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Abstract— Variational integrators have become of interest to
the controls community, particularly since in recent years they
have been used in the context of optimal control. This paper
discusses how to resolve simultaneous impacts in a variational
context, assuming that all boundaries of the impacting bodies
are differentiable. We demonstrate how this analysis works for
arbitrary numbers of simultaneous impacts and derive discrete
time algorithms for resolving these impacts numerically. We
illustrate our results, both in the continuous and discrete
domain, using Newton’s cradle as an example.

I. INTRODUCTION

Optimal control using variational integrators [9], [4], [10]-
typically referenced as Discrete Mechanics Optimal Control
(DMOC)-has proven to be a particularly useful numerical
approach for control of walking [11] and other systems that
exhibit highly nonlinear behavior with nonsmooth impacts.
Hence, understanding simultaneous impacts—impacts that lit-
erally happen at the same instant—is important for numerical
implementations of DMOC techniques. An example of such
a system is billiard balls that are packed together before a
break. Much work has been done in this direction, the most
common way of dealing with such a system being linear
complementarity problem (LCP) formulations [12], [1], [2].
While such approaches guarantee existence of solutions, they
do not provide much toward uniqueness, and due to the fact
that all potential impacts in one time step are resolved simul-
taneously, regardless of their nature, it is not clear how close
such solutions are to physical reality. Other methods include
adding penalty potentials to contact surfaces [6], impulse-
space based approaches [3] and methods centered in non-
smooth analysis [7], [10], [5]. While all these methods have
strong points, they also present major drawbacks, leaving the
question of a general approach dealing with collisions, and
especially multiple simultaneous collisions, open.

We present a variational approach to posing and solving
the problem of collision. This approach has the benefit of
avoiding any impulsive or nonsmooth analysis, and stems
directly from first principles. We extend this method to
dealing with multiple simultaneous collisions, and apply it,
as an example, to Newton’s cradle. In the case of this system
our results are unique, and match the real world evolution
the system.

The paper is organized as follows:

Section II develops a mathematical formalism for dealing
with simultaneous impacts in a continuous time setting. In
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section II-A we use, as an example, a three ball Newton’s
cradle, a system in which conservation of energy and conser-
vation of momentum predict a continuum of valid solutions
in the case of elastic impacts, contrary to the unique outcome
observed in practice. We show that applying a variational
principle to this problem leads to a unique and expected
outcome in the continuous time setting.

In section III we derive discrete versions of the equations
and describe how one would build variational integrators
that can detect and resolve impacts, multiple impacts in
a time step and, most importantly, multiple simultaneous
impacts. These equations can be solved with standard root
solving techniques, provided one has access to multiple
partial derivatives of the continuous time Lagrangian. A way
of describing and simulating systems which gives access to
these derivatives can be found in [8] and related work.

Section IV presents the results from simulating a three
ball Newton’s cradle using the methods described in previous
sections and comment on a change of coordinates which is
needed in order to avoid numerical error.

Conclusions and future work can be found in section V.

II. CONTINUOUS TIME

Consider the case of n identical frictionless rigid spheres
arranged collinearly. The system can be easily represented in
generalized coordinates by the x coordinate of each sphere
so that ¢ = [z1, ¥2, ..., ¥,]T. The Lagrangian is

R T
L(g,d) = 54" Mg,
and only consists of kinetic energy, since there is no potential
energy in this problem. The mass matrix is
M =mlIyxn-

The boundaries between the spheres can be described using
real valued functions ¢; : Q — R such that

d)l(Q) > 07 qc Civ (la)

where C; is the admissable set with respect to boundary 4
and OC; describes the boundary of the admissable set. The
condition that ¢ € JC; thus becomes ¢;(q) = 0.



Note that in the described case of n spheres, boundary 9C;
describes the boundary between spheres ¢ and ¢ + 1. Thus,
for n spheres, ¢ goes up to n — 1. Also, in our example, the
most straightforward boundary functions can be chosen to
be

¢i(q) = -1}

although any choice that respects (1c) would work equally
well.

Assume there is a collision across boundary 0C; at time
t;. Both the configuration ¢ and its derivative ¢ have to be
continuous at every time other than at the collision time,
when we require ¢ to be continuous, but not necessarily
smooth: we both allow and expect a discontinuity in ¢
at time ¢ = t;. As such, the velocity before impact will
generally be different from the velocity after impact: §(t; ) #
q(tf) In fact, when considering the continuous problem, the
requirement that the configurations right after the impact lie
in C; becomes a requirement on the exit velocity

Vi(q(t:)) - q(t) >0, )

which states that the system has to be moving away from
the impact surface right after the impact.

We calculate the variation of the action, with respect to
variations in both the curve ¢(t) and the impact time ¢;:

T
5 / Liqlt). 4(t)) dt

(xpy1 —xs) —2r, Vke{l,2,...(n

t; T
=5 [ Llatei) e+ [ Llate)ie) i

i

:/0 [8L 5q +85q} dt + L(q, q)

Jq 0
oL oL
1) —0q| dt — 7) - 0t;
+/ {aq q+8 q} L(q,q) "

[ ()
LI ()

oL o
— -0q+ L - dt; } ,
{ 9q T
where we used the Leibniz rule, integration by parts and
the condition that d¢(T") = d¢(0) = 0. Requiring that the
variation in the action be zero for all dq away from ¢; gives
the Euler-Lagrange equations:

oL d (o1 _
dqg dt \9q)

The jump term must also be zero for all possible variations
at the time of impact. To describe the space of all possible
variations we start by differentiating ¢;(q(¢;)) = 0 with
respect to variations in ¢(¢;) and in ¢;:

Dei(q(ts)) - [6q(t:) + q(t:) 0ti] = 0, or
Voi(a(t:)" [6q(t:) + q(t:) 6t;] =

We look for a basis set that spans the space of allowable
pairs (dt;,dq(t;)) as per the conditions above. First, let us
set dt; = 1. This gives us that the pair (1,—¢(¢;)) satisfies
our conditions, and hence we will use it as one of the bases.
Next, let us take d¢; = 0. The allowable pairs under this
assumption become all pairs (0, dq(t;)) such that

Vi(q(t:) q(t;) =0, dq(t;) # 0.

These pairs, along with (1, —¢(¢;)), form a linearly indepen-
dent set that spans an n dimensional space, making them a
basis for the set of all allowable variations. Plugging these
pairs into the jump term gives us:
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where Vo;(q(t;))T0q(t;) = 0 and dq(t;) # 0. The former
equation is a vector equation of dimension n and gives
the conservation momentum during the impact across the
boundary 0C;. The latter is a scalar equation, representing
the conservation of energy during the same impact.

Since all impacts are the same physical phenomena and
obey the same laws and principles, the equations above apply
to impacts at any time ¢; across any surface 0C;. Assume we
have m collisions, occuring at times ;41 > t;. For example,
in the case of the system of n colinear spheres (Newton’s
cradle) with q(t;) = [v,0,...,0]T, we will have that m =
n—1. Now, let us take the limit as ¢;,,1 — ¢;, that is assume
the collisions are all instantaneous. Due to the fact that ¢ has
to be continuous at all non-collision times, we have that, as
the intervals [t;,t;11] shrink the values of ¢ at both ends of
the interval become identical, ¢(¢; ;) — ¢(¢;). Adding this
to our previous set of equations, and writing the conservation
of momentum using Lagrange multipliers, gives us

OLIT |\, Voi(g(t:)) =0, Vie{l,..,m) (4a)
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which is a system of (2n + 1)m
for (2n + 1)m — n variables, namely ¢(¢;
excluding ¢(t7 ), which is known.

Eq. (4c) is written in a form which brings forth the
physical nature of the system but somewhat obscures its
mathematical topology. Some algebraic manipulation gives
us the equivalent system

— n equations to be solved
), 4(tF) and A,

L &

—ti_+;w¢i<q<ti>):07 ¥i€{l,...,m} (5a)
oL o
—-g—L| =0, Vie{l,..,m}, (5b)
[f)q ! ]t t I



to be solved for (;7) and \; for all 4. First, notice that for
every 4, choosing \; = 0 gives a trivial solution in which
the system is unchanged after the collision. This solution
includes no information regarding the impact surface, and
thus corresponds to the bodies freely passing through each
other. Moreover, the exit velocity (j(tj), being equal to
the velocity before impact, ¢(¢; ), will undoubtably violate
the constraint given in (2). In all subsequent calculations,
including those covering the discrete time case, we will
implicitly exclude this sort of trivial solution in which the
Lagrange multipliers are zero, and assume that the condition
A # 0 has to hold.

In deriving (5b) we assumed a certain order of impacts
before taking the limit. Although in the case of Newton’s
cradle this ordering is clear, it may not be so in other cases,
and the reader might be wondering just how general our
results are. Also, the questions arises whether a different
assumed order of impacts would have led to a different
result. Current work suggests that the order in which col-
lisions are resolved is unimportant in some systems (like
Newton’s cradle) but important in others (certain billiard
ball configurations). Thus, regardless of the assumed order
of impacts, our method will always return the same result
for Newton’s cradle. However, this is not true of all possible
systems, although the number of outcomes is finite. We are
currently investigating whether an approach similar to the
projection discussed in [4], [7], and [10].

Note that the order in which collisions happen has nothing
to do with any ordering in time, but with the way in which the
resolution of one boundary affects the rest of the equations,
since all collisions happen at the exact same moment in time.
The word order, as used here, does not refer to a timing
order but rather to a topological order, a relation that depends
upon the static geometry of the system rather than its time
evolution.

A. Linear Newton’s Cradle in Continuous Time

To illustrate, let’s consider Newton’s cradle with three
spheres arranged in a line and ¢(¢; ) = [v,0,0]T for some q
in which all three spheres are touching. This is simply saying
that two of them were at rest, while the first one is hitting
them with a velocity v. In this case the boundary normals
are

-1 0
Vor=1| 1 |, Vga=| -1
0 1

The equations for this particular case look like

m [§(t7) = ¢(t7)] + M Ve =0,
m [§(t3) — q(t5)] + XV =0,
DT a) — a(t)Ta(ty) =0,
Gt () — q(t3) T4ty ) =0,

q(ty) —q(tf) = 0.

To get the full system in all scalar variables we substitute our
previously shown values, use the last equation to eliminate

G(ty) and name ¢(tf) = [v11,v12,018]" and (tF) =
[v21, Va2, v23]T. This gives us
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This system is easily solvable using basic algebra and has
unique solutions if we discard those in which the Lagrange
multipliers are zero (i.e. A; # 0). The solution is, as expected

0 0
atH=1v |, ati)=1]0
0 v

Using the same steps, one finds that if the initial condition
is instead given as ¢(¢; ) = [v,v,0]T, then the final solution is
q(t3) = [0,v,v]". In other words, if two spheres are initially
displaced, two spheres will split off at the end. This is also
consistent with the real behavior of Newton’s cradle.

III. DISCRETE TIME

To start with, let us consider a sequence of the form
(to,q0), (t1,q1), -, (tn, qn), where g = q(t1). For simplic-
ity, consider a fixed time step, that is h = ¢ — ¢ for all
k. Now we define a discrete Lagrangian that approximates
the action integral over one time step:

La(gis qisn, ) = L(0.9) ~ / " L), d(r)) dr,

ti

where we used the midpoint rule § = (gx+1 + qx)/2 and
d = (qk+1 — qx)/h. This leads to approximating the action
integral with an action sum

n—1

S=" La(qk: qrs1, h). (®)

k=0
Minimizing (8) gives us the discrete Euler-Lagrange equa-
tion:

DyLq(qr—1,9x, h) + D1La(qx, gx+1, h) = 0. &)

This equation uses the previous two states to find the next
state, thus defining a mapping of the form

(h—1,qK) = Qrt1-

A. Implementation Note

In order to solve (9) and all other similar equations in
this work, we assume we always have access to the system’s
continuous Lagrangian and several of its partial derivatives.



Thus, using the notation just described, we would make the
substitutions

h o o
D1 Lq(qk, Gi+1,h) = §aqL(Q>Q) —04L(q,q),

h - _
D2Ld(Qk7Qk+17 h) = 56111’ (67 Q) + aql’ (67 Q) 3
DSLd(Qk7 qk+1, h’) =L <Qa é) - éaqL (57 5)

wherever they are applicable. We also assume we have
access to all second partial derivatives of the Lagrangian,
which is needed for accurately implementing a root search
algorithm for equations such as (9). While for simple systems
calculating the derivatives of the Lagrangian might not be
a problem, it certainly becomes very complicated for large
systems involving multiple types of joints. As this is not the
focus of this work, we point the reader to [8] for further
details on how one could gain easy access to these needed
functions.

B. One Collision

Now, assume that we have determined that an impact hap-
pens during the kth time step, more precisely between tj_1
and tg. This can be determined using a collision detection
algorithm, a simple implementation of which would be to
check for negative values of ¢;(¢(tx)) at each time step. Such
values would mean that the corresponding interpenetration
condition would be violated by the value of t; given by
(9) and as such we need to find it from equations that
assume one or more impacts have occured. Now, since we
are interested mainly in what happens at the collision and
not outside it, let us refer to t5_o as t, (for t,;q), tx—1 as
t. (for teyrrent), and ty as t, (for t,..). Let the collision
time be t; = t. + aph, with a; € [0,1]. We will denote
the value of the configuration at the time of impact ¢; as q;.
Finally, let the set of acceptable configurations be C; and
its boundary be 0C. Fig. 1 is a sketch illustrating both the
algorithm and the notation used around a point of impact.

Applying the same variational principles as before over
the interval [t_1, tx], we get the following set of equations:

D3Li(qo,qc, h) + D1Lg(qe, g1, a1h) =0, (11a)

¢1(q1) =0, (11b)

D3L4(qe, q1,a1h) — D3Lq(q1, qn, (1 — a1)h) =0, (11c)
MVér1(qr) + DaLg(ge, 1, aih) (11d)
+D1La(q1,qn, (1 —a1)h) =0, (1le)

where the unknowns are q;, o1 and ¢,,. It might be somewhat
enlightening to note that (11c) and (11d) can be readily
interpreted as discrete versions of conservation of energy and
momentum respectively. Eq. (11b) states that ¢; must lie on

the boundary and (11a) is a variable step size version of (9).
The last equation affected by the impact is

D2Ld(q1a dn, (1 -

which is a variable step size version of (9) that mirrors (11a).

Oél)h) +D1Ld(Qn7Qk+1ah) = 07 (12)
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Fig. 1. Sketch illustrating the algorithm and notation used to deal with
a simple impact. Here ¢, and g. are the two consecutive configurations
before the impact, g;nvaqiid 1S the new configuration if there were no impact,
t1 is the time of impact, q; is the configuration at impact and g, is the
correct post-impact configuration that replaces g;nyq1iqd- After the impact,
the simulation continues with the new point at g1

C. Multiple Disctict Collisions

It is possible that the time between two consecutive
impacts is small enough for both of the impact times to
fall inside the same time step. Fig. 2 sketches this situation
for two distinct impacts across two distinct boundaries.
Algorithmically we will know this has happened if the

(tk+1,qr41)
Qinvalid
(t2a Q2)
L (t,q1)
Qinvalid

Fig. 2. Sketch illustrating the algorithm used to dealing with two
consecutive impacts in the time step between tx_1 = t. and tx = tn. In
this case, solving the first collision fails to give a valid result with respect
to a second surface. This indicates a collision with that surface, which is
found to occur at time t2 and configuration g2. The result of this collision
is valid and integration continues from g, to g1

qn returned by (11) does not satisfy the interpenetration
constraints. If this is the case, we need to solve a slightly
different system of equations to find g,,. Assume m collisions
in the same time step, each at time ¢; = ¢, + Z;Zl ojh and



across boundaries C;, where ; € (0, 1). Then (11) becomes

D3 Li(qos 4 h) + D1La(ge, g1, c1h) = 0,

¢1(q1) =0,

D3L4(qe, q1,a1h) — D3La(q1, 2, eh) = 0

MVoi(q1) + DaLa(qe, q1, 1h) + D1La(q1, g2, a2h) = 0,
$2(q2) = 0,

)

DSLd(qulv dm, amh)

—DsLg (qm,qn, (1 - Zcu) h) =0,
i=1

)\mVQbm(Qm) + D2Ld(Qm—17 dm; amh)

m
+D1Ld (@m:Qna <1 - Zai> h) = 07
=1

13)

which are to be solved for all ¢;, o; and ultimately q,,. Next,
we solve the analogous of (12)

DZLd (qm7Qna <]- - Za2> h) +D1Ld(anqk+11 h) = 07
=1

and continue with solving (9) in order to get the evolution
away from the point of impact.

D. Multiple Instantaneous Collisions

Before handling instantaneous collisions algorithmically
in the discrete time setting, we need to specify a way to
detect that such a collision occured. In the continuous case
we assumed that we know this is the case, which is not
enough for a working simulation. It is useful to note that,
while multiple collisions in the same time step can occur
across the same surface of impact OC, this would not be
possible in the case of instantaneous collisions: at one time
t; the system can only impact one surface, which we call
0C;. In other words, if two consecutive impacts occur across
the same surface, the time between them has to be finite, and
hence covered by the previous section.

The other algorithmically important observation is that,
just as in the continuous time case, if two collisions across
two different surfaces happen at the exact same time, we
expect the solution for g; € 9C; to also satisfy g; € 0C5.
This is what we will use to determine if a multiple collision,
detected as described in the previous section, happens at the
exact same time. When a multiple impact is detected to have
occured in the same time step, we will first check to see if
the impact point lies on more that one surface and solve the
impact equations in the limit o — 0.

To illustrate this, consider the case of m impacts covered
in the previous section, but now let the jth and j + 1 = kth
impacts happen simultaneously. In other words, we solve for
g; using the condition that ¢; € 0C;, we attempt to solve
for ¢, assuming that j was the last impact, but we get an
erronous result (showing that there must be extra collisions
to solve for), and finally we notice that g; € 9C}; also holds.

As a consegence, we solve for the same equations, but in the
limit oy, — 0.
The affected terms and their limits are

. OL .
algril() [D1La(q;, qr, arh)] = ~ 9 (95, 45) »

. oL )
C}:IEO [D2La(q;5, qr, arh)] = 0 (95, 45) »

) . oL L.
alklglo [D3La(qj, qr, cah)] = L (q5,45) — 30 (45, 45) 4j-

We then simply substitute these terms into (13) in the
apropriate places and remove the condition g, € 9C}, (since
we replaced it with the verified assumption that g, = ¢; €
0C; N 0CY%). In its stead we gained a new variable to solve
for, namely ¢;.

IV. NUMERICAL RESULTS

Using the mathematical and algorithmic framework de-
veloped in the previous sections we modeled and simulated
a system comprising of three spheric pendulums, as shown
in Fig. 3. Variations of this system can be found in any
toy store with the name Newton’s cradle and its behavior
is easily distinguishable and unique. The initial conditions
in our simulation matched the ones described in section
II-A, where initially two of the spheres are at rest at the
equilibrium point and the third has a slight displacement.
At the time of impact we expect the kinetic energy to be
transferred to the opposite sphere, while spheres one and
two remain motionless.

Fig. 3 shows the time evolution of the spheres’ velocities,
along with sketched configurations at selected times.

We should note that, like any numerical simulation, ours
too is prone to numerical errors, specifically during root
finding. As such, the exact position of the spheres after
an impact is only approximate. One can imagine that if
the exact resting position were to be an irrational number
(e.g. m/2) no amount of numerical approximation could give
us a good enough answer, resulting eventually in strange,
unwanted behavior. We found that choosing an apropriate
coordinate system so that the collision happens around zero,
the root finding combined with apropriate truncation gives
much better and consistent results. A way of applying this
coordinate transformation automatically for every collision
is needed and it is our hope that future work will shed more
light on this issue.

V. CONCLUSIONS AND FUTURE WORKS

In the previous sections we described a variational for-
malism for dealing with multiple rigid body collisions at the
same moment in time and across multiple distinct surfaces
of impact. We have found analytically that this formalism
predicts a unique solution in at least one case, Newton’s
crade. We presented discrete equations for several classes of
impacts, the algorithm needed to solve them and we pre-
sented numerical results in order to illustrate these methods.

Since our methods are based on variational integrators,
they are the foundation for building DMOC algorithms
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Fig. 3.

Numerical results of the simulation implementing a three sphere Newton’s Cradle. The continuous line shows the velocity of the right sphere

while the dotted line shows the velocity of the left sphere. The sketches show the configuration of the system at the times pointed to by the corresponding

arrows.

that deal multiple instantaneous collisions in a natural and
principled fashion. Future works will deal with building such
DMOC strategies for systems with multiple impacts.

While variational integrators have been shown to preserve
integrals of motion, it is not yet entirely clear that our
approach in dealing with simultaneous impacts, which adds
the continuous time variables ¢;, does the same thing for all
possible systems. A deeper mathematical investigation into
the properties of the discrete mapping introduced in this work
is in order, and will be addressed in future works.
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