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Abstract— We present a method to automatically morph
trajectories from one mechanical system into trajectories of
another system with potentially very different dynamics. Our
method relies on a mapping from the source system’s con-
figuration space to that of the target system to create a
desired trajectory for the target system. A projection operator-
based trajectory optimization finds a dynamically-admissible
trajectory for the target system that approximates the desired
trajectory. The optimization algorithm is extremely robust and
often finds a satisfactory trajectory even for highly nonlinear
systems with instabilities, uncontrollable modes, or closed
kinematic loops. This robustness simplifies the mapping step
by essentially allowing us to ignore the target’s dynamics and
focus on the purpose of the trajectory.

We demonstrate the process using a marionette as an
example. The marionette has complex dynamics, uncontrollable
modes, and closed kinematic chains. The trajectory morphing
process allows us to specify trajectories for the puppet using
human motion capture or animation tools without considering
the actual abilities of the puppet.

I. INTRODUCTION

We present a method for automatically morphing trajecto-
ries from one mechanical system into trajectories of another
system with potentially very different dynamics. Our method
relies on a mapping from the source system’s configuration
space to that of the target system to create a desired trajectory
for the target system. A projection operator-based trajectory
optimization finds a dynamically-admissible trajectory for
the target system that approximates the desired trajectory.
The optimization algorithm is extremely robust and often
finds a satisfactory trajectory even for highly nonlinear
systems with instabilities, uncontrollable modes, or closed
kinematic loops. This robustness simplifies the mapping step
by essentially allowing us to ignore the target’s dynamics
and focus on other important aspects of the trajectory like
expressiveness or obstacle avoidance.

Generating trajectories for complex dynamic systems like
a human robot or automated marionette is a difficult problem.
The designer must balance their effort between developing
rich, expressive movements and staying within the capabili-
ties of the system.

The most straightforward approach to this problem is to
decouple the two requirements. First, a trajectory is created
without regard to dynamics. This enables us to use any
convenient method to create a trajectory: hand animation,

motion capture, etc. Once a trajectory is created, the system
dynamics are considered to find a dynamically admissible
trajectory that best approximates the original trajectory.

Generalizing this idea further, the desired trajectory can
even be specified for a different system. It would be easier to
use motion capture data from a human, for example, than to
capture data from a marionette. If there is a suitable mapping
from the configuration space of the source system to that of
the target system, the trajectory can be mapped to the target
system even if the result is not dynamically admissible.

The term trajectory has different meanings throughout
this paper. In general, atrajectory is a set of continuous
curves representing the states and inputs to a system over
a time interval[t0, tf ]. In this usage, a trajectory may or
may not satisfy the dynamics of the system. Anadmissible
trajectoryalways satisfies the system dynamics. The set of all
admissible trajectories of a system is denoted byT . Thus,
ξ = (x(·), u(·)) is an admissible trajectory if and only if
ẋ(τ) = f(τ, x(τ), u(τ)) ∀ τ ∈ [t0, tf ].

The trajectory morphing process has two major compo-
nents: a map between the configuration spaces of the two
systems and a trajectory optimization. The map is created
by hand and maps configurations of the source system to the
target system. The map ignores the dynamics of both systems
and the trajectories produced are unlikely to be dynamically
admissible. The trajectory optimization, on the other hand,
considers the dynamics.

We use a projection-operator based approach to trajectory
optimization [3]. It searches the trajectory space of the target
system for an admissible trajectory that best resembles the
desired one. The returned trajectory is always admissible,
even if the system dynamics are nonlinear, uncontrollable,
or unstable.

The projection operator approach uses a novel modifi-
cation. Instead of a constrained search in the admissible
trajectory space of the system, it performs an unconstrained
search in the larger general trajectory space and uses a
projection operator to project trajectories into admissible tra-
jectories. In this setting, the search is roughly analogous to an
optimization in finite dimensions using an iterative gradient
descent method. At each iteration, a new descent direction
is found by solving a linear optimal control problem. An
Armijo search is performed in the descent direction until it



finds a new trajectory that improves the current score. The
new trajectory is projected back into the admissible trajectory
space, and the process is repeated. We will discuss the
trajectory optimization in more detail later.

The overall morphing process is relatively automatic and
robust. Once the mapping exists and the trajectory optimiza-
tion has been properly configured, new trajectories can be
morphed without any modifications.

We will discuss a simple marionette system as an example
application of trajectory morphing. Trajectory morphing is
exceptionally well matched to the marionette problem. The
desired trajectories are often complex, expressive move-
ments, but the dynamics are too complex to consider while
designing trajectories. There are uncontrollable modes. In ad-
dition, the closed kinematic chains created by the marionette
strings give the configuration manifold an unusual shape.
In practice, the configuration is represented as a set of real
numbers to numerically simulate the system. The irregular
shape of the manifold leads to large, irregular pockets in
this simulated configuration space that must be avoided.
The trajectory morphing process works despite these issues.
Trajectories are specified for a simple human model using
hand animation or motion capture; methods that can easily
capture complex and expressive trajectories. The trajectories
are mapped to the puppet using a straightforward map which
will be described later. The trajectory optimization works
within the controllable subspace and admissible configura-
tions to find dynamically correct trajectories that resemble
the original desired plan. The trajectory optimization even
finds the inputs that correspond to the admissible trajectory.
In this sense, the optimization also acts as a model inversion
tool to find the input for a desired output. This is a nontrivial
problem for a complex mechanical system.

II. T RAJECTORYOPTIMIZATION

In trajectory optimization, we have some desired trajectory
ξd = (xd(·), ud(·)) that may or may not satisfy the system
dynamics. We want to find an admissible trajectory that is
similar to the desired. This is a constrained optimization
problem defined by (1):

argmin
ξ∈T

h(ξ) =
∫ tf

to

l(τ, x(τ), u(τ))dτ + m(x(T )) (1)

whereξ = (x(·), u(·)) and l(. . . ) andm(. . . ) are incremen-
tal and terminal cost functions. The standard cost functions
are shown in (2).

l(τ, x, u) =(x− xd(τ))T Q(x− xd(τ))

+ (u− ud(τ))T R(u− ud(τ))
(2a)

m(xf ) = (xf − xd(tf ))T P1(xf − xd(tf )) (2b)

where Q(·), R(·), and P1 are positive definite matrices
that weight the errors between the some trajectory and the
desired.

Because solutions to (1) need to be constrained by the
system’s dynamics, a standard gradient-descent approach will
not work. If we found a descent direction and adjusted the

current trajectory with it, the result would not be dynamically
admissible. However, the constrained optimization can be
converted to an unconstrained problem by introducing the
projection operator.

Suppose there exists a projection operatorP(ξ) that maps
potential trajectories to admissible ones. We repose the origi-
nal problem by defining a new cost functiong(ξ) = h(P(ξ))
to get the unconstrained optimization in (3).

argmin
ξ

g(ξ) = h(P(ξ)) (3)

If ξ locally minimizes (3), then the projected trajectory
η = P(ξ) locally minimizes (1), solving the original
problem. The search is still over an infinite dimensional
space, but we can now choose descent directions and
new trajectories without satisfying the complex, nonlinear
dynamics of the system. Using a typical algorithm for
unconstrained optimization in finite dimensions as a guide,
we can design an algorithm to solve (3).

Trajectory Optimization Algorithm

Given an initial admissible trajectoryη0:
For i = 0, 1, 2, . . . :

1) Create a projection operator aroundηi.
2) Find a descent direction:

ζi = argmin
ζ

Dg(ηi) ◦ ζ + 1
2q(ζ, ζ) (4)

3) If Dg(ηi) ◦ ζ = 0, stop.
4) Find a step giving a sufficient decrease:

γi = argmin
γ

g(ηi + γζi) (5)

5) Advance Step:

ηi+1 = P(ηi + γiζi) (6)

From this perspective, the algorithm is relatively
straightforward. First, a projection operator is designed for
each new trajectory so that we can avoid requiring projection
operators to be globally valid and instead just ask that they
work in some neighborhood around a trajectory. Next we
find a descent directionζ that gives the biggest decrease in
cost based on a quadratic model of the cost function. If no
direction gives a decrease, the current trajectory is a local
minimum. Otherwise, the descent direction is used to find a
new trajectory with a lower cost. It is unlikely thatηi + γiζi

is admissible, so the trajectory is projected back into the
trajectory manifold.

A. Projection Operator

The projection operator,P(ξ), maps trajectories,ξ =
(α, µ), into admissible trajectories,η = (x, u), of a dynamic
system [4]. The projection operator is defined using a linear



feedback law.

P : ξ = (α, µ) → η = (x, u)
x(0) = α(0)
ẋ = f(x(t), u(t))
u(t) = µ(t) + K(t)(α(t)− x(t))

(7)

where K(t) stabilizes the system over some domain. The
feedback component of the projection operator plays a large
role in the robustness of the optimization, particularly its
ability to handle unstable systems.

The controller also determines the domain ofP(ξ) because
it may only be able to stabilize trajectories near the current
trajectory. In practice, it is assumed that the domain is
limited, so a new controller is designed around each new
admissible trajectory in the optimization algorithm. This
avoids the difficult problem of finding a globally stabilizing
and well performing controller.

Stabilizing controllers are generated by solving a finite-
time linear quadratic regulator (LQR) problem [2]. The
system is represented as a time-varying linear system by
linearizing about the current trajectory and LQR finds a
stabilizing state feedback controller. The LQR approach is
robust and automated. Generally, we choose a set of LQR
weightings and then automatically generate a stabilizing
controller about any trajectory as needed. Additionally, many
software packages like MATLAB and LabVIEW provide
efficient and robust tools to solve the LQR problem.

Note that it is desirable for the projection operator to have
as large of a domain as possible so that potentially large steps
can be take. However, the trajectory optimization is set up
that it will continue to work even if the domain is extremely
small.

The projection operator itself is continuous and differen-
tiable. The first derivative is defined as

DP(η) : γ = (β(·), ν(·)) → ζ = (z(·), x(·))
z(t0) = 0
A(τ) = Dxf(τ, x(τ), u(τ))
B(τ) = Duf(τ, x(τ), u(τ))
ẋ(τ) = A(τ)z(τ) + B(τ)v(τ)
v(τ) = ν(τ) + K(t)[β(τ)− z(τ)]

(8)

Note that the derivative is a linear projection operator
itself. The range ofDP(ξ) defines the tangent trajectory
space ofξ, denoted asTξT . An elementζ ∈ TξT if and
only if ζ = DP(ξ) ◦ ζ.

A complete discussion of the projection operator, includ-
ing expressions for higher derivatives, can be found in [4]
and [3].

B. Descent Direction

The descent direction for each step is found from the same
definition as a finite dimensional optimization, but using a
completely different procedure. In both cases, a quadratic
model is created based on the current point. We then seek

the direction that maximizes the decrease in the cost function:

ζi = argmin
ζ

Dg(ξi) ◦ ζ + 1
2q ◦ (ζ, ζ) (9)

The bilinear operatorq ◦ (·, ·) is chosen to give different
descent algorithms. The identity operator leads to a steepest-
descent direction. Lettingq = D2g(ξi) leads to a Newton-
descent direction [8]. Typically, the steepest-descent direction
has better global convergence properties, so it is used for
the first few iterations since the initial trajectory might be
far away from the optimum trajectory. The Newton-descent
direction, on the other hand, has excellent local convergence
properties and is used in later iterations where the current
trajectory is likely to be near the optimum trajectory.

In the finite dimensional case, the minimizer of (9) isζ =
q−1Dg(ξi). In the infinite dimensional case, however,q−1

does not exist so a different approach is needed.
In direct contradiction to an earlier step, this un-

constrained optimization is transformed into a constrained
optimization by restrictingζ ∈ TξiT . In this case, however,
TξiT is a linear subspace and the resulting constrained
optimization is a linear optimal control problem that can be
solved using linear optimal control tools.

We do not include the derivation here, but the solution is
found by solving a two-point boundary-valued problem (TP-
BVP). The TPBVP either be solved directly using modern
numeric techniques [10] or decomposed into two initial value
problems using a Ricatti transformation. For a complete
derivation and explanation, see [3].

C. Armijo Line Search

Once the descent direction is found, we need to find
an appropriate step size. Instead of performing the actual
minimization in (5), we use an Armijo line search [8] to
find a γ ∈ (0, 1] that gives a sufficient, but not necessarily
optimal, decrease.

argmin
i=0,1,2,...

g(ξi+γζi) < g(ξi)+αγDg(ξ)◦ζ γ = βi (10)

whereβ ∈ (0, 1) andα ∈ (0, 1) are algorithmic parameters.
This is simply an algorithm to decrease the step size in a
way that guarantees convergence [7].

For optimization in finite dimensions, the step size is
decreased to avoid overshooting and increasing the cost.
In trajectory optimization, it is additionally needed to keep
ξi + γζi in the domain ofP(ξi). Otherwise, the projection
operator may fail to stabilize the trajectory and will fail. For
the marionette, this can happen by driving the system into
configurations that are inconsistent with the closed kinematic
chains (ie, tearing off the arm with the string). By decreasing
the step size until the new trajectory is in the domain of
P(ξi), the Armijo line search plays an important role in
ensuring the final trajectory is admissible.

III. U SING TRAJECTORYOPTIMIZATION FOR MORPHING

In trajectory morphing, we have a conceptual or source
model that we use to generate trajectories and a dynamic or
target model that we want to imitate the trajectories with. It is



assumed that we already have a method of easily generating
trajectories for the source system. The trajectory optimization
tool takes a desired trajectory for the dynamic system and
searches for an admissible trajectory that best resembles the
desired. In order to get the desired trajectory, we need a map
from the configuration manifold of the conceptual system to
that of the dynamic system. This mapping will be specific
to the two models and is created manually.

For the marionette, our conceptual model is usually a
human being while the dynamic model is the marionette. The
two models differ in size and use different input methods that
result in different dynamic behavior. To create a mapping, we
focus on the similarities between the two systems.

The human is a skeleton that is almost completely con-
trollable. The marionette is the same skeleton with additional
strings that have position and length actuation. Unlike the
human, the marionette is relatively under-actuated and cannot
directly apply torques to the joints. Since the optimization
will take the dynamics into account, however, we can ignore
the differences in actuation while creating the map.

By ignoring the dynamics, we can make the map relatively
simple. Parts of the human model that are not related to the
marionette are discarded (for example, torque inputs). Parts
common to both models are mapped directly (shoulder and
elbow angles). Finally, we generate reasonable values for
parts of the marionette that are unrelated to the human (string
lengths and positions).

The mapping itself suggests how we choose the weightings
for the optimization cost function. The configuration vari-
ables that were mapped directly from the conceptual model
are weighted the heaviest. The configuration variables that
did not correspond to the conceptual model are weighted
very little, but are still weighted to keep them bounded
and reasonable. Note that because of the low weighting
and the general robustness of the trajectory optimizer, the
actual values generated for the puppet’s unique configuration
variables are typically not very important and insignificantly
affect the final results.

IV. RESULTS FOR A2D MARIONETTE ARM

We now present a simple example that illustrates the
method just discussed. Consider the two-dimensional mar-
ionette arm shown in Fig. 1. The upper and lower arms are
free to rotate about their respective joints. The shoulder is
fixed. The arm is controller by a single string tied to end of
the arm. The other end of the string moves horizontally. The
length of the string is also controllable. The dynamic model
is defined using a mixed dynamic-kinematic model [5] to
include the strings as kinematic inputs.

We define motions for the arm using a computer animation
package [1] The software allows us to create a skeleton that
represents a two-link, two-dimensional arm and to animate
the skeleton using key-frames and interpolation. This allows
us to define the exact motion we want without worrying
about the marionette dynamics. A 10 second waving motion
was manually. The arm starts from a neutral lowered posi-
tion. It lifts up, waves for about 3 periods, and then lowers

Fig. 1. Animations can be defined for a simple 2D arm and morphed into
trajectories for this marionette arm.

back down to the original position.
We generated a mapping between the model arm and

the marionette arm. The joint angles are mapped directly
between the models. The tip of the model arm was projected
onto the line that the string moves on to get a desired string
position. Finally, the desired string length was found so that
the closed kinematic loop would be consistent with the other
configuration variables.

The optimization was set up to emphasize the joint angles.
The two angles were weighted one hundred times heavier
than the string parameters. The initial trajectory was the arm
simply hanging in the starting position of the initial trajectory
for the entire time interval. The optimization converged in
11 iterations and took nearly 4 hours1.

The cost is plotted against iterations in Fig. 3. The
optimization converges towards the minimum very quickly
at first as the steepest-descent direction moves toward the
minimum. After a few steps, the trajectory is near the
optimum trajectory. The Newton-descent direction takes over
after the 5th iteration and quickly converges on the final
trajectory.
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Fig. 3. The trajectory cost as a function of the iteration.

Fig. 4 shows several snapshots of the morphed trajectory
compared to the desired trajectory. Note that there are small

1The optimization and dynamics were implemented in Mathematica 5.2
and ran on a 1.5 Ghz PowerPC G4 with 512MB of RAM
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Fig. 2. Top to Bottom, Left to Right:Shoulder Angle, Elbow Angle, Second Derivative of String Length, Second Derivative of String Position. The solid
and dashed lines are the optimized and desired trajectories, respectively.

Fig. 4. Several frames from the resulting trajectory. The marionette and human models are drawn in black and blue, respectively. The complete animation
can be seen athttp://puppeteer.colorado.edu

differences between the desired trajectory and the feasible
trajectory in frames 2 and 5. These are due to the uncon-
trollable parts of the marionette model. Fig. 2 plots the joint
angles and inputs found by the optimization. The optimized
trajectory is clearly a good approximation of the desired
waving motion. For our model, the inputs are the second
derivatives of the string position and length. We can see that
the necessary inputs are complicated and could probably not
be specified manually. An animation of the results can be
seen on our project website athttp://puppeteer.colorado.edu

V. CONCLUSIONS AND FUTURE WORKS

Trajectory morphing is a promising tool for generating
trajectories for complex mechanical systems. It frees the
designer to use the most convenient input method and
model and is robust enough to handle degenerate nonlinear
systems with instabilities and uncontrollable modes. It is also
relatively automated. Once the mapping and cost functions

have been designed, the process is basically a black box that
converts trajectories between systems.

This approach is particularly well suited to our marionette
problem. We can use motion capture data from a person to
create the complicated, expressive trajectories found in tradi-
tional marionette performances. The optimization effectively
morphs these to the puppet’s dynamics despite the system
being under-actuated and having closed kinematic chains.

The next step in this research will be to develop alterna-
tive cost functions. The quadratic model can give excellent
results, but setting the weightings are often a matter of trial
and error. We might want to consider eliminating the map
between the two systems and define a cost function directly
in terms of the conceptual model’s trajectory. For example,
we might use motion capture data from a two link arm to
create trajectories for a ten link robotic arm. Rather than
mapping the trajectory to the ten link arm and optimizing
with the quadratic cost function, it would be more natural



to define a cost function that compares the configurations of
the ten link arm directly against the two link model.

We would also like to see the trajectory optimization algo-
rithm extended to work directly with variational integrators.
Variational integrators simulate the dynamics of a mechanical
system directly in a discrete domain rather than numerically
approximating a continuous ODE [9] [6]. They have many
desirable conservative properties and, for systems as large as
our full marionette, tend to be more computationally efficient
than conventional Euler-Lagrange dynamics. By directly in-
tegrating variational integrators with trajectory optimization
tools, we expect the trajectory morphing will naturally scale
to complex mechanical systems and still be fast enough to
be practical.
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