes into play more and mo
as we push the system towards higher performance.

. . 19
In this paper we have introduced an approach to cooperatgve]
control that focuses on monitoring the admissible changes i

X. CONCLUSIONS

network graph topology according to a stability criteridinis

additionally using consensus algorithms like those foumd i
[33]. This leads to a flexible method of guaranteeing staybili[
for arbitrary network graphs, and explicitly avoids insliéiles

due to the graph topology switching. Our technique is de=ign(22]
to be easily applicable to a wide range of systems, includi

those with heuristically-derived control laws, thus allog

not addressed by existing methods.

We did not consider the effects of noise in this work, though
it is largely addressed by the basic results of [23] on noigk al25]
external disturbances.
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