Second-order optimal estimation of slip state for a simple slip-steered
vehicle

T. M. Caldwell and T. D. Murphey

Abstract— We present a method to optimally estimate when
a slip state transition occurs for a slip-steered vehicle. A
slip-steered vehicle’s contact state with the ground must slip
sideways in order for the vehicle to turn. This slipping generates
uncertainties for an autonomous controller. These uncertainties
can be be reduced if an estimate of when the vehicle switches
between slipping and sticking is provided to the controller.

We present an estimator that optimally determines when
a switch between slipping and sticking occurs by compar-
ing simulations of the slip-steered vehicle with its measured
configurations. We demonstrate that steepest descent-based
optimization has slow convergence and show how this issue can
be rectified by using Newton’s Method. The paper concludes
with the introduction of an algorithm that uses second-order
optimization in a manner that is appropriate for online imple-
mentation.

I. INTRODUCTION

A slip-steered (or skid-steered) vehicle’s wheels must slip
sideways in order for the vehicle to turn. Slipping introduces
error when odometry is used to dead-reckon the vehicle’s
position and orientation. In [3] this is addressed by putting
constraints on the vehicle’s instantaneous center of mass
to minimize the slipping error. In [8], a model is created
where the parameters are decided on after an extensive
characterization of the terrain. In [1], Kalman filters are
used to minimize the uncertainty caused by unknown ground
characteristics. However, it is not clear that a stochastic
method intended for linear, or at least smooth, systems is
appropriate for these nonsmooth systems.

We propose a method that assigns to each slip state (i.e.,
all wheels sticking, all wheels slipping, front wheels sticking
with back wheels slipping, and front wheels slipping with
back wheels sticking) its own dynamic model. An estimation
process determines when a switch occurs so the controller
can handle these abrupt transitions in the physical system.
The purpose of this paper is to provide such an estimator.

The estimator finds optimal switching times by minimizing
a cost function of the error between the measured config-
uration trajectories of the physical system and the simu-
lated trajectories found by integrating forward the piecewise
equations of motion that are “pieced” together at guessed
switching times T = {T1,7T5,...,Tn—1}. This approach
does not rely on guessing the coefficients of friction needed
for predicting stick/slip transitions, but instead relies only on
the system’s configuration data. We expect this approach to

This work was supported by the National Science Foundation under
CAREER award CMS-0546430

The authors are in the Department Electrical and Computer Engi-
neering, University of Colorado at Boulder, Boulder, CO 80309, USA
{timothy.caldwell, murphey}@colorado.edu

be less sensitive to uncertain ground friction characteristics
than other approaches because it does not rely on explic-
itly characterizing stick/slip transitions in terms of surface
properties.

It is natural to ask why numerical optimization tools have
not been used to estimate stick/slip transitions before; we
believe this is related to the slow convergence often observed
in the application of first-order optimization. This is a key
issue addressed in the present work, and we demonstrate that
the second-order methods provide fast convergence suitable
for real-time implementation.

This paper is organized as follows: Section II describes the
Slip-Steered Vehicle and its dynamics for different slip states.
Section III introduces optimization using steepest descent
of a switched autonomous system by deriving the gradient
of a cost function with respect to the switching times.
Section III also provides a first-order iterative algorithm for
finding optimal switching time estimates. Section IV presents
an example of applying the estimator to a simulated slip-
steered vehicle. The example illustrates that the first-order
algorithm described in Section III converges slowly and we
discuss why that is to be expected. This motivates the use
of Newton’s Method explained in Section V and applied to
the example. Lastly, Section VI discusses a second-order
algorithm appropriate for online implementation. We end
with conclusions and future research directions in Section
VIIL

II. THE SLIP-STEERED VEHICLE

Fig. 1. The “Flexy Flyer”. The author’s slip-steered vehicle for testing

Our example slip-steered vehicle, pictured in Fig 1, is
composed of four wheels supporting a body. The wheels

are locked in position and can only rotate. The vehicle
is differentially driven by applying different torques to the
wheels on the left and right sides of the vehicle. In order to
turn, the difference between the torques must be large enough
to break the sideways static friction between the wheels and
ground. A zero-point turn is accomplished by applying equal
but opposite torques to the right and left wheels when the
vehicle is at rest.

The representation of the slip-steered vehicle is the
same as in [6]. The configuration is composed of ¢ =
(,y,0, 1, P2, P3, P4). The Cartesian coordinates, x and y
specify the center of geometry relative to the world frame.
The orientation, 6, is the heading of the vehicle where 6
increases counter-clockwise and # = 0 is when the heading
is aligned with the x-axis of the world frame. The angle
of rotation of each wheel respectively is ¢1, @2, @3, @4. The
sub-script, 1, refers to the front left wheel and 2, 3, and 4
are ordered clockwise from wheel 1 as shown in Fig 2.

“)

y

W
h Y
W X

()

Fig. 2. Slip-steered vehicle with frame at its center of geometry.

The contact between the ground and wheels of the slip-
steered vehicle at any time can be in one of four possible
states. The combinations of whether the front and back
wheels are sticking (i.e. constrained) or slipping (i.e. uncon-
strained) with the ground compose the states o.

1: Front and back wheels constrained

2 : Front wheels constrained; back wheels not
constrained

3 : Front wheels not constrained; back wheels
constrained

4 : Front and back wheels not constrained

As in [6], it is desirable to simplify the representation of
the vehicle to a configuration of ¢ = (z,y,). We’ll call this
reduced model the “Simplified Model” and the model that
accounts for the wheel rotations (and associated inertias) as
the “Full Model”. This simplified model of the vehicle is a

reduction of the full model at the cost of losing the impact
of the rotational inertia of the wheels. This loss is negligible
if the mass of the wheels is much less than the mass of the
rest of the vehicle.

The inputs to the Full Model are torques on the wheels.
Because the Simplified Model has no wheels, the inputs are
transformed forces (i.e., using the Ad(-) operator [7]) to the
center of mass of the vehicle. The inertia tensor for the
Simplified Vehicle is G = mdx @ dx+mdy@dy+ Jdo ® do,
where m is the mass of the vehicle and J is the moment of
inertia around the vehicle’s center of mass.

The Euler Lagrange Equations are used to find the equa-
tions of motion for each slip state. Depending on the value
of o, the proper nonholonomic constraints are enforced.

The equations of motion for ¢ = 1 and ¢ = 4 are
shown. Although we also compute the equations for o = 2, 3,
we do not reproduce them here because of their algebraic
complexity.

i = (F1+F2+F3+4Fy) cos 6(t)
mp+4m., .
—sin 0(¢)[cos O(¢)x(t) + sin 0(¢)y(¢)]0(t)
oc=1 s (Pt Fot Fa+Fy)sin0(t)
y= mp+4m.,)
) + cos 0(t)[cos O(t)&(t) + sin O(¢)y(t)]0(t)
0= 0
1
5 — (It FotFstFy)cosb(t)
mptdm, . .
+gpr sin0(t)[—sin 0(t)@(t) + cos 0(¢)y(t)]
_ . (P14 Fo+F3+Fy)sin6(t)
o=4 y= mp+4m.,
—gpx cos O(t)[—sin O(t)d(t) + cos O(¢)y(t)]
j — 12b(F1—F2—F3+F4)+12a*g(mp+4m) ur §(t)

4my, (12a2412b24w?

w

+302)Fmp (B+B2)

where mp is the mass of the body, m,, is the mass of a
wheel, g is gravity, ux is the coefficient of kinetic friction
and F1y, Fy, F3 and Fy are the respective input forces at the
“wheels” that are transformed to the center of mass. The
coefficient of kinetic friction shows up in the equations of
motion when o = 4 because there will be damping in the
system when the wheels are slipping.

III. FINDING SWITCHING TIMES USING STEEPEST
DESCENT

Steepest descent is a common approach in numerical opti-
mization. It can be investigated further in [5]. The approach
is an iterative one that uses the gradient of a cost function
to descend to a local minimum.

We will use steepest descent to optimize the switching
times of the switched autonomous system described by

x(Ty) =
{x’(t)ofi(;(t)), te (T, T), i=1,....N &

where x € R”, f; is the ith function of a finite sequence of
continuously differentiable functions from R™ to R", xg is
the initial state, T; € T, the set of switching times, where
To<Th <Ty <...< Ty, Ty is the initial time and T is
the end time. The optimal switching times are denoted 7.

The cost function that is to be minimized is: Now let us expand J4 (7).

TN
J:/ L(z(t))dt 4) N T
n nred) = Y[e
where L(z(t)) is a continuously differentiable function from k=1,k#i,i—1" Tk—1
R™ to R. Often L(z(t)) is a norm. If the state is to be Titebs Tinn
compared to some trajectory (i.e., measured data), the cost +/T) Ai(n(t))dt + /T-+59‘ A1 (n(t))dt
function may be changed to N th o
Ty = Ap(n(t))dt
J :/ L(x(t), h(t))dt 5) kZ:l Ty
To Ti+eb Ti+eb
where h(t) is the measured trajectory. If L(xz(t),h(t)) is —/ Ai(n(t))dt'f‘/ A1 (n(t))dt
chosen as ||z(t) — h(t)||, then J is the total integrated error N . :
from time Tp to Ty. * oL
The gradient is the direction of steepest descent in the B ; /Tk L A(0) + Ox (@(®)en(t)

vector space of switching times. The gradient is composed

of the set of partials of the cost function with respect to the + At)[af]c (x(t))en(t) — en(t)]} dt
switching times. - Jﬁf
(910 o) [O e ele) — iGel)
VJ_(6T1’6T27“.’8TN_1) (6) T;
+0(e)] dt

The gradient is derived from Eq. 4 using calculus of vari- N
ations. Although the derivation can be found in [4], we Ja(T) + ¢ / % [8L (())n(t)
recreate it here because the calculation is reasonably short Oz

k=17Tk-1
and provides insight into how one calculates steepest descent of
iterations for optimally estimating switching times. + A(?) <8:E(I)n(t) — U(t)))] dt
In order to do steepest descent, we wish to calculate g—TJ
Start with the definition of a derivative in the direction 0;: +ef; M) (fisr (2(1) — fi(@(0)] g
. c0:)— , +0(é?
g—éai:lg%w i=1,2,...,N—1 (7 (%)

where T + 691‘ = (Tl, SR aTi—laTi + 601',Ti+17 SN 7TN—1)

and € << 1. Infinitesimally altering the T} switching time Conduct integration by parts on 622\,:1 fTTA " A()n(t)dt and
causes a slight variation of the state trajectory such that pull 7(¢) out for the summed integral expression.

x(t) — xz(t) + en(t) where 7 is the variation and en is an

infinitesimal variation. N o Tk 1oL
A Lagrange Multiplier A is used to constrain the cost Ja(T +eb;) = Ja(T)+e / [6):17<x(t))
function to the trajectories defined by Eq. 3. The augmented 5 k=1 T
cost function, +)\(ﬁ)j(aj(t)) + /\(t):| n(t)dt
N .1 Ox
AT =3 [L) A el ~ 0]t ®)
=1 Tk-1 B Z Tk 1

adjoins the Lagrangian and the constraints such that J4(7')
is minimized when the constraints are satisfied. That is,
minimizing J4(7T) minimizes J(7T') while satisfying the
constraints.

Now, for notational reasons, let

+69A(D fiv1(2(T3)) = fi(a(T2))] + O(€?)

Choose the Lagrangian Multipliers, A, so that the solution
does not depend on the 7 terms. In other words, the solution
holds for all choices of 7. With A defined as

Ag(n(t)) = Lz (@) +en())+A@) [fr (2 () +en(t)) =i () —en(t)].

Therefore, — () — (33() — ()

Ja(T) =" Ar(0)dt. € (T;-1,Ty),
k=1"Tk—1

a(t)) €)
1,...,N

then
Taylor expand Ay (n(t)) around (¢

)
La(t) + en(t)) and fi(x(t) + en(t)) around w(t): Ta(T+e0;) = Ja(T)+ebNT) fisr ((T3) — fil(T3)]+0(e)
n(t) +

Ar(n(t)) = L(x(t)) + G (x(t))e A@) [Fr(x(t)+
e (2(t))en(t) — @(t) — en(t)] + O(e?) Plug J4(T) and Ja(T + €f;) into the derivative equation,

by Taylor expanding

Eq. 7:

ay

S0 = I LA(T) + AT s (2(T)) — filw(T)]

e—0

—J(T)] /e
0:NT) [firr (x(T7)) — fix(T3))]

Therefore, the system described by Eq. 3 with cost function
Eq. 4 has direction of steepest descent in the direction of the
gradient with components

aJ
oT;

= MT)[fir1(2(T3)) — fi(2x(T3))] (10)

where A satisfies the backward differential equation in Eq.
9.

Using the gradient equations, an iterative algorithm for
finding the optimal switching times is shown in Algorithm
1.

Algorithm 1: Steepest Descent

Start with some initial guess 7.
Compute the state (¢) forward in time
for T from T to T from Eq. 3.
Compute the co-state \(¢) backward in
time for T from T to Tp from Eq. 9.
Compute the gradient V.J with com-
ponents from Eq. 10.

Update T by taking a step in the di-
rection of the gradient: T =T —~V.J
where v is the Armijo step size (see
2D). B
Repeat steps 2 through 5 for new T'
until convergence criteria is met.

Y
2)

3)
4)

5)

0)

IV. EXAMPLE OF APPLYING ESTIMATOR TO A

SLIP-STEERED VEHICLE

A simple example is shown to demonstrate applying
Algorithm 1 to estimate the switching times of a slip-steered
vehicle that transitions from ¢ = 1 (all wheels slipping
constrained) to ¢ = 4 (no wheels slipping constrained) and
back to 0 = 1. These are by far the most common-see [6].
Note that all simulations were done in Mathematica.

The Simple Model of the slip-steered vehicle is used to
both simulate the “measured” trajectories and as the model
used by the estimator. With this setup, the Cost function
evaluates to 0 when the optimal switching times are found
because the estimator’s system model is perfect. For the
example, h(t) is composed of the position and orientation
trajectories as well as positional velocity and orientation
velocity trajectories.

The initial state is 2(0) = 0. The input forces used in the

simulation are

180] (forward) ,0<t<?2
Uleft o 255
[e] = _955 (turn) ,2<t<4
£ (forward) ,4<t<6
75 ’

1D

where 1 = Fy = wep and Fo = F3 = uUpijgns. The
difference between the left and right forces for the first two
seconds is not large enough to break out of state ¢ = 1 so
the vehicle goes straight. We chose not to have wu;.s; and
Uright 10 be equal initially because with a zero initial state
and equal forces on all wheels, the dynamics of ¢ = 1 and
o = 4 are equivalent. This adds an extra complexity to the
estimation and distracts from the purpose of the example.

These input forces result with simulated switching times
of T* = (2.00,4.17) seconds.

For the example, the cost function was chosen to be

Tn
A
where x(t) is the state calculated from integrating the Sim-
plified Model’s equations of motion for switching times 7.
Therefore, the cost function is the norm squared of the error
between z(t) and h(t).

Fig 3 shows a contour plot of the cost function for the

first switching time 7} versus the second switching time 75
centered around 7.

J(T) l=(t) — h(t)]|*dt

Fig. 3. Contour plot of cost versus switching times (77, 7%) where T* =
(2.00,4.17) seconds.

Algorithm 1 is used to find the optimal switching times
starting from 7' = (1.6,4.2) seconds. The initial guess for
T, is very close to 7. We did this because later on it will be
important for the initial guess to be in the basin of attraction
of T and it also still illustrate the downfall of steepest
descent.

Armijo step size, introduced in [2], is used to compute
the the step size . The Armijo parameters « and 3 were

chosen to both be 0.4. The convergence criteria is met if the
L5 norm of the gradient is less than the tolerance 0.003. The
results of using Algorithm 1 are shown in Fig 4.

0 50 100 150 200 250 300
Iteration &

Fig. 4. Convergence of Tq and T to T* = (2.00,4.17) seconds using
Algorithm 1. The algorithm converges to 7 in 304 iterations

The algorithm converged correctly to T* but it took 304
iterations of the algorithm to meet the convergence criteria of
0.003. This is due to lopsided behavior between the gradient
in the 75 direction compared to the 7} direction. This can
be seen in the contour plot of the cost where a “banana”
shape is formed due to poor scaling of the cost function.
This problem is discussed in [5]. To further illustrate this,
the gradient field is plotted in Fig 5 and a “zoomed in” plot
is shown in Fig 6.

4.4
r 4 r r r r 4 - ~ P - - A A
14 14 r r r 4 e # * » - - -
|2 S B S S A R
4.3 YooY Y Y Y Y ¥ ¥ ¥ ¥ FF
v v 4 14 ¥ LA S S Y S S S 4
L A A A A Y N Y A A s
Sr A A A A
{ 4 4 ¢ v U o Ty
’ 4 4 4 A A A A - » ¥ J '/
r T T f T T /‘ f o y =
uWHH[HHH
T A A /‘ f
» A A
bbb ¥)
A () i i "
s O S WA A T Vo2
T1
Fig. 5. Plot of the gradient field showing lopsided behavior of the

gradient. The optimal switching times are 7* = (2.00,4.17) seconds and
is designated with a circle.

Slow convergence, as seen in this example, would make it
difficult to realize this estimator in real-time. The next section

1
T
S “““‘71:’?44// &
4m}};§}??’%&77?;?314444
R 1.96 1.98 Zﬂ{ / / /ZIJZ f ’r ?2?)4;’ |

of the gradient near the converged switching times. The optimal switching
times are 7* = (2.00,4.17) seconds and is designated with a circle.

looks at using Newton’s Method to find the switching times.
Newton’s Method doesn’t have the same scaling problems as
Steepest Descent and therefore has a greatly increased rate
of convergence to the optimal switching times.

V. NEWTON’S METHOD AND EXAMPLE CONTINUED

Newton’s Method for finding switching times is investi-
gated. The example started in Section IV is continued to
show that Newton’s Method does not suffer from the same
slow convergence of Steepest Descent.

Newton’s Method is an iterative method that converges
to some local minimizer like Steepest Descent. Newton’s
Method though, does not have scaling problems like Steepest
Descent and converges rapidly if the initial guess is within
the local convergence of 7™ (see [5]). Newton’s Method is:

= T" —y(V2J(T*) 'V (T (12)

where T* is the kth iteration, V.J(T"*) is the gradient of the
cost function, and V2.J is the Hessian of the cost function
with V2.J = HessgJ. It is defined as:

Tk+1

r o 9%J 8%J 8%J b
oT? T 0Ty ° OT10Tn_1
8%J 8%J 8%J
T2 0T T2 : OT20TN _1
HesspJ =
9%J 8%J 9%J
| 0InO0Ty 0INOT: =~ = ory |, |
(13)
A few notes:

o The Hessian must be positive definite to guarantee
Newton’s Method is stepping in a descending direction
(J(T**+1) < J(T*) Vk). It is often beneficial to evaluate
a couple iterations of steepest descent before using
Newton’s Method because steepest descent tends to
perform well globally while Newton’s Method performs
better near a minimizer. (see [5])

o The steepest descent direction is a special case of
Newton’s Method when the Hessian is the identity I .

o The Hessian is symmetric because mixed partials com-
mute.

We would prefer to have a formula for finding the Hessian
similar to the gradient in Eq.(10). For now, the second

partials will be calculated numerically to show why one
would want to use Newton’s Method. We have made progress
on this front, but the functional analysis for this problem is
both unnecessary for this application and is beyond the scope
of the present paper.

Because the first partials can already be calculated from
Egs. 9 and 10, the second partials are numerically calculated
using these equations.

Therefore,
aJ aJ
P, D)
9%y € :
oT;0T; — %(T) 7%(T) Z?.]_la"'aN
J T, =T;+e¢ J
‘ (14)

are the approximate elements of the Hessian when € << 1.
This leads us to an iterative algorithm for applying Newton’s
Method.

Algorithm 2: Newton’s Method

1) Start with some initial guess 7.

2) Compute the state z(t) forward in time
for T from T to T from Eq. 3.

3) Compute the co-state A(¢) backward in
time for T from T to Tp from Eq. 9.

4) Compute the gradient V.J with com-
ponents from Eq. 10.

5) Compute the Hessian V2.J from Eg.
13 with elements from Eq. 14 and
insure the Hessian is positive definite.

6) Update T by taking a step: T =
T —~v(V2J(T))"*VJ(T), where 7 is
the Armijo step size (see [2]).

7) Repeat steps 2 through 6 for new T
until convergence criteria is met.

Continuing with the example from Section IV, Algorithm
2 is applied to find the optimal switching times. Again, our
initial guess is T = (1.6,4.2) seconds. As stated earlier,
T, is almost a perfect guess for 7. Right now we choose
something in the basin of attraction or 7 because the Hes-
sian for Newton’s Method must be positive definite. Later we
will see that a combination of steepest descent and Newton’s
Method allows us to efficiently estimate the switching times
in a manner appropriate for online implementation

As in the earlier example, we used the Armijo step size
with parameters o = 3 = 0.4 and used a tolerance of 0.003
for the convergence criteria. We also chose ¢ for calculating
the Hessian to be 0.0001. The results of using Algorithm 2
are shown in Fig 7.

Algorithm 2 converges to T* = (2.00,4.17) seconds in
five iterations. This is a great increase in convergence speed
compared to the 304 iterations from Algorithm 2. It took 12.4
seconds for Mathematica to realize this result. Mathematica
is a rather slow platform when compared to an embedded
one. We expect an embedded implementation will be able to
run Algorithm 2 in real-time.

Iteration H

Fig. 7. Plot of the convergence of T and T> to T* = (2.00,4.17) using
Algorithm 2. Newton’s Method converges in 5 iterations compared to the
304 iterations using Steepest Descent.

To help illustrate why Algorithm 2 converged so quickly,
the vector field composed of (V2J(T))~*VJ(T) is shown
in Fig 8. Fig 8 clearly shows the vector field aimed at the
optimal switching times. This is made more obvious when
compared to the gradient vector field shown in Fig 6.

+H\\

¥
FoF KKK KA
-

- A e 4 s a—]

419 TS \\\\ \

i s Tl

L B R N S N T |

-
Y W o«

o o = o= & A& &Y

A
A

- - - -

g.l,]'[—»—»—»—»h»* - = > » @ =

- -]

e et R I I L I S » ¥ @ =
416" T o o F v 4 R Y Y R T e
> v v ¥ o4 | [S R R S S e i
415 S A I P A AU S . A B U V. . . Y. .
1.96 1.98 2.00 2.02 2.04
T1
Fig. 8. Vector field computed from (V2J(T))~'VJ(T). Vector field

clearly converges to an obvious switching time, 7*. The optimal switching
times are 7* = (2.00,4.17) seconds and is designated with a circle.

A. Estimation for the Full Model of the Slip-Steered Vehicle

Another example was conducted that used the Full Model
of the slip-steered vehicle from Section II to generate the
actual trajectories h(t). All the same parameters were used
including the input forces. Algorithms 1 and 2 were applied
using the Simple Model. Estimating switching times with
the Simple Model on trajectories found from the Full Model
adds error from model disturbance.

The algorithms had similar results to the earlier, simpler
example. It took 156 iterations of Steepest Descent to
converge and 5 iterations of Newton’s Method to converge.
Instead of converging perfectly to 7, the Algorithms con-
verged slightly off to (1.957,4.183). Hence, the additional
complexity of the Full Model did not cause the estimation
algorithm to fail.

VI. WINDOWED OPTIMIZATION FOR ONLINE
IMPLEMENTATION

A controller should know when the system’s state switches
as soon as possible after it occurs. We propose a way to do
an online implementation. The algorithm is applied to the
Simple Model from Section II.

The difficulty with determining the timing of a switch soon
after it occurs is that sufficient error must accumulate before
the estimator can converge to the correct time. Error develops
when the actual trajectories and the modeled trajectories
differ because the modeled trajectories are in the wrong state
for some period of time.

The presented algorithm finds one switching time per
timestep. A sliding time window is used to reduce the numer-
ical integration required for each iteration. The window is of
constant length except when a switching time is found, when
the window’s left bound is moved to the found switching
time. The window’s right bound is always the current time.

The initial guess for T is halfway between the left and
right bounds of the window. Each iteration estimates a
switching time by performing a couple iterations of Steepest
Descent (Algorithm 1) followed by executing Newton’s
Method (Algorithm 2) until convergence. A switching time is
found when the estimated switching times from consecutive
iterations are within some tolerance of each other.

The algorithm uses the following constants:

o STEPSIZE = desired iteration step size

« WINDOWSIZE = desired window size

o« BNDRY _TOL = the closest an estimated switching time
can be to the edges of the window before being rejected

e SW_VERIFY_TOL = the maximum time between con-
secutive estimated switching times to be deemed a
switching time

and the following variables at initial time:

(current state)
(next state)
(current time)

e Oy = initial state
e Opnert = second state
o Ty, = Ty+STEPSIZE

o T, =1 (left time bound of window)
o Threw =1T1p (time of previous switch)
o Thoss =0 (possible switching time)

The algorithm is shown as pseudo-code for clarity.

(Pseudo) Algorithm 3: Online Implementation

while T, < T
T, = T,—WINDOWSIZE,;
if Ty < Tyreos
T, =
end if

T = (Ta + Tb)/Qa

T = Perform 3 iterations of Steepest Descent
using Algorithm 1 with initial guess T;

T = Perform Newton’s Method from Algorithm
2 with T until convergence to find estimated
switching time;

if T,+BNDRY_TOL< T < T;,—BNDRY_TOL
and (Hessians from Algorithm 2 are Positive
Definite),

if [T — Tpposs| <SW_VERIFY_TOL,
T is a switching time;

prevs

Ocur = Onext>
onext = the next expected state;
j%oss =0
else
ILOSS = j;;
end if
else
j}oss =0
end if
T, = T,+STEPSIZE;
end while

We applied Algorithm 3 to an example using the Simpli-
fied Model of the slip-steered vehicle from Section II. We
chose inputs that resulted in the following eight switching
times

T =(0.5,1.3,1.9,2.2,4.0,4.7,6.5,8.0)
with contact states
o=1(1,4,1,4,1,4,1,4,1)

We used an iteration step size of STEPSIZE = 0.1s, a
window size of WINDOWSIZE = 2s, and tolerances of
BNDRY_TOL = 0.05s and SW_VERIFY_TOL = 0.01s.
Algorithm 3 resulted in correctly estimating every switch-
ing time 0.2 seconds after the switch occurred except for
the second and sixth switching times which were correctly
estimated 0.5 seconds after their respective switches.

VII. FUTURE WORK AND CONCLUSIONS

We presented an optimal estimator that estimates the slip
state switching times of a slip-steered vehicle. A simple
example to demonstrate how to use the estimator on a slip-
steered vehicle had promising results with fast convergence
when using Newton’s Method. While there is much future
work, the presented estimator is a good initial step to
properly autonomously controlling systems with multiple
states like the slip-steered vehicle.

There is much future research to do. An extensive inves-
tigation must be conducted to see how well the estimator

rejects disturbances such as noise and modeling errors. A
derivation of an analytical formula for the Hessian of the cost
function used for Newton’s Method needs to be done This
should reduce error from numerically calculating the second
partial derivatives. An intelligent approach should be found
for dealing with systems that have multiple states and the
order of the states are not known. Also, the estimator needs
to be made real-time and placed on an embedded platform
for testing on the vehicle in Fig 1.

(1]

[2]
(3]

(4]

[3]
(6]
(71
(8]

REFERENCES

Georgia Anousaki and K. J. Kyriakopoulos. A dead-reckoning scheme
for skid-steered vehicles in outdoor environments. International Con-

ference on Robotics and Automation, 2004.

L. Armijo. Minimization of functions having lipschitz continuous first-
partial derivatives. Pacific Journal of Mathematics, 1966.

Luca Caracciolo, Alessandro De Luca, and Stefano Iannitti. Trajectory
tracking control of a four-wheel differentially driven mobile robot.
International Conference on Robotics and Automation, 1999.

Florent C. Delmotte. Multi-Modal Control: From Motion Description
Languages to Optimal Control. PhD thesis, Georgia Institute of
Technology, 2006.

C.T. Kelley. Iterative Methods for Optimization. Society for Industrial
and Applied Mathematics, 1999.

Todd D. Murphey. Kinematic reductions for uncertain mechanical
contact. Robotica, 2007.

R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

T. H. Tran, N. M. Kwok, S. Scheding, and Q. P. Ha. Dynamic modelling
of wheel-terrain interaction of a ugv. IEEE Conference on Automation
Science and Engineering, 2007.

