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Abstract—We present a method to automatically morph motion capture, etc. Once a trajectory is created, the system
trajectories from one mechanical system into trajectories of dynamics are considered to find a dynamically admissible
anc;thhed; Syﬁtem with poten_tlallyq( verytﬁin‘ferent dy”aT'Cs; Our  trajectory that best approximates the original trajectory.
metnhod relies on a mappin rom € source systems con- .. .. . .
figuration space to tha?pofgthe target system )t/o create a Generahzmg this |deg further, the desired trajectory. can
desired trajectory for the target system. A projection operator- ~ €ven be specified for a different system. It would be easier to
based trajectory optimization finds a dynamically-admissible use motion capture data from a human, for example, than to
trajectory for the target system that approximates the desired capture data from a marionette. If there is a suitable mapping
trajectory. The optimization algorithm is extremely robust and from the configuration space of the source system to that of

often finds a satisfactory trajectory even for highly nonlinear -
systems with instabilities, uncontrollable modes, or closed the target system, the trajectory can be mapped to the target

kinematic loops. This robustness simplifies the mapping step System even if the result is not dynamically admissible.
by essentially allowing us to ignore the target's dynamics and The termtrajectory has different meanings throughout

focus on the purpose of the trajectory. this paper. In general, &rajectory is a set of continuous

exxplge?hogfrggﬁng;tz hpargcc?)sniplléiiré?/n:mmgrigr?sgﬁtr (fllﬁab?en curves representing the states and inputs to a system over
modes, and closed kinematic chains. The trajectory morphing a time intervallto, ty]. In this usage, a trajectory may or

process allows us to specify trajectories for the puppet using May not satisfy the _dynamics of the system. admissible
human motion capture or animation tools without considering  trajectoryalways satisfies the system dynamics. The set of all

the actual abilities of the puppet. admissible trajectories of a system is denotedZhyThus,

| INTRODUCTION ¢ = (z(+),u(+)) is an admissible trajectory if and only if
: (1) = f(r,z(7),u(r)) VT € [to, ts].

We present a method for automatically morphing trajecto- The trajectory morphing process has two major compo-
ries from one mechanical system into trajectories of anotheents: a map between the configuration spaces of the two
system with potentially very different dynamics. Our methodystems and a trajectory optimization. The map is created
relies on a mapping from the source system’s configuratidsy hand and maps configurations of the source system to the
space to that of the target system to create a desired trajecttaiyget system. The map ignores the dynamics of both systems
for the target system. A projection operator-based trajectognd the trajectories produced are unlikely to be dynamically
optimization finds a dynamically-admissible trajectory foradmissible. The trajectory optimization, on the other hand,
the target system that approximates the desired trajectogpnsiders the dynamics.

The optimization algorithm is extremely robust and often We use a projection-operator based approach to trajectory
finds a satisfactory trajectory even for highly nonlineaoptimization [3]. It searches the trajectory space of the target
systems with instabilities, uncontrollable modes, or closeglystem for an admissible trajectory that best resembles the
kinematic loops. This robustness simplifies the mapping stefesired one. The returned trajectory is always admissible,
by essentially allowing us to ignore the target's dynamiceven if the system dynamics are nonlinear, uncontrollable,
and focus on other important aspects of the trajectory liker unstable.

expressiveness or obstacle avoidance. The projection operator approach uses a novel modifi-

Generating trajectories for complex dynamic systems likeation. Instead of a constrained search in the admissible
a human robot or automated marionette is a difficult problentrajectory space of the system, it performs an unconstrained
The designer must balance their effort between developirsgarch in the larger general trajectory space and uses a
rich, expressive movements and staying within the capabilprojection operator to project trajectories into admissible tra-
ties of the system. jectories. In this setting, the search is roughly analogous to an

The most straightforward approach to this problem is toptimization in finite dimensions using an iterative gradient
decouple the two requirements. First, a trajectory is createtbscent method. At each iteration, a new descent direction
without regard to dynamics. This enables us to use ang found by solving a linear optimal control problem. An
convenient method to create a trajectory: hand animatioArmijo search is performed in the descent direction until it



finds a new trajectory that improves the current score. Thaurrent trajectory with it, the result would not be dynamically
new trajectory is projected back into the admissible trajectorgdmissible. However, the constrained optimization can be
space, and the process is repeated. We will discuss tbenverted to an unconstrained problem by introducing the
trajectory optimization in more detail later. projection operator.

The overall morphing process is relatively automatic and Suppose there exists a projection opermof) that maps
robust. Once the mapping exists and the trajectory optimizgotential trajectories to admissible ones. We repose the origi-
tion has been properly configured, new trajectories can gl problem by defining a new cost functigte) = A(P(¢))

morphed without any modifications. to get the unconstrained optimization in (3).
We will discuss a simple marionette system as an example

application of trajectory morphing. Trajectory morphing is
exceptionally well matched to the marionette problem. The
desired trajectories are often complex, expressive move-
ments, but the dynamics are too complex to consider whilg ¢ locally minimizes (3), then the projected trajectory
designing trajectories. There are uncontrollable modes. In a.g — P(¢) locally minimizes (1), solving the original
dition, the closed kinematic chains created by the marionetﬁomem' The search is still over an infinite dimensional

strings give the con.figura@tion. manifold an unusual Shap%pace, but we can now choose descent directions and
In practice, the configuration is represented as a set of r@yy trajectories without satisfying the complex, nonlinear
numbers to numerically simulate the system. The '”egm"%{ynamics of the system. Using a typical algorithm for

shape of the manifold leads to large, irregular pockets ifinconstrained optimization in finite dimensions as a guide,
this simulated configuration space that must be avoidege can design an algorithm to solve (3).

The trajectory morphing process works despite these issues.

argénin 9(§) = h(P(§)) 3)

Trajectories are specified for a simple human model usin
hand animation or motion capture; methods that can eas
capture complex and expressive trajectories. The trajectori

g
ly
E@Siven an initial admissible trajectony:

Trajectory Optimization Algorithm

are mapped to the puppet using a straightforward map whi
will be described later. The trajectory optimization works
within the controllable subspace and admissible configur
tions to find dynamically correct trajectories that resembl
the original desired plan. The trajectory optimization eve
finds the inputs that correspond to the admissible trajector
In this sense, the optimization also acts as a model inversi
tool to find the input for a desired output. This is a nontrivia
problem for a complex mechanical system.

Chori =0,1,2,...:
1) Create a projection operator around
- 2) Find a descent direction:

e
n Gi= arggnin Dg(n;) o ¢+ 3q(¢.¢)  (4)

on 3) If Dg(n;) o¢ =0, stop.
4) Find a step giving a sufficient decrease:

<

i = argmin g(n; +7G) ©)
Il. TRAJECTORYOPTIMIZATION K
In trajectory optimization, we have some desired trajectory ) Advance Step:
&a = (z4(),uq(+)) that may or may not satisfy the system Niv1 = P + %) (6)
dynamics. We want to find an admissible trajectory that is
similar to the desired. This is a constrained optimizatiofyom this perspective, the algorithm is relatively

problem defined by (1):

() = / "ir 2, u(r))dr + me(T) (@)

o

straightforward. First, a projection operator is designed for
each new trajectory so that we can avoid requiring projection
operators to be globally valid and instead just ask that they
work in some neighborhood around a trajectory. Next we
where{ = (z(-),u(-)) andl(...) andm(...) are incremen- find a descent directiog that gives the biggest decrease in
tal and terminal cost functions. The standard cost functionsbst based on a quadratic model of the cost function. If no
are shown in (2). direction gives a decrease, the current trajectory is a local
I,z u) =(x — 24()TQ(x — za(T)) minimum. Otherwise, the descent direction is used to find a

argmin h
€T

- (2a) new trajectory with a lower cost. It is unlikely that+ v;¢;
+ (4 —ua(7))" R(u — ua(7)) is admissible, so the trajectory is projected back into the
m(zy) = (xf — gcd(tf))Tpl(xf — za(ty)) (2b) trajectory manifold.

where Q(-), R(-), and P, are positive definite matrices
that weight the errors between the some trajectory and tf2¢ Projection Operator
desired.
Because solutions to (1) need to be constrained by theThe projection operatorP(¢), maps trajectoriesf =
system’s dynamics, a standard gradient-descent approach will, ¢), into admissible trajectorieg, = (z,«), of a dynamic
not work. If we found a descent direction and adjusted thsystem [4]. The projection operator is defined using a linear



feedback law. the direction that maximizes the decrease in the cost function:

P §:<O‘nu)*>n:(zvu) Ci:argmian(f,;)OCJr%qO(C,C) (9)
2(0) = a(0) ‘
& = f(a(t),ult)) (") The bilinear operatoy o (-,-) is chosen to give different
descent algorithms. The identity operator leads to a steepest-
u(t) = p(t) + K(t)(alt) — =(t)) descent direction. Letting = D?g(&;) leads to a Newton-

where K (t) stabilizes the system over some domain. Theescent direction [8]. Typically, the steepest-descent direction

feedback component of the projection operator plays a larg&S better global convergence properties, so it is used for
role in the robustness of the optimization, particularly itdhe first few iterations since the initial trajectory might be
ability to handle unstable systems. far away from the optimum trajectory. The Newton-descent

The controller also determines the domairft) because direction, on the other hand, has excellent local convergence
it may only be able to stabilize trajectories near the curreffOPerties and is used in later iterations where the current
trajectory. In practice, it is assumed that the domain ig@ectory is likely to be near the optimum trajectory.
limited, so a new controller is designed around each new_'ln the finite dimensional case, the minimizer of (9K|$1
admissible trajectory in the optimization algorithm. This? D9(&)- In the infinite dimensional case, however,

avoids the difficult problem of finding a globally stabilizing 90€S Not exist so a different approach is needed.
and well performing controller. In direct contradiction to an earlier step, this un-

Stabilizing controllers are generated by solving a finitecONstrained optimization is transformed into a constrained

time linear quadratic regulator (LQR) problem [2]. Theoptimi.zation.by restricting; € T, 7. In this case, howeve_r,
system is represented as a time-varying linear system By:Z 1S @ linear subspace and the resulting constrained
linearizing about the current trajectory and LQR finds <,9pt|m|zat|9n is a I|near'opt|mal control problem that can be
stabilizing state feedback controller. The LQR approach i&2lved using linear optimal control tools. o
robust and automated. Generally, we choose a set of L rWe do not include the derivation here, but the solution is
weightings and then automatically generate a stabilizin und by solving a two-point boundary-.valued pr.oblem (TP-
controller about any trajectory as needed. Additionally, manfVP)- The TPBVP either be solved directly using modern
software packages like MATLAB and LabVIEW provide humeric techniques [10] or decomposed into two initial value
efficient and robust tools to solve the LQR problem. proplems using a Rlcgttl transformation. For a complete
Note that it is desirable for the projection operator to havgerlvatlon and explanation, see [3].
as large of a domain as possiblg so that pgtgntiqlly Igrge steps Armijo Line Search
can be take. However, the trajectory optimization is set up Once the descent direction is found, we need to find

that it will continue to work even if the domain is extremelyan appropriate step size. Instead of performing the actual

smTe::I. o itself i ) q diff minimization in (5), we use an Armijo line search [8] to
bl € pLOJef(_:t'or; opergtor_nsde f_|s :j:ontlnuous and diftereng,q a~ € (0,1] that gives a sufficient, but not necessarily
tiable. The first derivative is defined as optimal, decrease.

D N f— . . f— . 7. . i
Pl = 000 = ¢ = 20200 argmin g(6+9G:) < 9(§)+arDy(€)e¢ 7= 0" (10)

2(tg) =0 i=0,1,2,...
A(T) =Dy f (7, 2(7),u(r)) 8 wheres € (0,1) anda € (0,1) are algorithmic parameters.
B(7) = Do f (7, 2(7), u(r)) ®)  This is simply an algorithm to decrease the step size in a
LN way that guarantees convergence [7].
#(r) = A(7)z(r) + B(r)o(r For optimization in finite dimensions, the step size is
() = v(7) + K(8)[B(r) — 2(7)] decreased to avoid overshooting and increasing the cost.

Note that the derivative is a linear projection operatoln trajectory optimization, it is additionally needed to keep

itself. The range ofDP(£) defines the tangent trajectory §i +7G; in the dpmain O.f?)@i)' Othgrwise, the p_rojec;tion
space of¢, denoted a<,7. An element¢ € T.T if and operator may fail to stabilize the trajectory and will fail. For
only if ¢ > DP(€) o & ¢ the marionette, this can happen by driving the system into

A complete discussion of the projection operator, includ(-:ﬁn.ﬂgur_at'?nS Fhat af;?r:ncon5|s'§$r|]1ttf\]IV|thtthe Cl?;eg kmemgtlc

ing expressions for higher derivatives, can be found in [4 ains (ie, tearing oft tne arm with the s.rm-g). y decreasing

and [3]. e step size until the new trajectory is in the domain of
P(&), the Armijo line search plays an important role in

B. Descent Direction ensuring the final trajectory is admissible.

The descent direction for each step is found from the samél: U SING TRAJECTORY OPTIMIZATION FOR MORPHING
definition as a finite dimensional optimization, but using a In trajectory morphing, we have a conceptual or source
completely different procedure. In both cases, a quadratimodel that we use to generate trajectories and a dynamic or
model is created based on the current point. We then settget model that we want to imitate the trajectories with. Itis



assumed that we already have a method of easily generating
trajectories for the source system. The trajectory optimization
tool takes a desired trajectory for the dynamic system and
searches for an admissible trajectory that best resembles the
desired. In order to get the desired trajectory, we need a map
from the configuration manifold of the conceptual system to
that of the dynamic system. This mapping will be specific
to the two models and is created manually.

For the marionette, our conceptual model is usually a
human being while the dynamic model is the marionette. The
two models differ in size and use different input methods that
result in different dynamic behavior. To create a mapping, we
focus on the similarities between the two systems.

The human is a skeleton that is almost completely con-
trollable. The marionette is the same skeleton with additional
strings that have position and length actuation. Unlike the
human, the marionette is relatively under-actuated and canr{ﬂg
directly apply torques to the joints. Since the optimization
will take the dynamics into account, however, we can ignore
the differences in actuation while creating the map. back down to the original position.

By ignoring the dynamics, we can make the map relatively We generated a mapping between the model arm and
simple. Parts of the human model that are not related to titilee marionette arm. The joint angles are mapped directly
marionette are discarded (for example, torque inputs). Paketween the models. The tip of the model arm was projected
common to both models are mapped directly (shoulder aranto the line that the string moves on to get a desired string
elbow angles). Finally, we generate reasonable values fppsition. Finally, the desired string length was found so that
parts of the marionette that are unrelated to the human (stritige closed kinematic loop would be consistent with the other
lengths and positions). configuration variables.

The mapping itself suggests how we choose the weightings The optimization was set up to emphasize the joint angles.
for the optimization cost function. The configuration vari-The two angles were weighted one hundred times heavier
ables that were mapped directly from the conceptual mod#lan the string parameters. The initial trajectory was the arm
are weighted the heaviest. The configuration variables thaimply hanging in the starting position of the initial trajectory
did not correspond to the conceptual model are weightd@r the entire time interval. The optimization converged in
very little, but are still weighted to keep them boundedll iterations and took nearly 4 hotirs
and reasonable. Note that because of the low weighting The cost is plotted against iterations in Fig. 3. The
and the general robustness of the trajectory optimizer, tftimization converges towards the minimum very quickly
actual values generated for the puppet’s unique configurati@ first as the steepest-descent direction moves toward the
variables are typically not very important and insignificantlyninimum. After a few steps, the trajectory is near the

. 1. Animations can be defined for a simple 2D arm and morphed into
ectories for this marionette arm.

affect the final results. optimum trajectory. The Newton-descent direction takes over
after the 5th iteration and quickly converges on the final
IV. RESULTS FOR A2D MARIONETTE ARM trajectory.

We now present a simple example that illustrates the
method just discussed. Consider the two-dimensional mar- 100004
ionette arm shown in Fig. 1. The upper and lower arms are
free to rotate about their respective joints. The shoulder is
fixed. The arm is controller by a single string tied to end of 6000
the arm. The other end of the string moves horizontally. The
length of the string is also controllable. The dynamic model
is defined using a mixed dynamic-kinematic model [5] to 2000
include the strings as kinematic inputs.

We define motions for the arm using a computer animation “—4 % 3 4 5 6 1 & o 10
package [1] The software allows us to create a skeleton that
represents a tWO-link, two-dimensional arm and to animate Fig. 3. The trajectory cost as a function of the iteration.

the skeleton using key-frames and interpolation. This allows _ i
us to define the exact motion we want without worrying Fig. 4 shows several snapshots of the morphed trajectory

about the marionette dynamics. A 10 second waving moticgPmpared to the desired trajectory. Note that there are small

V_Vas mqnually. The arm starts from a. neutral lowered POSI-17he optimization and dynamics were implemented in Mathematica 5.2
tion. It lifts up, waves for about 3 periods, and then lowerand ran on a 1.5 Ghz PowerPC G4 with 512MB of RAM
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Fig. 2. Top to Bottom, Left to RightShoulder Angle, Elbow Angle, Second Derivative of String Length, Second Derivative of String Position. The solid
and dashed lines are the optimized and desired trajectories, respectively.
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Fig. 4. Several frames from the resulting trajectory. The marionette and human models are drawn in black and blue, respectively. The complete animation
can be seen dittp://puppeteer.colorado.edu

differences between the desired trajectory and the feasilitave been designed, the process is basically a black box that
trajectory in frames 2 and 5. These are due to the uncooenverts trajectories between systems.
trollable parts of the marionette model. Fig. 2 plots the joint This approach is particularly well suited to our marionette
angles and inputs found by the optimization. The optimizedroblem. We can use motion capture data from a person to
trajectory is clearly a good approximation of the desiredreate the complicated, expressive trajectories found in tradi-
waving motion. For our model, the inputs are the secontional marionette performances. The optimization effectively
derivatives of the string position and length. We can see thatorphs these to the puppet’s dynamics despite the system
the necessary inputs are complicated and could probably rimging under-actuated and having closed kinematic chains.
be specified manually. An animation of the results can be The next step in this research will be to develop alterna-
seen on our project website lattp://puppeteer.colorado.edu tive cost functions. The quadratic model can give excellent
results, but setting the weightings are often a matter of trial
V. CONCLUSIONS AND FUTURE WORKS and error. We might want to consider eliminating the map
Trajectory morphing is a promising tool for generatingbetween the two systems and define a cost function directly
trajectories for complex mechanical systems. It frees thie terms of the conceptual model's trajectory. For example,
designer to use the most convenient input method amde might use motion capture data from a two link arm to
model and is robust enough to handle degenerate nonlineaeate trajectories for a ten link robotic arm. Rather than
systems with instabilities and uncontrollable modes. It is alsmapping the trajectory to the ten link arm and optimizing
relatively automated. Once the mapping and cost functiongith the quadratic cost function, it would be more natural



to define a cost function that compares the configurations of We would additionally like to acknowledge useful conver-
the ten link arm directly against the two link model. sations with Prof. Magnus Egerstedt at the Georgia Institute
We would also like to see the trajectory optimization algoef Technology.
rithm extended to work directly with variational integrators.
Variational integrators simulate the dynamics of a mechanical
. . . . . 1] Blender. http://www.blender.org2007.

system d|reCt|y in a discrete domain rather than numerlcanl%Z] B.D.O. Anderson and J.B. Moord.inear Optimal Contral Prentice
approximating a continuous ODE [9] [6]. They have many  Hall, Inc, 1971.

desirable conservative properties and, for systems as large B J. Hauser. A projection operator approach to optimization of trajectory
functionals. Barcelona, Spain, 2002.

our full manqnette, tend to be more Compl{tat'ona”l( eff'(:'e_m[4] J. Hauser and D.G. Meyer. The trajectory manifold of a nonlinear
than conventional Euler-Lagrange dynamics. By directly in- ~ control system. 1998.

tegrating variational integrators with trajectory optimization [5] E.R. Johnson and T.D. Murphey. Dynamic modeling and motion
planning for marionettes: Rigid bodies articulated by massless strings.

tools, we expect the_ trajectory morphlng- will naturally scale In International Conference on Robotics and AutomatiRame, Italy,

to complex mechanical systems and still be fast enough to 2007.

be practical. [6] E.R. Johnson and T.D. Murphey. Discrete and continuous mechanics
for tree representations of mechanical systems. Infternational
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