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Abstract: This paper presents a numerical modeling technique for dynamically
modeling a human hand. We use a strand-based method of modeling the muscles.
Our technique represents a compromise between capturing the full dynamics of the
tissue mechanics and the need for computationally efficient representations for con-
trol design and multiple simulations appropriate for statistical planning tools of
the hand. We show how to derive a strand-based model in a variational integra-
tor context. Variational integrators are particularly well-suited to resolving closed-
kinematic chains, making them appropriate for hand modeling. We demonstrate the
technique first with a detailed exposition of modeling an index finger, and then ex-
tend the model to a full hand with 19 rigid bodies and 23 muscle strands. We end
with a discussion of future work, including the need for impact handling, surface
friction representations, and system identification.

1 Introduction

Dynamic models of the hand are difficult to create because of strong coupling
between every part of the system. Coupling arises from the geometry of the
muscles and tendons (e.g. a single tendon affects multiple joints rather than
just one), the physical structure (e.g. coupling between muscles), and neuro-
logical factors. Physiologists typically reduce the complexity by focusing on a
single finger or joint. Roboticists often simplify the hand’s complicated tendon
geometry into models that apply torque directly at each joint. While appropri-
ate for engineered systems (e.g. the RIC hand [1]–but not the Shadow Hand
[9] which is cable-driven), this approach discards the coupling and geometry
that are crucial for studying the mechanical capabilities and control strategies
of the hand.

Studies of complete hands in physiology have mostly been restricted to
static models because of complexity. Static models are useful for applications
such as predicting fatigue and maximum finger-tip forces in equilibrium, but
they are fundamentally limited. The hand activates different muscles and ac-
tivation patterns in dynamic motions compared to static contractions, even
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Fig. 1: The dynamic model of a human hand. (Left) The thin lines represent the
muscle/tendon strands that actuate the hand. (Right) Contact can be modeled
by holonomic constraints between finger tips and an object. (The STL model was
derived from http://www-static.cc.gatech.edu/projects/large models/hand.html)

when moving through identical postures [22]. Dynamic models are clearly an
important yet underdeveloped research area.

This paper presents a dynamic model of a complete hand that is free of
numerical dissipation. The muscle/tendon pairs are modeled as one degree
of freedom (DOF) elastic elements (e.g. linear or nonlinear springs) called
strands [2, 20]. The model, including muscle strands, is shown in Fig. 1. Mod-
eling is accomplished with a tree-based [7] variational integrator [21]. The tree
approach provides a consistent framework for describing a system’s geometry
and including elements like forces, constraints, and potential energies. Vari-
ational integrators have excellent numeric stability and energy conservation
properties, and handle closed kinematic chains extremely well. They also be-
have well with both elastic and plastic impacts as well as friction. Together,
variational integrators and tree-form representations provide stable, physically
accurate simulations in generalized coordinates even for mechanically complex
systems like the hand.

Variational integrators should be of particular interest to the computer sci-
ence part of the robotics community. They represent dynamics in a naturally
discrete setting–hence the term discrete mechanics–rather than a continuous
one. This feature, along with the fact that variational integrators are valid
over long time horizons, makes probabilistic planning and optimal control
more feasible. Moreover, because variational integrators are particularly sim-
ple to implement they can be integrated easily into other algorithms. Lastly,
algorithms capable of computing variational integrators typically can compute
other quantities such as the linearization; this allows one to evaluate the lo-
cal singular value decomposition of a system at any operating point. The key
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point is that variational integrators provide a particularly computational view
of mechanics, starting from their derivation, and this is useful when working
with complex systems in a robotics context.

This work demonstrates that a variational modeling approach leads to
numerically stable models that are easy to modify and extend. The model
includes dynamics without resorting to PDEs, favoring useful abstractions
and computational tractability instead. Variational integrators also deal with
constraints (particularly closed kinematic chains) in a natural and robust way.
Hence, these techniques can also be used on simpler systems such as the
Shadow Hand [9] and other cable-driven robots.

We begin with a background discussion of hand anatomy and discuss previ-
ously published models in Sec. 2. We continue with an overview of variational
integrators and discrete mechanics in Sec. 3. Section 4 discusses the strand ab-
straction our model uses for muscles/tendons in the hand. Finally, we present
several simulations in Sec. 5 that use our model.

2 Background: Hand Modeling

Hand physiology is a complex subject that involves understanding the mechan-
ical structure (i.e. system identification), characterizing the nervous system’s
control strategies, and developing mechanical models of the hand. We present
a brief overview of hand anatomy and modeling strategies.

2.1 Hand Anatomy

The human hand contains 27 bones [6] with approximately 30 degrees of
freedom [12]. It is actuated by 29 muscles, some of which are subdivided into
parts that contract independently to provide a total of 38 unique actuators.
Modeling the hand involves complex geometry due to the joints of the skeleton,
sliding of the muscles, and the routing of the tendons.

We focus on the hand from the wrist to the finger tips. Each of the four
digits is associated with four bones: the metacarpal (MCP), proximal pha-
lanx (PP), middle phalanx (MP), and distal phalanx (DP). There are ap-
proximately five DOF for each digit: one at the base of the MCP, two at the
MCP/PP joint, one at the PP/MP joint, and one at MP/DP joint.

The thumb has three bones (MCP, PP, and DP) and approximately four
DOF allowing it to oppose, abduct, adduct, and flex [5]. The muscles actu-
ating the thumb have complex geometry compared to those for the digits.
As a result, the thumb is often not modeled despite contributing 40% of the
function of the hand [8]. The abstractions used in this paper scale well with
this type of complexity, and so the thumb is included in our model.

Bone geometry plays a significant role in hand dynamics. Tendons slide
along bone surfaces, changing where forces are applied as the bones move.
Because of the role that bone geometry plays, rapid prototyping is essential
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Fig. 2: The dark lines are a schematic representation of an extensor tendon. The
single tendon attaches to several bones and muscles. Diamonds indicate fixed in-
sertions to bones. Arrows represent muscle forces. The complex geometry results in
strong coupling between muscles and non-trivial control.

for generating meaningful hand models; physiologists often have insight about
how a muscle/tendon moves across a bone during hand motion.

One of the hardest aspects of hand models are the tendons. Tendons are
made up of dense connective tissue that is elastic, flexible, and strong [18, 5].
We will divide types of tendon into three classes for our purposes.

The first class we will define is made of simple tendons that are short
connectors between a muscle and a single bone. The tendons that connect
muscles to their origins are typically this simple type.

The second class has slightly more complicated tendons that connect one
muscle to two bones, but work over long pathways. These tendons may slide
over many bones, joints and fibrous sheaths that act as pulleys. As a result,
the tension in the tendon applies forces to multiple points along its path
and creates coupling between joints [19]. The flexor tendons of the hand are
examples of this class.

Finally, the most complex tendons connect multiple bones and muscles,
and also work over long pathways. These tendons can branch off and connect
in many places to form complex structures. The extensor tendons, shown in
Fig. 2 are this type. Identifying accurate representations of these tendons is
still an open research problem in physiology [23].

Dynamic modeling of the hand is complicated by other physiological fac-
tors as well. The hand is over-actuated [6] and kinematically redundant [4] so
there is no one-to-one mapping between muscles and joint torques. There is
also significant coupling between muscles caused by both mechanical coupling
and activation of more than one muscle at a time. This is again distinct from
traditional robotic hands where all joints are independently controlled. Cou-
pling plays an important role in all aspects of hand motion. Muscles are often
co-activated such that some provide the major force while others stabilize the
motion.

2.2 Hand Modeling

Partial differential equations have been used for modeling walking [15], facial
movements [17], the surface of the heart [10], etc. However, there is no intrinsic
reason to believe that a model that simplifies the hand system to a series of one
degree-of-freedom-spring kinematic chains would be any less accurate than a
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highly complex PDE simulation [15]. This is because PDE models necessarily
make assumptions about the underlying homogeneity of the muscle and bone
tissue, leading to models that cannot be identified well. Moreover, for control
purposes we wish to have a “simple” model that incorporates all the hand
geometry and coupling in a dynamically correct manner.

Assuming one accepts a finite dimensional modeling setting, a finger can be
modeled as a kinematic chain [13]. Lee and Kroemer [11] created a kinematic
model of the finger that included flexion and extension. The moment arms
of the tendons are constant and external forces were considered. This model
was used to measure finger strength. Static equilibrium problems were used
to make inferences about the dynamics of the model. Notably, there has been
relatively little work on whole hand modeling.

Muscle models in the hand are often modeled as weightless expandable
threads [2]. Models in the past that use the weightless expandable threads
in hand modeling do so by solving static problems at each step and then
animate the steps to create a smooth motions of the hand (see Sueda et al.
[20]). The use of static poses and animation is effective at producing human
like movement, but may not be natural. The model presented in this paper
also uses the weightless expandable thread technique to model the tendons,
but has the advantage of having no numerical dissipation (the major drawback
described in [20]). Lastly, kinematic redundancy can be dealt with by adding
constraints that reflect the physiology of the hand. These constraints can be
easily included in our numerical simulation because variational integrators
(described in the next section) are particularly well-suited to modeling closed
kinematic chains.

3 Background: Variational Integrators

Variational integrators are a result of relatively recent research in discrete me-
chanics. These integrators are derived in a similar way as the Euler-Lagrange
equations. They have been shown to respect important mechanical properties
like conservation of energy and momentum (in the absence of nonconserva-
tive forcing), and have been observed to have other desirable properties like
good dissipation modeling for systems with friction, excellent closed-kinematic
chain behavior, and good convergence. Variational integrators also work di-
rectly in generalized coordinates which are preferred for describing anatomical
aspects of the hand.

We introduce variational integrators with an overview of how the Euler-
Lagrange equation is derived from a variational principle and discuss how the
derivation is modified to obtain variational integrators.

Lagrangian mechanics provide a coordinate-invariant method for generat-
ing a system’s dynamic equations. Lagrangian mechanics are derived from
a variational principle. We define the Lagrangian of system as its total
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kinetic energy minus potential energy in terms of generalized coordinates
q = [q1, q2, . . . , qn] ∈ Rn and their time derivative q̇ =

[
∂q1
∂t , ∂q2

∂t , . . . , ∂qn

∂t

]
:

L (q, q̇) = KE(q, q̇)− PE(q) (1)

The integral of the Lagrangian over a trajectory is called the Action (Fig.
3a):

S(q([t0, tf ])) =
∫ tf

t0

L(q(τ), q̇(τ))dτ (2)

Hamilton’s Least Action Principle states that a mechanical system will
naturally follow the trajectory that extremizes (e.g. minimizes) the action;
hence, it is not so much a least action principle as an action stationarity prin-
ciple. Extremizing (2) with a variational principle shows that such trajectories
satisfy the Euler-Lagrange equation:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = 0 (3)

which is a second-order ordinary differential equation (ODE) in q. Given a set
of initial condition (q(t0), q̇(t0)), we numerically integrate (3) to simulate the
system dynamics. The derivation can be extended to include holonomic/non-
holonomic constraints, external forces, and dissipation [14].

In derivation of (3), the system’s trajectory is always continuous. The
trajectory is not discretized until the last step during numeric integration. A
variational integrator, on the other hand, is derived by introducing the time
discretization before applying the variational principle.

3.1 Discrete Mechanics

In discrete mechanics, we seek a sequence {(t0, q0), (t1, q1), . . . , (tn, qn)} that
approximates the actual trajectory of a mechanical system (qk ≈ q(tk)). In this
paper, we assume a constant time-step (tk+1 − tk = ∆t ∀ k) for simplicity,
but in general, the time-step can be varied to use adaptive time-stepping
algorithms.

A variational integrator is derived by defining a discrete Lagrangian, Ld,
that approximates the continuous action integral over a short time interval.

Ld (qk, qk+1) ≈
∫ tk+1

tk

L(q(τ), q̇(τ))dτ (4)

The discrete Lagrangian allows us to replace the system’s action integral
with an approximating action sum.

S(q([t0, tf ])) =
∫ tf

t0

L(q(τ), q̇(τ))dτ ≈
n−1∑
k=0

Ld (qk, qk+1) (5)
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where tf = tn. This approximation is illustrated in Fig. 3. The shaded region
in Fig. 3a represents the continuous action integral. The shaded boxes in Fig.
3b represent values of the discrete Lagrangian, which are summed to calculate
the discrete action.

t0 tf

L
(q

,
q̇
)

(a) Continuous Action Integral

t0 t1 t2 t3 t4 t5 t6 t7 t8 tf

L
(q

,
q̇
)

(b) Discrete Action Sum

Fig. 3: The discrete action sum approximates the continuous action integral using
the discrete Lagrangian (which requires a choice of quadrature rule, in this case the
standard Riemann integral).

In continuous mechanics, a variational principle is applied to extremize the
action integral and derive the well-known Euler-Lagrange equation. The same
approach is used to extremize (5) to get the discrete Euler-Lagrange (DEL)
equation1.

D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0 (6)
h(q) = 0 (7)

where Eq. (7)represents constraints if there are any. Nonholonomic constraints
can be represented as well, but for simplicity we do not discuss them here.

This is an implicit difference equation that depends on the previous, cur-
rent, and future states. Given qk−1 and qk, (6) is treated as a root-finding
problem to find qk+1. After advancing k, this process is repeated to simulate
the system for as long as desired.

Constraints play a crucial role in simulations with contact and grasping.
We can often represent mechanical contact with a holonomic constraint (i.e.
a constraint on the system’s configuration manifold). In continuous mechan-
ics, holonomic constraints are typically differentiated and included as veloc-
ity/acceleration constraints. Over time, numeric integration errors build up
and the trajectory violates the original holonomic constraint. In differential-
algebraic techniques that enforce the constraint, the error is either accepted
or corrected with heuristic methods that (as a side effect) artificially inject
or dissipate energy. This is acceptable for computer entertainment applica-
tions, but leads to unrealistic system identification and unstable controllers
for physical applications.

Variational integrators avoid this problem and implement holonomic con-
straints well as a result. At each time step, the constraints h(q) are satisfied
1 Dnf(. . . ) is the derivative of f(. . . ) with respect to its n-th argument. This is

sometimes called the slot derivative



8 Elliot R. Johnson, Karen Morris, and Todd D. Murphey

(to within the tolerance of the numeric root solver) by appending them to (6)
and including a constraint forcing term in the discrete Euler-Lagrange equa-
tion. The constraint resolution is also directly coupled to the dynamics via
the discrete Lagrange D’Alembert principle rather than being a heuristic fix
as in the continuous case.

3.2 Complexity

A common problem with Euler-Lagrange simulations is that the equations
grow too quickly as the system becomes larger (or more complex). Most sim-
ulation methods are therefore based on force balance methods and avoid gener-
alized coordinates. Our recent work [7] discusses a new approach to Lagrangian
simulations that significantly reduces the complexity growth and keeps gen-
eralized coordinates feasible for much larger systems. This approach ensures
through the use of caching in a tree-structure that every transformation is
only computed once, trivially leading to O(n) computation of Eq. (6) for un-
constrained systems (for constrained system one gets O(n + m) to compute
Eqs. (6) and (7) with m constraints). However, most root-solving techniques
require differentiating Eqs. (6) and (7) so that Newton’s Method can be ap-
plied. This entails inverting an nn matrix, which in many cases is also an O(n)
calculation so long as one is careful to take advantage of the group structure.

It is worth noting here that the computational complexity of computing
f(·) in ẋ = f(x, u) is not always the relevant notion of complexity; it assumes
that we are only interested in the complexity of evaluating a single step of
an integrator. Rather, we are typically interested in knowing the complexity
of obtaining a solution that is within some error of the “true” solution to
the equations of motion. We have an example in [7] of a system–the scissor
lift–that scales linearly in terms of computing f(·) but scales exponentially
in terms of computing the correct solution. This point should not be taken
lightly–it implies that one of the main metrics we use for evaluating simulation
techniques is often times off-point. For that example, variational integrators
are substantially more efficient at computing the correct solution even though
they are less efficient at computing Eqs. (6) and (7).

We have implemented these ideas in a freely available, open-source pack-
age called trep2. trep is designed as an easy to use tool for rapid, incremental
development of simulations without sacrificing performance. It provides useful
facilities like compact representations of systems and automatic visualization.
Most importantly, trep is easy to extend with new types of potentials, forces,
and constraints. This allows us, for example, to quickly explore different mus-
cle/tendon representations in a common, structured environment. The ability
to quickly adapt a simulation is critical to a low-dimensional model’s success.

2 http://trep.sourceforge.net
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4 Strand Models of the Hand

We now move on to the use of strand models in a variational context. As
previously mentioned, a simplified but useful model in physiology is to consider
muscle/tendon groups as linear springs. A spring constant, k, is chosen to
reflect the bulk elasticity of the the tendon and muscle tissue. The muscle is
contracted and relaxed by controlling the natural length, x0, of the spring.

For the spring model to be useful for hand models, we must extend it
to handle the routing and sliding needed for extrinsic muscle tendons. We
can think of a muscle/tendon as a strand that connects two points and slides
through intermediate points.

Formally, a strand is defined by a spring constant, k ∈ R, a (possibly time-
varying) natural length x0 ∈ R, and a set of points p1, p2 . . . pN ∈ R3 where
N ≥ 2. The current length of the strand is found by accumulating the linear
distance between adjacent points:

x(q) =
N−1∑
i=1

||pi(q)− pi+1(q)|| (8)

=
N−1∑
i=1

[
(pi(q)− pi+1(q))

T (pi(q)− pi+1(q))
] 1

2

The potential energy of the strand is then:

V (q, t) = 1
2k (x(q)− x0(t))

2
. (9)

As one would expect, one can replace a nonlinear potential with the quadratic
one. trep also requires the derivative of (9) to implement the strand potential.
These are straightforward to calculate by applying chain rule.

∂V

∂q
(q, t) = k (x(q)− x0(t)) ·

∂x

∂q
(q)

The derivative of x(q) is found similarly.

∂x

∂qj
(q) =

N−1∑
i=1

(
1
2

[
(pi(q)− pi+1(q))

T (pi(q)− pi+1(q))
]− 1

2 ·[(
∂pi

∂qj
(q)− ∂pi+1

∂qj
(q)
)T

(pi(q)− pi+1(q))+

(pi(q)− pi+1(q))
T

(
∂pi

∂qj
(q)− ∂pi+1

∂qj
(q)
)])

=
N−1∑
i=1

(pi(q)− pi+1(q))
T
(

∂pi

∂qj
(q)− ∂pi+1

∂qj
(q)
)

||pi(q)− pi+1(q)||
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Fig. 4: A graphical user interface (GUI) makes it easy to integrate new muscle
strands in the model.

There are a number of ways this model can be improved. The most simple
improvement is to use non-linear potentials instead of a linear model. Once a
better potential shape is identified experimentally, it can be used by updating
(9) and (4). The strands should also be extended to include branching and
sliding so that complex tendons like the digit extensors can be modeled cor-
rectly. However, this will require system identification to determine how the
topology should be defined; real tendons do not join at unique locations and
are instead defined by large, somewhat amorphous regions of connection.

5 Model Implementation

The strand model was implemented as a new potential type in trep. We
created a 2D finger model (Sec. 5.1) and a full 3D hand model (Sec. 5.2).
A third model is presented by adding a sphere and holonomic constraints to
simulate grasping contact. Hand dimensions were based on the STL model in
Fig. 1 and the spring constants were chosen to be rather stiff (100-300 N/m) to
represent the stiffness of the tendons. However, careful system identification
using the whole model should be done in the future (along the lines of [16])
to properly calculate the model parameters.

Simulations were developed using Blender3 as a graphical user interface
(GUI). Figure 4 shows a custom plug-in provides convenient ways to define
and modify new strands. Blender was also used to define the desired trajec-
tories and poses. The combination of trep and Blender makes extending and
improving the model easy.

The sources for the hand model can be downloaded from trep’s website
at http://trep.sourceforge.net/examples/hand.html.
3 http://www.blender.org
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5.1 A Finger

A two-dimensional finger is simple compared to a full hand, but also easier
to understand. The model is shown in Fig. 5. We have simplified the extensor
tendon into a simple tendon with one muscle. The model has three degrees of
freedom and four muscle strands.

Fig. 5: The 2D finger model has three degrees of freedom and four muscles/tendon
strands.

The simulation was created by defining a desired trajectory and computing
the corresponding natural lengths for each strand. The dynamic system was
then simulated using these lengths as inputs. The result is a rudimentary con-
trol scheme that does not incorporate feedback. It is intended to demonstrate
the dynamic model rather than accurately simulate hand control.

The model was simulated in trep for 30.0s with a time step of 0.01s. The
simulation took approximately 34s to compute on a 2.2GHz Intel Core2 Duo
processor. The results are shown in Fig. 6.

Fig. 6: The finger was moved through several motions. The strand model was capable
of actuating the finger to follow the trajectory.

The trajectories for the three joint angles are plotted in Fig. 7. For each
of the three motions, the joint angles tend to move in the same direction as a
result of the coupling introduced by the tendons.
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Fig. 7: Joint angles vs. time for a finger simulation. Note how all three angles tend to
move in the same direction whenever there is movement because of coupling between
joint angles.

5.2 Full Hand

We extended the finger to a full hand model. The goal for this model is to
demonstrate that the fingers can be individually actuated when there is no
coupling between muscle groups; coupling and co-activation can always be
added to this model without difficulty because once the tendon topology is
known these simply add stress/strain relationships. Our model has 20 degrees
of freedom along with 23 independently actuated strands. Fig. 8 illustrates
the model.

The most significant simplification is that the extensor tendons have been
divided into several different muscle/tendons.

The model was tested using a hand closure trajectory. The hand begins
with all digits extended. The digits are flexed inwards toward the palm and
then return to their original extended configurations. The simulation is defined
and run in the same manner as the above finger simulation.

The simulation lasts for 10 seconds and uses a time step of 0.001s. A
2.2GHz Intel Core2 Duo Processor completed the simulation in approximately
one hour. Several stages of the simulation are shown in Fig. 9.

The simulation is slow (compared to real-time) because of the small time
steps that are required by large spring constants. However, the correspond-
ing high-frequency oscillations are almost completely absent in the trajec-
tory. This suggests that a stiff elastic tendon model may be inappropriate
for grasping/large-movement simulations. A better model might take mus-
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(a) Joints (b) Palmar Strands (c) Dorsal Strands

Fig. 8: The complete hand model including coupling between fingers.

Fig. 9: This figure shows several stages of the simulation results. (Time advances
left to right, top to bottom)

cle tension as input and use the strand geometry to determine the resulting
forces on the hand. While this has been deferred for future work, the change
is straightforward in trep.

5.3 Grasping Simulation

Finally, we demonstrate the extendibility of the model with a grasping simu-
lation. A sphere was added and brought into contact with the five finger tips.



14 Elliot R. Johnson, Karen Morris, and Todd D. Murphey

Holonomic constraints attach the finger tips to the sphere’s surface, so we
are modeling assuming “infinite” friction between the finger tip surface and
the sphere surface. For this simulation, the natural length of each strand was
fixed and gravity was added. The resulting trajectory is due entirely to the
dynamic interaction between the sphere and hand.

The simulation ran for 10 seconds with a time step of 0.001s. The simu-
lation was completed in approximately one and half hours on a 2.2GHz Intel
Core2 Duo processor. Several stages of the simulation are shown in Fig. 10.

Fig. 10: This figure shows several stages of the simulation results. The simulation
exhibits the expected behavior of the ball settling down as the tendons are stretched.
(Time advances left to right, top to bottom)

Again, the length of time for the simulation could be dramatically reduced
by changing the dynamic model of the strands to avoid the high spring con-
stants and the associated high frequency vibrations that occur in the strands.
This is a focus of future work, but our preliminary work in this area suggests
that in addition to using strand tension as an input, treating the strands as
kinematic variables (while leaving the rest of the hand dynamic) results in
between one and two orders of magnitude faster calculation.

6 Conclusions and Future Work

We have developed a strand-based model of the hand that simulates the com-
plete hand. The model is based on variational integrators which provide ex-
cellent behavior with constraints, coupling, and closed kinematic chains and
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fixes the numerical dissipation issues that the hand model in [20] exhibits.
The variational integrators also simulate the system directly in generalized
coordinates.

This work represents only the first steps towards accurate hand models
for manipulation tasks. The next step in modeling is to design more advanced
tendon models that are capable of branching, sliding, and becoming slack.

The simulation environment also needs to be extended to handle elastic
impacts, plastic impacts, and nonholonomic constraints. Relevant theoretical
work has already been done [3] and variational integrators are known to handle
these well. trep is currently being improved in this direction.

Better models of friction, including stick/slip phenomenon are also needed.
This is an active research area in the dynamics community. The progress there
is expected to work well in the variational integrator setting.

A hand model can only be as accurate as the parameters used to design
it. System identification experiments are needed to collect empirical data and
characterize the hand [16]. This includes measuring properties like elasticity
or damping, and improving abstract representations like spring networks for
the extensor tendons.

Lastly, this paper does not address control for manipulation. Future
work in this direction includes automating the calculation of Jacobians for
torque/force calculation and linearization of the dynamics for feedback con-
trol design (including optimal control).
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