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Abstract— Stability analysis of decentralized control mecha-
nisms for networked, coordinating systems has generally focused
on specific controller implementations, such as nearest neighbor
and other types of proximity graph control laws. This approach
often misses the need for the addition of other control structures
to improve global characteristics of the network. An example of
such a situation is the use of a Gabriel graph, which is essentially
a nearest neighbor rule modified to ensure global connectivity of
the network if the agents are pairwise connected through their
sensor inputs. We present a method of ensuring provable stability
of decentralized switching systems by employing a hysteresis
rule that uses a zero-sum consensus algorithm. We demonstrate
the application of this result to several special cases, including
nearest neighbor control laws, Gabriel graph rules, diffuse target
tracking, and hierarchical, heterogeneous systems.

I. I NTRODUCTION AND RELATED WORK

Recent advances in integration and wireless communication
have increased interest in the control problem associated with
large numbers of cooperating agents. Although there is a
significant body of previous work dealing with coordination
of relatively small teams of agents, e.g. [1]–[5], large teams
present new challenges. We are particularly interested in the
problem of fully decentralized control (in some communities
referred to asswarming), in which highly structured and
potentially useful formations are created without any central-
ized coordination. Computation, communication bandwidth,
and range constraints make effective decentralized algorithms
necessary when the number of agents is large.

To address this challenge, there has been significant research
into behavior-based and virtual-physics based control of large
teams of agents [6]–[11]. Additionally, the control foundation
of these systems has been explored extensively [12]–[16].
Each proposed system, of course, has its own advantages and
drawbacks.

Many decentralized control algorithms are modeled after
phenomena observed in nature, such as the flocking behavior
of birds, or the schooling behavior of fish [17]. Others are
based on simulated physical systems, such as cellular au-
tomata in crystals [18] or biological cells. Common to these
approaches are simple local control laws implemented by
each agent, and designed in such a way that desirable global
behaviors emerge. Descriptions of such systems are given in
[6] and [7], among others (e.g, [9], [10], [19]).

There are many approaches to formally show stability
properties in a variety of switched and decentralized systems,
e.g. [12]–[16], [20]–[24], but typically these proofs impose
constraints on the dynamics of the system and the proximity
graph. For example, the results in [21] apply only to a

specific potential function on the unit-disk graph, and the
results in [16] apply to another particular potential function
on a Voronoi graph. The difficulty associated with these prior
works is that the stability results leave little room for task
specification; tasks must be framed in terms of what can be
achieved in a stable manner and may therefore be limited
to stable area coverage or “flocking” through a series of
obstacles. Moreover, the task specification will likely change
over time, thus introducing discrete changes into the equations
of motion. Finally, heuristics that are not easily combinedwith
these approaches are often helpful for various tasks, such as
collision avoidance and other safety-critical elements ofthe
task specification.

The key point is that the control mechanism should dictate
task specification to the minimum extent possible. To this end,
we have developed a more general method of proving conver-
gence, focusing on ease of implementation and genericity of
proximity graphs to which it is applicable.

One general method for proving stability for a control
system is to find a Lyapunov function. This is simply a
potential function that is always positive and decreasing,
except at the desired stable point, where it is zero. If such a
function exists, then over time, the system must evolve to the
stable point. Finding a Lyapunov function becomes difficult,
however, for hybrid systems that can switch between many
states with differing dynamics. In fact, traditional approaches
to stability of hybrid switching systems typically requirethat
one find a common Lyapunov function for all possible hybrid
states of the system [25]. This is often an intractable problem
for systems with large numbers of hybrid states. Coordinated
control systems are in this class of systems, having as many
as (n − 1)! states forn agents.

Dwell-time analysis, such as described in [23], seeks to
provide stability for a more general class of systems by
imposing restrictions on the (global) switching rate. We base
our work on these initial results. We extend the results to
apply this type of analysis to decentralized systems, where
each agent has access only to local information. In addition,
we demonstrate how to use a consensus algorithm as part of
the hysteresis-generating function in order to decentralize the
approach.

Our work thus takes advantage of the intuition behind dwell-
time analysis to produce a general technique for proving
stability in the sense of convergence (like that used in linear
systems) using only local information. For our purposes, we
are interested only in stabilizing the kinetic energy of the
system; that is, we prove that the agents converge to some par-
ticular state, but do not specify that state directly. Instead, the
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Fig. 1. Gabriel graph example: final formation after deployinginitially from
a tight cluster

final state is dictated by the properties of the specific system to
which our technique is applied. Thus, we can take any instance
of a large class of simple, perhaps heuristically-driven control
systems, and transform it into a similar system that guarantees
convergence to some configuration. The transformation takes
the form of a straightforward modification of the switching
function. In cases (such as area coverage) where configuration
stability is not required, the simplicity and flexibility orour
approach makes it easier to design a practical system.

Throughout this paper, the motivating example will be a
switching function that produces a Gabriel graph, which we
describe in more detail in [26] and [27]. This Gabriel graph
switching function is described briefly in Section II. Sections
III and IV detail the generalized result that applies to a large
class of systems, including the motivating example. Sections
V-A, V-B, and VI present additional examples of common
situations where this technique may be put to use. Section VII
addresses collision avoidance, and the implications of limited
sensor range are discussed in Section VIII. We briefly discuss
the impact of our technique on performance in Section IX and
conclude in Section X.

II. M OTIVATING EXAMPLE : V IRTUAL PHYSICS SPRING

MESH

In previous work [26], [27], we analyzed a decentralized
control system employing a virtual physics model of a spring
mesh. In this example, each agent is treated as a particle in a
simulated system, with virtual springs acting between specific
pairs of agents. The appeal of this control law is partially its
conceptual simplicity and ease of implementation.

For a fixed set of springs, the control law for each agenti

is

ẍi = ui

ui =
[
∑

j∈Ni
ks(‖xi − xj‖ − l0)v̂ij

]

− kdẋi
(1)

wherexi represents the Cartesian coordinates describing the
agent’s position,̈xi is the agent’s acceleration,ẋi is the agent’s

velocity, Ni is the set of springs connected to this agent, and
v̂ij is the unit vector from agenti to agentj. Control constants
are the natural spring length (l0), the spring stiffness (ks), and
the damping coefficient (kd). We require that the system be
symmetric: if an agenta has a spring connected to agentb,
then agentb must have a spring connected to agenta.

It is straightforward to show that such a system is stable in
the absence of switching; that is, when springs are neither
created nor destroyed (see [26]). The standard Lyapunov
approach simply requires us to find a potential function that
is always positive and decreasing, except at the stable point
(where it is zero). This is the primary motivation for using
a virtual physics model–the virtual kinetic energy provides a
natural Lyapunov function candidate even for very complex
systems. However, it is often useful to allow the creation and
destruction of springs. For example, when the proximity graph
is changing dynamically over time, springs will be created and
destroyed [26].

Let R be the set of agents. Let thesensor graphGS be a
graph whereR is the vertex set, and there is an edge between
two verticesr1 and r2 ∈ R iff agents r1 and r2 can both
sense each other. Let thecontrol graph(also referred to as the
neighbor graph) GN be a graph whereR is the vertex set, and
there is an edge between two verticesr1 andr2 ∈ R iff agents
r1 and r2 are interacting for control purposes. This graph is
not static; rather, its edge set varies over time according to
some switching function, which determines the state of the
edge set at any particular time. To simplify notation, we will
understandS to be the edge set ofGS andN to be the edge
set ofGN . N (and thereforeGN ) will be defined by a time-
varying switching functionσ, which we will describe in terms
of a graph construction algorithm. Note thatN is necessarily
a subset ofS.

In prior work [26], [27], we introduced a switching function
that creates a Gabriel graphGN [28]–[30]. GN dictates which
data is incorporated into the control laws. In particular, the
switching function dictatesN . With this switching function,
there is a spring between agentsA and B if and only if
for all other agentsZ, the interior angle∠AZB is acute.
Equivalently, there is a spring between agentsA and B iff
there are no other agents within the circle with diameterAB.
A simulated example of deployment using the Gabriel graph
switching algorithm is shown in Figure 1.

The Gabriel graph switching function provides many ad-
vantages; chief among these is provable connectivity of the
graph [29]. The Gabriel graph is also well-suited to providing
uniform coverage of an area, as it creates a mesh of acute
triangles. The Gabriel graph is a planar graph [29], so it does
not suffer from high edge density when the agents are close
together. However, the Gabriel graph depends on springs being
created with non-zero virtual potential. This complicatesany
proof of stability, as virtual energy may be added to the system
as the topology changes.

In order to prove stability in the presence of time-varying
topology, we modify the switching algorithm in a manner
inspired by dwell-time analysis. It has been shown in several
cases that if all members of a given class of linear systems are
stable, then arbitrary switching among those systems results
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in a stable hybrid system, provided that the switching rate
is “slow-on-the-average” [23]. Essentially, the proof shows
that the rate of decrease of the Lyapunov function due to the
dissipation is greater than the rate of increase of the Lyapunov
function due to switching, as long as the averagedwell time
between switches is sufficiently long.

In our approach, instead of computing a limit on the
switching frequency explicitly, we use a notion of a global
“energy reserve” to create the same limiting effect on the
switching rate. (The idea behind this name is that if a switch
will increase the value of the Lyapunov function, there must
be enough energy reserve to compensate for this increase.)
We find this approach intuitive and more straightforward to
implement in our decentralized system, in which switching
events are detected locally. Although any global quantity can
be problematic, we will demonstrate that a local estimate of
this quantity based upon a zero sum consensus algorithm is
sufficient to establish stability.

Consider a set of agentsri ∈ R. Let the time-varying signal
σ(t) be the switching function for a Gabriel graphGN (i.e.,
σ determines the time evolution ofGN ). For convenience,
we will denote this function asσ : t 7→ GN , as it takes
t as an input to produceGN as an output. Note thatσ is
constant except for discrete changes at timest1...tn. For any
time intervalτj = (tj ...tj+1), let Vσ(τj) be a global potential
function. It is shown in [26] that a function exists with the
following properties:

1) Vσ(τj) is positive-definite.
2) V̇σ(τj) is negative semi-definite.
3) V̈σ(τj) is bounded.

These conditions imply that the system is stable during the
intervals between switches. This is due to Barbalat’s lemma
[31], which states that iff(t) is lower bounded,ḟ(t) is
negative semi-definite, anḋf(t) is uniformly continuous (or
equivalently, f̈(t) is finite), then ḟ(t) approaches zero ast
approaches infinity.

We define the overall potential functionVσ(t) to be equal to
Vσ(τj) on the interval[tj ...tj+1], for all j. We will generalize
this in Section III. Since it is possible to evaluate the potential
associated with every spring at any time, each agent may
maintain an estimate of the current potential of all springs
connected to that agent. We will call this valueUi.

Ui =
∑

h∈Ni

1

2
ks(‖xi − xh‖ − l0)

2

whereNi is the set of springs connected to agenti. Whenever
a switch occurs, the value ofUi may instantaneously change
according to the potential created or destroyed by springs
coming into and out of existence. Define the quantitysi such
that:

si(t) =
1

2

(

lim
t̃→t+

Ui − lim
t̃→t−

Ui

)

This quantity captures the instantaneous change in potential
due to the spring switching. The factor of 1/2 is present
because each spring connects to two agents, and thus will
be counted twice. It is thus easy to show that the following

relationship holds:
∑

i∈R

si = lim
t̃→t+

(Vσ(t)) − lim
t̃→t−

(Vσ(t))

Additionally, let
di = −kdẋi

T
ẋi

wherexi represents the position of agenti. The quantitydi

represents the rate of virtual energy dissipated by dampingat
agenti. It is a direct consequence of the static stability proof
in [26] that on any interval between switches, the following
equality holds:

∑

i∈R

di = V̇σ(τj).

This result follows from the fact that the virtual physics is
based on a spring mesh system, where all energy dissipation
is due to damping, and the total energy damped is the sum of
the energy damped at each node of the mesh.

At this point, each agent can quantify its own contribution
to the amount of virtual energy that is being damped out of
the system, as well as the amount that is being created or
destroyed by switching. Intuitively, we would like the former
to be of greater magnitude than the latter when averaged over
all agents for some length of time.

This can be accomplished by maintaining alocal energy
reserveEi at each agent (the local reserve will be related to a
consensus-based global reserve in Section IV).Ei is initialized
to an arbitrary nonzero value. As virtual energy is damped
out of the system, a fraction of that energy is added to the
reserve. When a switch occurs, the virtual energy created by
the switch is removed from the reserve. As long as the energy
reserve is not allowed to drop indefinitely, the system will be
stable. This inspired us to create themodified Gabriel graph
switching functionσ′(t), which is identical toσ(t) except that
an agenti may not create a spring if that operation would
causeEi to become less than zero. A more precise definition
of σ′(t) will be given in Section III.

Notice that preventing spring creation requires the cooper-
ation of two agents (one on each end), since the properties of
Vσ(τj) given above depend upon symmetry in the springs (that
is, GN must be an undirected graph). Thus, spring creation is
prohibited when either agent hasEi < 0.

A stability proof specific to a spring mesh with the modified
Gabriel graph switching function is given in [26]. However,the
underlying concept does not rely on that particular switching
function, or on the spring mesh dynamics. The following
section generalizes the proof in [26], of which the Gabriel
graph is a member.

III. G ENERAL RESULT

We will now present a formal proof that applies to our
motivating example, as well as a large class of similar switched
systems. Note that while this proof is clearly applicable to
many systems that use interaction graphs as the basis for their
switching function, other types of switching functions also
have the required properties.

Consider a set of agentsR and a time-varying switching
signalσ that is constant except for discrete changes whenever
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a switch occurs. Assume that the state for each agenti is
x ∈ M , the governing equations arėx = f(x), and that the
switching function changesf over time,σ : (x, t) 7→ f . We
assume the following properties:

A1 For any time interval(tj ...tj+1) on whichσ is constant
(we will call this interval τj), there exists a global
potential functionVσ(τj) such thatVσ(τj) is positive-
definite,V̇σ(τj) is negative semi-definite, and̈Vσ(τj) is
bounded. We define the overall potential functionVσ(t)

to be equal to the union of all functionsVσ(τj).
A2 For all timest, limt̃→t− V̇σ(t̃) = limt̃→t+ V̇σ(t̃).
A3 At every timet, each agenti can determine a quantity

di such thatḋi is bounded,
∑

i∈R di ≥ V̇σ(t) anddi ≤

0. Note thatV̇σ(t) is negative semi-definite, sodi is
bounded above by zero and below byV̇σ(t).

A4 At every timet, let there be a quantitysi for each agent
such that

∑

i∈R si = limt̃→t+(Vσ(t̃))−limt̃→t−(Vσ(t̃)).
Each agent can determine an estimateŝi such that
∑

i∈R ŝi ≥
∑

i∈R si.
A5 A switch at timetj for which ŝi > 0 for any i ∈ R may

be prohibited. More precisely, thenominal switching
function σ may be replaced in the control laws by a
modified switching functionσ′ : (x, t) 7→ f which
behaves likeσ, but with the added property thatσ′

may (or may not) delay or omit a switch for which
ŝi > 0 for any i ∈ R. The modified switching function
σ′ is actually used for control rather than the nominal
σ, which may be thought of as a reference switching
function.

PropertyA1 implies that the system is stable in the absence
of switching. This is typically simple to verify using standard
Lyapunov function techniques, and holds in the case of our
motivating example.

PropertyA2 allows switches to cause discrete changes in the
potential of the system, but not in the damping rate. A simple
way of ensuring that PropertyA2 is true in practice is to define
a switching function that cannot have any instantaneous effects
on damping. This is done in our motivating example, where
switches affect the amount of stored energy in springs, but
not the kinetic energy of the agents, which is the term that
controls damping.

Property A3 involves the agents’ local estimates of the
amount of virtual energy that is being damped out of the
system. If PropertyA3 is satisfied, then the sum of the local
estimates does not collectively over-estimate the amount of
damping that occurs.

Our motivating example satisfies this property, because the
total damping is equal to the sum of the damping at each
individual agent–a quantity which is known precisely at the
agent. However, only an upper bound is necessary; it may be
beneficial to underestimate the damping in a practical imple-
mentation, in order to more easily ensure that the property is
satisfied in the face of constraints such as imprecise sensing.

Property A4 involves the agents’ local estimates of the
potential created by switching. If PropertyA4 is satisfied, then
the sum of the local estimates does not collectively under-
estimate the actual potential created by a switch.

In our motivating example, the potential of each spring
is known precisely. If each agent computes the change in
potential caused by the creation and destruction of springs
for which it is an endpoint, the sum of the local estimates
will exactly equal the actual change in potential. Similarly to
PropertyA3, a lower bound is sufficient, which should make
practical implementation more straightforward.

PropertyA5 tells us that the thenominalswitching function
σ (which is based on the sensor graphGS and is typically
designed a priori to satisfy network topology requirements–the
Gabriel graph is just one example of such a graph) may
be implemented using amodifiedswitching functionσ′. The
modified switching functionσ′ is what is actually used in
the generation of control laws for each agent. The modifica-
tion of σ allows for separating the control design into two
components; the low-level control architecture, and the high-
level topology built upon the low-level stability properties. The
meta-level controller that transformsσ into σ′ uses only very
limited sensing capabilities (e.g., proximity but not distance
or ordering). Nevertheless, we will see that it is crucial to
maintain stability.

It is important to note that the ability to prohibit a switch
must only be satisfied in cases whereŝi > 0. Intuitively,
this means that only switches thatincreasethe potential in
the system must be controllable. In our motivating example,
it is possible for environmental conditions to cause a switch
(as with the loss of a communication link, for example) that
cannot be prevented. However, these uncontrollable switches
have ŝi ≤ 0 by design; the loss of a link can onlydecrease
the system potential. If communication is re-established,the
link is not necessarily added back into the control graph;
thus, it is possible to control the switch in the positive
direction. In general, it is necessary to define systems suchthat
uncontrollable events cannot increase the overall potential.

If each of these properties is satisfied, then the overall
method is applicable, and the system may be stabilized with
a simple modification to the switching function, as follows.

Associate with each agenti a value Ei which is called
the local energy reserve, and is defined as the solution to a
differential equation.Ei has an arbitrarily chosen nonnegative
initial value and evolves according to the following:

Ėi(t) = −kedi(t) if si(t) = 0 (2)

Ei(t) = lim
t̃→t−

Ei(t̃) − si(t) otherwise (3)

whereke is a global constant,0 < ke < 1. Notice thatEi is
initialized to a nonnegative value and then evolves according
to Equation 2 as long assi is zero (that is, on intervals with
no switches). Wheneversi 6= 0 (there is a switch),Ei is re-
initialized to the value given in Equation 3.

Each agent maintains a local estimateÊi, which is initially
greater than zero and evolves as follows:

˙̂
iE(t) = −kedi(t) if ŝi(t) = 0 (4)

Êi(t) = lim
t̃→t−

Ê(t̃) − ŝi(t) otherwise (5)
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Let the global valuesE and Ê be defined such that

E =
∑

i∈R

Ei (6)

Ê =
∑

i∈R

Êi (7)

We will call E the global energy reserve.
This brings us to the simple change necessary to stabilize

the system. Themodified switching functionσ′ : (σ,x, t) 7→ f

is an identity onσ, except for the added condition that any
switch that would causêEi < 0 for any agenti is prohibited,
as described in PropertyA5. Note that the value of̂Ei cannot
decrease in the absence of switching, becausedi ≤ 0 for all
i (see PropertyA3). Also, this computation is decentralized;
the agents only need access to the local valuesÊi, di, andŝi.

σ′(x, t) =

{

σ(x, t) if Ei > 0 for all i

limt̃→t− σ′(x, t̃) otherwise

The immediate consequence of modifyingσ in this way is
that Ê ≥ 0, since it is the sum of all nonnegative terms. It
follows from Equations 6 and 7 and the definitions ofsi and
ŝi (see PropertyA4) that E ≥ Ê. Thus if Ê ≥ 0, thenE ≥ 0
as well.

Theorem 3.1:In any system satisfying AssumptionsA1-
A5 and using the modified switching functionσ′, all agents
eventually reach a state of unchanging potential. That is,
|Vσ′(t) − α| → 0 for some α ∈ R and, in particular,
V̇σ′(t) → 0.

For purposes of notational simplicity, we will takeV
to denoteVσ′(t) for the remainder of this section unless
otherwise specified.

Proof: Our approach invokes Barbalat’s lemma, which
states that iff(t) is lower bounded,ḟ(t) is negative semi-
definite, andḟ(t) is uniformly continuous (or equivalently,
f̈(t) is finite), then ḟ(t) approaches zero ast approaches
infinity. We will apply Barbalat’s lemma to a potential function
V

′, thereby showing thaṫV′ goes to zero, which implies that
all agents reach a state of unchanging potential.

We will show stability of the system using themodified
potential functionV′, defined as:

V
′ = V + E

SinceV is positive-definite (by PropertyA1) and E > 0,
it is clear thatV′ ≥ 0.

Differentiating, we see that on any interval on which there
are no switches:

V̇′ = V̇ + Ė

Substituting forĖ:

V̇′ = V̇ +
∑

i∈R

−kedi (8)

To handle switches, we must look back to the definition in
PropertyA4:

lim
t̃→t+

V(t̃) = lim
t̃→t−

V(t̃) +
∑

i∈R

si(t)

Thus, at any instantt when a switch occurs (that is, when
any si 6= 0),

lim
t̃→t+

V
′(t̃) = lim

t̃→t−
V(t̃) +

∑

i∈R

si(t) + E(t)

Substituting forE from Equation 3,

lim
t̃→t+

V
′(t̃) = lim

t̃→t−
V(t̃) +

∑

i∈R

si(t) + lim
t̃→t−

E(t̃) −
∑

i∈R

si(t)

(9)
which simplifies in the following way:

limt̃→t+ V
′(t̃) = limt̃→t− V(t̃) + limt̃→t− E(t̃)

= limt̃→t− V
′(t̃)

(10)

Thus, the discontinuity inV′ has been removed, as the limits
from both sides are the same. We know from PropertyA2 that
switches do not cause discontinuities inV̇

′ either, so Equation
8 holds true at all times.

Further, sinceV̇ is negative definite (from PropertyA1),
0 < ke < 1, andV̇ <

∑

i∈R kedi < 0 (from PropertyA3), it
must be the case thaṫV′ is negative semi-definite.

BecausëV is bounded (PropertyA1) andḋi is bounded for
all i (PropertyA3), we also knowV̈′ is bounded.

We now have sufficient information to satisfy Barbalat’s
lemma. We knowV′ is lower bounded by zero,̇V′ is negative
semi-definite, and̈V′ is bounded, so Barbalat’s lemma implies
that V̇′ → 0 ast → ∞. It follows directly thatV̇σ′(t) → 0 as
t → ∞.

Note that in the proof of Theorem 3.1 we are effectively
changing both where the switch inσ is allowed to occur and
potentially which switches are allowed to occur.

Remark 3.1:While our proof based on Barbalat’s lemma is
convenient for smooth potentials, it is not the only technique
that is compatible with the energy reserve approach. For
example, consider the work of Tanner et. al. in [21]. A control
input u and Lyapunov functionV are presented (we have
changed the notation slightly to match the conventions used
here):

ui = −
∑

j∈Ni

(ẋi − ẋj) −
∑

j∈Ni

∇P (xi,xj)

where P is some potential function that approaches infinity
as xi approachesxj , and has a unique minimum when
agentsi and j are at a desired distance.Ni is the set of
neighboring agents within some threshold distance of agent
i. ∇P represents the gradient ofP with respect tox.

V =
1

2

∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi)

]

V̇ = ẋ
T Lẋ

whereL is the Laplacian of the neighbor graph (the neighbor
graph is defined by the union ofNi for all agentsi).

It is simple to add an energy reserve toV, with di = ẋi−ẋj .
This would modify the Lyapunov function as shown:
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V =
1

2

∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi)

]

+ E

V̇ = (1 − ke)ẋ
T Lẋ

This change carries through the rest of the analysis. Simi-
larly to our results, the results in [21] are preserved with the
addition of an energy reserve, which allows for more flexibility
in specifying a switching function.

Remark 3.2:In our motivating example, it is the case that
the trajectories for all agents are defined for allt. This
will also be the case for the example systems presented in
Section V; however, it is possible to construct a system that
meets the assumptions presented here and yet does not define
the trajectories of all agents at all times. This can occur
because switches between states of equal potential may happen
arbitrarily fast, potentially resulting in an infinite number of
switches.

In the event that a system cannot be designed to avoid such
a situation, infinite switching may be prevented by adding a
small cost to each switch. Precisely, replace Equation 3 with
the following:

Ei(t) = lim
t̃→t−

Ei(t̃) − si(t) − ǫ (11)

whereǫ is a very small but finite constant. This modification
ensures that the number of switches is finite, so existence of
solution can be proven using existing methods (e.g., see [32]).

IV. ENERGY RESERVECONSENSUS

Although the decision to prohibit a switch is made by each
agent based on its local energy reserve, it may be desirable to
allow switches to occur whenever theglobal energy reserve is
sufficiently large. That is, we do not want to prevent a switch
due to low energy reserves in one part of the system, when
there are sufficient energy reserves unused somewhere else.
Thus, we need some mechanism for sharing information about
the energy reserve levels between agents.

We will take advantage of theaverage-consensusalgorithm
described by Olfati-Saber and Murray [33]. This algorithm
allows a decentralized set of agents to reach a consensus on
a common global value, while sharing information only with
their local neighbors. We will apply this algorithm in a novel
way, in order to combine local energy reserves into a single
global reserve. If an agenti has a set of neighborsSi that it
can sense,

ūi =
∑

l∈Si

(El − Ei) (12)

We then replace Equations 2 and 4 with the following:

Ėi = −kedi + ūi (13)
˙̂

Ei = −kedi + ūi (14)

Equations 3 and 5 remain unchanged. We require that the
neighbor relation is symmetric (ifa ∈ Sb, thenb ∈ Sa). This
symmetry provides the following zero-sum property:

∑

i∈R

ūi = 0 (15)

Note that

Ė =
∑

i∈R

Ėi =
∑

i∈R

−kedi + ūi =
∑

i∈R

−kedi

because of the zero-sum property. Hence, Equation 8 remains
unchanged. Since Equation 3 is also unchanged, the result
in Equations 9 through 10 also stands as before. The system
evolves somewhat differently, as the times when we must
prohibit a switch have changed due to the differinglocal values
of E, but the system meets all the conditions necessary for the
proof in Section III because theglobal behavior ofE still has
the required properties. However, as described in [33], allof
the local energy reserves will now converge to a single value.

The consensus function given here is just one example of a
valid consensus function. In fact, any consensus algorithmwith
the zero-sum property described in Equation 15 is acceptable.
The consensus onE is independent of the normal control
of the system, although a faster consensus will improve
performance in terms of convergence rate. What we have
shown is the following:

Corollary 4.1: In any system satisfying assumptionsA1-A5
where Eqs.(12)-(14) replace Eqs.2 and 4, all agents eventually
reach a state of unchanging potential.

V. EXAMPLES

A. Nearest Neighbors and Gabriel Graphs

One common switching function is the nearest-neighbors
function, in which agents interact with all neighbors within
some threshold distance. While proofs of stability for specific
systems using nearest-neighbor rules exist (e.g. [34]), these
proofs typically do not generalize. Our technique applies to
a broad class of systems using nearest neighbor rules. For
example, consider the system with the following control law:

ẍi = ui

ui =
[

∑

j∈Ni

∇P (xi,xj)
]

− kdẋi (16)

where Ni is the set of neighboring agents within some
threshold distance of agenti, andP is some continuous, con-
servative function representing the potential between agents.
“Conservative” here is used in the sense of a conservative
field–the integral over any two paths with the same endpoints
is the same.

For each intervalτj between switches, let the potential
function be:

Vσ(τj) =
∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi

]

SinceP is conservative, it can be shown that:

V̇σ(τj) =
∑

i∈R

−kdẋ
T
i ẋi (17)

Thus, this definition ofVσ(τj) satisfies PropertyA1. Prop-
erty A2 is clearly satisfied, because the neighbor set does not
appear in Equation 17.
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(a) Initial state (b) Final state

Fig. 2. Nearby neighbors example: agents start in several separate clusters

(a) Intermediate state (b) Final state

Fig. 3. Gabriel graph switching function with initial conditions from Fig 2

The damping term makes it easy to satisfy PropertyA3; we
simply let:

di = −kdẋi
T
ẋi

Since we can evaluateP at any point, satisfying Property
A4 is also straightforward. We definesi such that:

si =
∑

j∈N
+

i

P (xi,xj) −
∑

j∈N
−

i

P (xi,xj)

whereN+
i represents the limit ofNi from the right, andN−

i

represents the limit ofNi from the left.
PropertyA5 is true because agents may agree not to interact

with each other at will. Having met all the conditions, we apply
our technique to construct a stable system with a modified
switching function.

We have shown the following.
Corollary 5.1: With the nearest neighbor graph topology

from (16) whereσ′ is substituted as described in Section III,
all agents eventually reach a state of unchanging potential.

Simulation results for such a system are shown in Figure
2. In this example, a simple spring potential identical to that
used in Section II is used. However, any potential could be
used, such as the one in [21].

For comparison, a simulation with the Gabriel graph switch-
ing function and the same initial conditions is shown in Figure
3. This shows the benefits of a switching function that has
specific topological properties–in this case, the connectivity
property of the Gabriel graph dictates that the agents will form

a single connected graph so long as the associated sensor graph
GS is sufficiently connected.

B. Target Tracking

Consider a system in which there are potentials between
the agents, as well as between the agents and targets in the
environment. For example, one might model agents as positive
charges and targets as negative charges (similar to [9]), so
that the agents normally disperse but are attracted to target
areas. It may be the case that targets can appear, disappear,
change position, and/or change characteristics in such a way
as to inject large amounts of virtual energy into the system.
Our technique can be applied to prevent destabilization of the
system due to target behavior.

For example, letR be a set of agents andT a set of targets,
each of which may appear and disappear arbitrarily. Let the
control law for agenti be the following:

ẍi = ui

ui =
[

∑

j∈R

∇PR(xi,xj)
]

+
[

∑

k∈T

∇PT (xi,xk)
]

− kdẋi

wherePR is the potential function acting between the agents,
and PT is the potential function acting between agents and
targets.

If there are no restrictions on the appearance of targets,
then targets may inject an arbitrary amount of energy into the
system. This is not desirable, as the continued appearance of
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Fig. 4. Agents mapping a complex diffuse target

targets, or the appearing and disappearing of a few targets
in an unfortunate pattern, could destabilize the system and/or
cause collisions between the agents. Modifying the switching
function according to our technique will remove this problem.

Recalling Section III, PropertiesA1 andA2 are met because
the potential functions are conservative and the system is
damped independently of the targets (a proof of this is omitted
for brevity, but is fairly straightforward). We can meet Property
A3 with the following (reasonable) choice:

di = −kdẋi
T
ẋi

PropertyA4 is met because we can evaluate the potential
functionsPR andPT at any point. Thus, we can assignsi =
PT (xi,xk) when targetk appears, andsi = −PT (xi,xk)
when targetk disappears.

Property A5 is met becausesi > 0 only when a target
appears, and agents may elect not to track a given target if
necessary.

Since each of the properties are satisfied, our technique
may be applied. With the modified switching function, if the
target pattern is ever such that the system would destabilize,
then the agents will ignore the targets that would have caused
destabilization to occur.

Further examples of target tracking are shown in Figures 4
and 5. In these cases, the targets are diffuse and represented
by an intensity map. These simulations use the spring-mesh
control law and Gabriel graph switching function from Section
II, but with adaptive spring lengths so that the density of agents
increases with the target intensity.

Figure 5 shows an interesting emergent property of the
Gabriel graph algorithm. There are groups of agents tracking
each target, and there are also some agents spread between
the target areas to maintain connectivity. This is a useful
formation, as it allows most of the available agents to be used
for target tracking, but reserves some agents to maintain a
communications path. The “division of labor” in this example
is not explicit; it emerges as a result of the Gabriel graph

Fig. 5. Agents mapping multiple diffuse targets

switching function. Explicit heterogeneity is consideredin
Section VI.

The combination of changing spring parameters and switch-
ing would normally be difficult to analyze. However, by
applying the above technique, it is possible to decouple the
analysis of varying spring parameters from that of varying
topology. As long as the system is stable in the absence of
switching, we can ensure that the switching function does not
introduce any instability.

VI. H IERARCHICAL HETEROGENEOUSSYSTEMS

Suppose we have agentsrl
i ∈ Rl (the lower hierarchy)

and ru
i ∈ Ru (the upper hierarchy) with statesxl

i and xu
k

respectively. Accordingly, all agents inRl are only equipped
with short-range sensors and all agents inRu are equipped
with long-range sensors. Moreover, all agents inRl employ a
nearest neighbor (NN) control that includes all agents in both
Rl andRu, and all agents inRu employ a Gabriel graph (GG)
control law with other agents inRu and a nearest neighbor
control law with agents inRl. We would like to know if the
graph is connected (thereby utilizing the differences in sensing
ability).

The key to using Theorem 3.1 is to maintain the symmetry
of the connections. If we note the pairwise interactions by
(rx

i , r
y
j ) = T (wherex andy are eitheru or l andT is either

NN or GG), note that

1 (rl
i, r

l
j) = NN

2 (rl
i, r

u
j ) = (ru

i , rl
j) = NN

3 (ru
i , ru

j ) = GG

so symmetry is maintained. For any particular static graph this
is stable, so the resulting graph with switching from the NN
and GG rules will be stable in the sense of Theorem 3.1, so
long as each agent is usinĝE and Eqs.(12)-(14) to monitor
the switching. Simulations of this scenario are depicted in
Figure 6. If the gainkNN

s on the nearest neighbor control
laws is much lower than the gainkGG

s on the Gabriel graph
control laws, then the system is still stable, but it can become
disconnected, as shown in Figure 6. If, however,kGG

s < kNN
s ,

then the system stabilizes in a globally connected manner.
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(a) Initial state (b) Final state,kNN
s > kGG

s (c) Final state,kNN
s < kGG

s

Fig. 6. Heterogeneous agents, some with long-range sensors and some with short range sensors.

(a) snapshot 1 (b) snapshot 2 (c) snapshot 3

Fig. 7. Agents on collision course, with no collision term

(a) snapshot 1 (b) snapshot 2 (c) snapshot 3

Fig. 8. Agents on collision course, with collision term in effect
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VII. C OLLISION AVOIDANCE

For some systems, using the modified switching function
may have implications for collision avoidance. If its energy
reserve is depleted, an agent may not allow a switch that
is necessary in order to prevent a collision. However, it is
possible (and fairly straightforward) to design a system that
does not depend on switching for collision avoidance. For
example, consider the following control law:

ẍi = ui

ui =
[

∑

j∈Ni

∇P1(xi,xj)
]

+
[

∑

k∈R

∇P2(xi,xk)
]

− kdẋi

whereNi is the set of neighbors according to some relation
(such as a Gabriel graph), andR is the set of all agents.
Suppose thatP1 andP2 are both conservative functions, and
that P2(xi,xk) approaches infinity asxi approachesxk. It
may be the case thatP2 is a “short-range” potential–it rapidly
becomes small as the distance between the agents increases.

Similar to our previous examples, this system satisfies all of
the requirements for Theorem 3.1. In addition, sinceP2 affects
all pairs of robots at all times, no collision can occur without
overcoming an infinite potential. In a sense, there are two
proximity graphs superimposed.P1 represents the “normal”
behavior of the system and involves switching, andP2, which
only acts over short range to prevent collisions, never switches.

Figures 7 and 8 show the effect of the collision-avoidance
term P2. In this case,P1 is the simple spring-like poten-
tial used previously,N is defined by a Gabriel graph, and
P2(xi,xj) = kc(‖xi−xj‖)

−1, wherekc is a constant. Initially,
the upper and lower groups of agents are heading towards each
other at high velocity, which puts the two middle robots on
a collision course. Figure 7 shows the result withoutP2, and
Figure 8 shows the result withP2 in effect.

It should be noted that some care must be taken to ensure
that a collision-avoidance term does not cause unintended
consequences. For example, a poorly-chosen control law may
avoid collisions but allow undesired local minima in the
potential function. While terms such asP2 do not affect our
ability to stabilize the system, they may alter its performance.
In our example,P2 was chosen carefully to be insignificant in
the normal case (when collision is not imminent), so its effect
on the system’s behavior is minimal.

VIII. L IMITED SENSORRANGE

Due to the realities of limited sensing, it may be desirable
to ignore interactions with agents beyond a certain threshold
range. The ability to cut off interactions beyond a finite
range, while still maintaining stability of the system, is akey
advantage of the non-smooth potential function described by
Tanner et. al. [21]. As mentioned in Remark 3.1, the results
in [21] are compatible with an energy reserve, which makes it
possible to introduce an additional type of switching limited
by the energy reserve.
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Fig. 9. Fraction of switches prevented

Consider the following system:

ẍi = ui

rij = ‖xi − xj‖

ui =
[

∑

j∈R

∇P (rij)
]

− kdẋi

P (rij) =

{

U(rij) if rij < rmax

U(rmax) if rij ≥ rmax

U(rij) =
kc

r2
ij

+
1

2
kijr

2
ij

where kc is some positive constant,kij = ks if j ∈ Ni,
and kij = ǫ otherwise, withǫ << ks. Ni represents the
neighbors of agenti according to some proximity graph, such
as a Gabriel graph.

The potential functionP meets the criteria for the non-
smooth potential function described in [21]. However, the
gainkij switches according to the proximity graph, becoming
essentially zero and leaving only the collision-avoidanceterm
when there is no corresponding edge in the graph. This
switching is constrained by the energy reserve, preventing
it from destabilizing the system. Thus, the stability result in
[21] stands, the agents’ behavior is dominantly controlledby a
proximity graph that may be chosen arbitrarily, and the agents
beyond a range ofrmax may be ignored without impact on
the system.

IX. H OW OFTEN DOESσ′ PLAY A ROLE?

Since modifying the switching function affects the behavior
of the system, it is important to know just how often switches
are really prevented by insufficient energy reserves. One might
expect that with conservative gains and damping, the energy
recovered from damping will generally be great enough to
cover the energy needs of switching. Only when operating
with high gains and relatively little damping would one expect
the energy reserve to truly come into play.

This is in fact what occurs. Figure 9 shows the fraction of
switches prevented by insufficient energy reserves for a test
case with 32 robots using the modified Gabriel graph switching
function. When the damping constant (kd) is high and the
spring constant (ks) is low, no switches are prevented. Only
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when the gain is relatively high and the damping constant is
relatively low are there a large number of switches prevented.
This result is highly intuitive–when we “push the envelope,”
with higher gains, we take greater risks with stability. The
modified switching function comes into play more and more
as we push the system towards higher performance.

X. CONCLUSIONS

In this paper we have introduced an approach to cooperative
control that focuses on monitoring the admissible changes in
network graph topology according to a stability criterion.This
method can be decentralized across a network of agents by
additionally using consensus algorithms like those found in
[33]. This leads to a flexible method of guaranteeing stability
for arbitrary network graphs, and explicitly avoids instabilities
due to the graph topology switching. Our technique is designed
to be easily applicable to a wide range of systems, including
those with heuristically-derived control laws, thus allowing
formal proofs of stability to apply to many systems that are
not addressed by existing methods.

We did not consider the effects of noise in this work, though
it is largely addressed by the basic results of [23] on noise and
external disturbances.
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