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Abstract—We use a tree-based structure to represent me-
chanical systems comprising interconnected rigid bodies. The
tree description provides a way to design a generic, variational
integrator that works for arbitrary systems while staying in gen-
eralized coordinates. Variational integrators have the advantage
of preserving constraints and energetic quantities for all time.
Moreover, by taking advantage of caching, performance scales
very well. A description of the associated software is included,
along with a closed-kinematic-chain example illustrating the
ease of specifying systems. Several other examples, including a
comparison with the Open Dynamics Engine (ODE) software,
are used to illustrate the scalability of the technique.

I. INTRODUCTION

There are many different algorithms for simulating me-
chanical systems. The most popular methods in simulation
software are those based on the Newton-Euler force balance
approach[33]. Systems are usually represented as collections
of free bodies with mechanical structure imposed by con-
straints. This is the approach used in the popular Open Dy-
namics Engine (ODE) [28]. Others like OpenHRP [2] use the
Newton-Euler method but represent the system in generalized
coordinates [9]. Some packages, like Autolev [26] generate
the full equations of motion for a system instead of algorith-
mically evaluating the dynamics. The different methods have
tradeoffs in computational complexity, accuracy, and ease-
of-representation. In this paper we present another algorithm
that results in scalable simulations in generalized coordinates
that use variational integrators to guarantee desirable energy,
momentum, and constraint-satisfying behavior.

The constrained free-body approach to dynamics is the in-
dustry standard in computer graphics, video games, and CAD
software. The algorithms are fast and scalable, typically using
special implementation techniques like the LCP formulation
[3] and sparse matrix methods [4]. They are flexible because
forces are explicitly added to bodies at each time step, making
it straightforward to include anything from friction to springs
to motors. The theory is also accessible because it is based
directly on intuitive force balance methods.

Simulations based on generalized coordinates, on the other
hand, are almost always preferred in controls analysis. We
want to think of a pendulum as an angle, not a body in
SE(3) constrained in 5 degrees of freedom. This is important
for analyzing important system properties like stability and
controllability. However, models in generalized coordinates
are either derived manually (which is irritating, error-prone,
and not scalable) or use algebraic software to automatically
derive symbolic equations of motion (which is less irritating,
less error-prone, only slightly more scalable). Nonetheless,
when a system is simple enough to work with generalized

coordinates, the benefits are usually worth the extra effort and
slower performance.

Equations of motion in generalized coordinates scale poorly
because they repeat a great deal of information. For example,
consider a simulation of a simplified human body, an example
we will consider shortly. The equations for the femur, knee,
shank, ankle, foot, and toes all contain their own copy of
the hip kinematics. The repetition reflects the dependencies
that arise in generalized coordinates. Scalability issues are
compounded by taking derivatives, where repeated application
of the product rule causes the equations to grow quickly.
The constrained free-body approach avoids this repetition
because each body is represented independently. The structural
relationships are enforced by constraint forces instead.

Featherstone [11] showed that using a tree1 representation
and recursive equations for a system eliminates much of the
repetition and explicitly reuses information. In this setting
there areO(n) algorithms (wheren is the number of rigid
bodies in the system) available for simulating the (continuous)
forward dynamics by using these representations.

We advocate the same ideas but use a different tree rep-
resentation based on homogeneous coordinate transforma-
tions. While our method does not yieldO(n) dynamics, the
resulting algorithm is concise, transparent, and extendable.
No modifications are required to handle branching, closed
kinematic chains, or holonomic constraints. Other tree-based
methods[34] also handle closed chains, but modify the dy-
namics to use iterative algorithms that require solving the
inverse kinematics. Additionally, this method can be extended
to obtain the derivatives of the dynamics (i.e. linearizations)
that are needed for many optimal control techniques [14]. We
do not, however, discuss derivatives in this paper beyond those
needed for dynamic simulation.

Another benefit, which we focus on in this paper, is that
this approach allows us to develop variational integrators
for arbitrary systems in generalized coordinates. Variational
integrators are a class of symplectic integrators [13] that
have been developed by the discrete mechanics community.
They preserve (or nearly preserve, depending on the particular
integrator) fundamental properties of mechanical systems like
conservation of energy, conservation of momentum, and the
symplectic form [20]. They also deal with holonomic con-
straints and non-smooth phenomenon like collisions well.

These properties are oftennot preserved in force-balance
simulations (or even continuous Euler-Lagrange mechanics).

1More generally, we may represent a system as a graph with tree descrip-
tions as the subset of directed acyclic graphs [7]. However, the applications
presented in this paper do not derive any immediate benefits to considering
trees from a graph theory perspective, so we do not advocate this perspective
here.
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Fig. 1: This plot shows the total energy of a single link planar
pendulum simulated for 5000 seconds with a time step of
0.01s. The trajectories appear as regions rather than lines
because the variations change rapidly compared to the long
time scale. The variational integrator simulation is shown in
black. TheODEsimulation is shown in gray.

For example, Fig. 1 compares the total energy of a single
pendulum simulated using a variational integrator and ODE.
ODEuses a force-balance method to compute the continuous
dynamics of a system. The variational integrator does not
perfectly conserve energy at each time step, but maintains the
correct average energy. TheODEsolution slowly dissipates
energy over time, slowly leading to an implausible simulation.

While energy conservation does not guarantee an accurate
solution, it is still desirable that a simulation respects known
analytical properties of a system like conservation of energy
and momentum or naturally maintaining constraints. When
these properties are not satisfied, the resulting trajectory is
certainly incorrect, and this is the sense in which we consider
a simulation to be implausible.

Variational integrators also handle holonomic constraints
(expressed ash(q) = 0 for valid configurationsq) better
than continuous methods (Force-balance or Euler-Lagrange).
Holonomic constraints restrict the relative positions and
orientations between bodies. A pin joint is an example of
a holonomic constraint. (Non-holonomic constraints, on the
other hand, restrict relative velocities between bodies rather
than relative positions.) In continuous dynamics, holonomic
constraints generally cannot be implemented directly. Instead,
they are replaced with equivalent higher-order constraints.
The standard approach is to ensure the simulation’s initial
conditions satisfy the constraints and then require everything
to accelerate in a consistent way that (ideally) keeps the
constraints satisfied:

h(q(t)) = 0 ∀ t

⇒

h(q(t0)) = 0
∂h
∂q (q(t0))q̇(t0) = 0
∂h
∂q (q(t))q̈(t) + ∂2h

∂q∂q (q(t)) · (q̇(t), q̇(t)) = 0 ∀ t

Simulations using this approach tend to violate the con-
straints as error is introduced through numeric integration.

To fix this, restoring forces resembling damped springs are
added to each constraint. This adds “magic” parameters (e.g.
the Error Reduction Parameter inODE) that must be tuned
for each simulation (often at the risk of introducing unstable
dynamics for bad choices of parameters) and introduces artifi-
cial energy loss. For highly constrained systems, the losses can
dominate the resulting dynamics (See the scissor lift example
in Sec. VI-C). Variational integrators work with holonomic
constraints directly, avoiding these problems completely.

We begin with a brief overview of homogeneous represen-
tations for rigid body transformations in Sec. II. In Sec. III
we introduce our tree representations for mechanical systems.
Section III-B and Sec. III-C show how to compute positions,
velocities, and their derivatives from the tree. Discrete me-
chanics are introduced in Sec. IV and then used to implement
a variational integrator based on the tree descriptions in
Sec. IV-A. Section IV-B briefly describes how continuous
dynamics can also be derived in this framework. Section IV-C
demonstrates how potential energies are calculated for the
system. Section IV-D and Sec. IV-E extend the variational
integrator to include constraints and non-conservative forcing.
Section V introduces a software package calledtrep (avail-
able athttp://robotics.colorado.edu/trep/) that implements the
presented methods. Finally, Sec. VI presents examples that
demonstrate how these methods scale and compare to other
simulations.

II. H OMOGENEOUSREPRESENTATION

The tree description makes extensive use of homogeneous
representations for coordinate frames and rigid body trans-
formations, so a brief overview is helpful. For an in-depth
discussion on homogeneous representations, see [21].

Homogeneous representations provide a convenient and
uniform way to represent rigid body transformations. A trans-
formation is represented as a matrix inR4×4 comprising a
rotation matrixR and the translational componentsp:

g =
[

R p
0 1

]
R ∈ SO(3), p ∈ R3 (1)

In this setting rigid body transformations can also be thought
of as defining a coordinate frame relative to another coordinate
frame. Thep vector defines the position of the frame’s origin
andR defines the orientation of the coordinate axes.

Homogeneous transformations are composed using standard
matrix multiplication. If gab defines the coordinate transfor-
mation from coordinate frameb to coordinate framea, and
gbc defines the transformation from framec to framea, the
transformation from framec to framea is

gac = gab · gbc
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Points and vectors are represented as elements inR4. Points
are extended fromR3 with an extra 1 component and vectors
are extended with a 0:

p =


x
y
z
1

 v =


x
y
z
0


Points and vectors are also transformed with standard matrix

multiplication.

pa = gab · pb va = gab · vb

We will often make use of a Lie algebra isomorphism
[9] casually called the “hat” operator and its inverse, the
“unhat” operator. These simply change the way we represent
special quantities that show up when working in homogeneous
coordinates, namely body velocities. The “hat” operator takes
a R6 vector to aR4x4 matrix:

x
y
z
a
b
c



∧

7→


0 −c b x
c 0 −a y
−b a 0 z
0 0 0 0


The “unhat” operator(·)∨ simply inverts this operation. Often
we write the hat directly above the variable (e.g.v∧ = v̂). For
more detail, see [21].

Homogeneous representations are useful because they are
generic; the same form is used for translations, rotations, and
compositions thereof. We use this to our advantage by having
a single way to represent the various coordinate frames that
describe a mechanical system. The resulting simplicity is a
major advantage of tree descriptions of mechanical systems.

III. T REE REPRESENTATIONS

The main idea for a tree representation of a mechanical
system is to attach coordinate frames throughout the system
and relate them to one another with simple rigid body trans-
formations. We organize the coordinate frames into a tree so
that each frame has a single parent and zero or more children.
The root of the tree is the stationary world frames. Frames
are defined in space by rigid body transformations from their
parent frame.

In this work, we use only six basic transformations, repre-
sented as elements ofSE(3): translations along and rotations
about the parent’s X, Y, and Z. If a frame is fixed relative to the
parent, the transformation is parameterized by a constant. If the
frame can move, it is parameterized by a unique configuration
variable. The set of all configuration variables forms the
generalized coordinates for the system.

Fig. 2 is an example tree description for a planar human.
Note that coordinate frames do not necessarily have to have an
associated mass so we can define as many frames as needed for
the particular application. Consequently, a tree representation
is not unique. There are an infinite number of representations
for a given system.

Spatial

g0 : Tx(q0)

g1 : Ty(q1)

g2 : Rz(q2)

g3 : Rz(q3)

gA : Ty(1

2
L2)

gB : Ty(L2)

g4 : Rz(q4)

gC : Ty(
1

2
L3)

g5 : Rz(q5)

. . .

gD : Ty(L4)

g6 : Rz(q6)

gE : Ty(1

2
L4)

gF : Ty(L1)

g7 : Rz(q7)

gG : Ty(
1

2
L5)

g8 : Rz(q8)

. . .

g2

gA

gC

gE

gG

Fig. 2: A planar human is represented with a tree structure.
Note that although we are restricted to simple transformations,
we can represent complex mechanical systems by composing
multiple transformations.

Fig. 2 also establishes the naming convention used through-
out the paper. Transformations that are parameterized by
constants are indexed with letters (e.g.,gA(1.0)). Variable
transformations are indexed by numbers and are parameterized
by the corresponding configuration variable (e.g.,g1(q1)).

We impose the following requirements on the tree descrip-
tion:

R1. Frames are related to their parents through six basic
transformations: Translations along the parent’s X, Y,
and Z axes and rotations about the parent’s X, Y, and Z
axes.

R2. Each configuration variable is used in only one trans-
formation and each transformation only depends on one
parameter or configuration variable.

Together, these two requirements establish a one-to-one
mapping between configuration variables and variable transfor-
mations. They are not absolutely necessary for this approach,
but they significantly simplify the discussion, notation, and
equations without significantly restricting the systems that can
be represented.

The basic transformations defined by R1 are parameterized
by single real-valued numbers: configuration variables for
moving joints and constant numbers for fixed joints. This
requirement leads to simplifications and leads to uniform gen-
eralized coordinates consisting only of real-valued numbers.

The practical consequence of R1 is disallowing direct SO(3)
parameterizations for free rotations. Instead, we represent free
rotation with multiple single-axis rotations (e.g. Euler angles).
This requirement can be removed if one is willing to handle
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the extra book-keeping involved.2

R2 prevents using the same configuration variable to drive
multiple transformations, which is useful for modeling systems
with parallel linkages. Parallel linkages and closed chains are
instead handled by connecting open chains with holonomic
constraints.

Table I defines the notation used throughout the paper. We
will typically drop the explicit dependence onq and qk for
visual clarity (e.g.gs,k rather thangs,k(q)).

TABLE I: Notation used for the tree representation.

qi(t) ∈ R Configuration variable of thei-th frame.
q̇i(t) ∈ R = d

dt
qi(t) Time derivative of thei-th configuration vari-

able.
q(t) ∈ Rn Configuration vector comprisingq0, q1, ... ,

qn.
mi Mass of thei-th frame.

Mi ∈ R6x6 Inertia Tensor of thei-th mass in body-fixed
coordinates.

gi(qi) ∈ SE(3) Transformation of thei-th frame to its parent
frame.

gs,i(q) ∈ SE(3) Transformation from thei-th frame to the
spatial reference frames.

gj,i(q) ∈ SE(3) Transformation thei-th frame to the j-th
frame.

vb
s,i ∈ TeSE(3) Body velocity (i.e., an element of the Lie

algebra) of thei-th frame relative to the spatial
reference frames.

ps,i(q) ∈ R3 Position of thei-th frame relative to the spatial
reference frame. The position is obtained by
extracting the upper right components in (1)
from gs,i.

anc(i) The ancestors of the thei-th frame are the
frames passed while moving up the tree from
the i-th frame to the spatial frame. For exam-
ple, frame 6 (above) has ancestors{2, 1, s}.

par(i) Immediate parent frame of thei-th frame. For
example, the parent of frame 6 (above) is frame
2.

g′k = ∂
∂qk

gk Notation for the derivative of a transformation
of the i-th frame to its parent frame.

ġk = ∂
∂t

gk Notation for the time derivative of a transfor-
mation of thei-th frame to its parent frame.

A tree representation of a mechanical system provides a

2We emphasize that both requirements can be removed and more general,
yet more complicated, equations derived. The expanded equations are not
particularly complex themselves, but they require more specific notation
and extra bookkeeping, so they are avoided here for clarity. Using SO(3)
parameterizations, for example, requires adding constraints on the nine matrix
elements to ensure the SO(3) matrix remains orthogonal [21].

clean way to organize and describe the system’s structure.
From this description, we can find positions, velocities, and
derivatives of the coordinate frames in the system. These
provide a foundation for doing operations like dynamic simu-
lation, trajectory exploration, and analysis.

The position, velocities and their derivatives are found in
the following sections as recursive, piecewise equations. The
piecewise equations in this paper have a specific ordering. For
cases that can be simultaneously satisfied, the top-most case
always takes precedence.

A. Lower and Higher Pairs

The six basic transformations can be combined to create
the canonical lower and higher pair joints [30]. The six lower
pairs are revolute joints, prismatic joints, cylindrical joints,
helical joints, spherical joints, and plane pairs. A revolute
joint is simply one of the three rotation transformations. A
prismatic joint is one of the three translation transformations.
A cylindrical joint is a rotation transformation followed by
a translation along the same axis (e.g.Rx(q1)Tx(q2)). A
helical joint is modeled with a cylindrical joint with an added
constraint (see Sec. IV-D5). A spherical joint is modeled
with three successive rotations about different axes (e.g.
Rz(q1)Ry(q2)Rx(q3)). Finally, a plane pair is modeled with
two translational transformations followed by a rotational
transformation (e.g.Tx(q1)Ty(q2)Rz(q3)).

The two common higher pairs are gear and cam pairs. A
simple gear pair can be modeled with two rotations and a
constraint on the configuration variables. A simple cam pair
can be modeled with a rotation and a translation followed by
a rotation along with a constraint.

More complicated mechanisms are modeled using the same
approach. The system is designed with enough transformations
to get the necessary degrees of freedom, and then constraints
are added to create the proper kinematic relationships.

We could also model joints by adding new types of trans-
formations. In particular, it is possible to add a transformation
where the user specifies a twist that generates a parameterized
element ofSE(3)[21]. This would allow direct modeling of
screw joints for example. The necessary derivatives could still
be automatically calculated and the rest of the algorithm would
remain unchanged. We have instead chosen to limit ourselves
to a basic set in order to facilitate automation and a simple
implementation.

B. Frame Positions

The rigid body transformation from any frame to the spatial
reference frame is a straightforward calculation, given the
tree representation. For the spatial reference frame, it is the
identity transformation,I. Otherwise, for framek, it is the
parent frame’s transformationgs,par(k) composed with the
local transformationgk. This is expressed as a piecewise
expression forgs,k(q):

gs,k(q) =

{
I k = s

gs,par(k)gk k 6= s
(2)
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Eq. (2) evaluates the transformation from any frame to the
spatial frame using only the local transformations and itself
recursively. The recursion is guaranteed to terminate on the
k = s condition because the tree is by definition acyclic. Each
recursive call gets closer to the root node. The same is true
for the remaining recursive equations that are derived from the
tree.

The compact form of (2) is useful on its own, but it is
particularly nice because we can find derivatives and end up
with similarly simple equations. The derivative of (2) with
respect to a configuration variableqi is found with the standard
derivative:

∂
∂qi

gs,k(q) =

{
∂

∂qi
I k = s

∂
∂qi

(
gs,par(k)gk

)
k 6= s

=


0 k = s

∂
∂qi

(
gs,par(k)

)
gk

+gs,par(k)
∂

∂qi
gk

k 6= s

The two requirements R1 and R2 help to further simplify this
expression. R1 guarantees∂∂qi

gk = 0 wheni 6= k. R2 implies
∂

∂qi
gs,par(i) = 0 since gi(q) is the only transformation that

depends onqi. Furthermore, we know that ifgi is not an
ancestor ofgk, the derivative is always zero:

∂
∂qi

gs,k(q) =


0

k = s

i /∈ anc(k)
∂

∂qi

(
gs,par(k)

)
gk i 6= k

gs,par(k)g
′
k i = k

(3)

whereg′k = ∂
∂qk

gk(qk). Using (2) and (3), we can numerically
compute theexact derivative of any coordinate frame with
respect to any configuration variable in the system. Note
that the derivative expression remains relatively simple and
compact. The mixed partial derivative with respect toqi and
qj is calculated using the same procedure.

∂2

∂qj∂qi
gs,k(q) =



0
k = s

i /∈ anc(k)
j /∈ anc(k)

gs,par(k)g
′′
k i = k = j

∂
∂qj

[gs,par(k)]g′k i = k 6= j
∂

∂qi
[gs,par(k)]g′k i 6= k = j

∂2

∂qj∂qi
[gs,par(k)]gk i 6= k 6= j

(4)

Eq. (4) uses itself recursively along with (2) and (3) to
evaluate second derivatives of the rigid body transformations.
For the applications discussed in this paper, these are the only
derivatives needed. However, we emphasize that this procedure
can be continued to get higher derivatives as needed. One
simply takes normal derivative and uses R1 and R2 to separate
and simplify the various cases.

C. Frame Body Velocities

The body velocity is the relative motion of a coordinate
frame with respect to the stationary world frame, but expressed
in the frame’s local coordinates. It is calculated as the velocity

of the parent frame, transformed3 into local coordinates, plus
the velocity of the frame with respect to the parent,g−1

k ġk:

v̂b
s,k(q, q̇) =

{
0 k = s

g−1
k v̂b

s,par(k)gk + g−1
k ġk k 6= s

where ġk = ∂
∂tgk. For the transformations defined in R1, the

local velocity termg−1
k ġk reduces to a special form using a

twist ξ̂ [21]. The twist is constant (i.e. it does not depend on
the configuration) for each type of transformation:

v̂b
s,k(q, q̇) =

{
0 k = s

g−1
k v̂b

s,par(k)gk + ξ̂k q̇k k 6= s
(5)

Taking the same approach used earlier, we find derivative
expressions.
∂

∂qi
v̂b

s,k(q, q̇) =
0

k = s

i /∈ anc(k)
g−1′

k v̂b
s,par(k)gk + g−1

k v̂b
s,par(k)g

′
k i = k

g−1
k

∂
∂qi

v̂b
s,par(k)gk i 6= k

(6)

Eq. (6) is evaluated recursively with itself, the local rigid body
transformations, and (5).

∂2

∂qj∂qi
v̂b

s,k(q, q̇) =

0
k = s

i /∈ anc(k)
j /∈ anc(k)

g−1′′
k v̂b

s,par(k)gk + 2g−1′
k v̂b

s,par(k)g
′
k

+ g−1
k v̂b

s,par(k)g
′′
k

i = k = j

g−1′
k

∂
∂qi

v̂b
s,par(k)gk + g−1

k
∂

∂qi
v̂b

s,par(k)g
′
k i 6= k = j

g−1′
k

∂
∂qj

v̂b
s,par(k)gk + g−1

k
∂

∂qj
v̂b

s,par(k)g
′
k i = k 6= j

g−1
k

∂2

∂qj∂qi
v̂b

s,par(k)gk i 6= k 6= j

(7)

Eq. (7) is evaluated using itself, local rigid body transfor-
mations, (5), and (6). We are also interested in derivatives of
body velocities with respect to the configuration variable time
derivatives.

∂
∂q̇i

v̂b
s,k(q, q̇) =


0

k = s,

i /∈ anc(k)
ξ̂k i = k

g−1
k

∂
∂q̇i

v̂b
s,par(k)gk i 6= k

(8)

∂2

∂q̇j∂q̇i
v̂b

s,k(q, q̇) = 0 (9)

We can also find mixed partial derivatives with respect to
configuration variablesqi and their time derivativeṡqi.

3Note that the similarity transformg−1
k v̂b

s,par(k)
gk could be replaced by

an “Adjoint” Adgkvb
par(k)

transformation [21]. Indeed, all the following
equations can be modified to use their intrinsic counterparts. However, we
focus here on as transparent an approach as possible and do not use any
differential geometric formality.
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∂2

∂q̇j∂qi
v̂b

s,k(q, q̇) =


0

k = s

k = j,

i /∈ anc(k)
j /∈ anc(k)

g−1′
k

∂
∂q̇j

v̂b
s,par(k)gk + g−1

k
∂

∂q̇j
v̂b

s,par(k)g
′
k k = i

g−1
k

∂2

∂q̇j∂qi
v̂b

s,par(k)gk k 6= i

(10)

Eq. (2) through (10) demonstrate how we calculate the
forward kinematics and derivatives from a tree description.
As will be discussed later, these equations provide all the
necessary values for simulating the system dynamics. Other
applications, such as trajectory exploration in optimal con-
trol or nonlinear controllability analysis, may require higher
derivatives. That these derivatives can be found by continuing
this procedure (and that they remain simple themselves) is a
major advantage of this method.

D. Primitive Transformations

Eq. (2) through (10) include terms that we have not ex-
plicitly shown how to calculate (i.e.gk, g′k, g′′k , g−1

k , g−1′
k ,

g−1′′
k , and ξk). These are found manually for each of the

primitive transforms (defined in R1). For example, the values
for a rotation about theZ axis are:

Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



R′
z(θ) =


− sin θ − cos θ 0 0
cos θ − sin θ 0 0

0 0 0 0
0 0 0 0



R′′
z (θ) =


− cos θ sin θ 0 0
− sin θ − cos θ 0 0

0 0 0 0
0 0 0 0


Higher derivatives for the six transformations in R1 can
easily be parameterized. The derivatives of translations are
zero for the second derivatives and higher. The derivatives of
rotations are cyclic (e.g.R(4) = R). We can therefore find the
expression for thenth derivative arbitrarily.

For the six transformations given in R1, the inverse is always
the same transformation but by the opposite amount (g−1(x) =
g(−x)):

R−1
x (θ) = Rx(−θ)

R−1′
x (θ) = −R′

x(−θ)
R−1′′

x (θ) = R′′
x(−θ)

The twistξRz is a bit more work.

ξ̂Rz θ̇ = R−1
z (θ)Ṙz(θ)

= R−1
z (θ)R′

z(θ)θ̇

ξ̂Rz = R−1
z (θ)R′

z(θ)

=


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


⇒ ξRz =

[
0 0 0 0 0 1

]T
Later equations also make use of the position of a coordinate

frame’s origin relative to the spatial world frame. The position
ps,k of a frame is trivially obtained by extracting the upper
right components from the correspondinggs,k transformation
in (2). Derivatives ofps,k are similarly extracted from the
corresponding derivative ofgs,k in (3) and (4).

E. Performance

There are two notes on the performance of evaluating
the above equations. Values are frequently reused in these
calculations. For example,gs,k(q) may be evaluated once for
itself, once for each of its descendants’ positions, and then
again for derivative values. However, once it is evaluated, it
is constant until a new configuration is written to the tree.
We can therefore save the first result and reuse it until a
new configuration is written. This avoids recursing all the
way to the base of the tree in every calculation, essentially
flattening (2) through (10). This technique is called caching
and significantly improves performance.

The second and more technical note is that (2) through
(10) involve only 4x4 matrix operations (multiplication and
addition). Modern computers typically have special hardware
support (SIMD instructions, graphics accelerators) for the
same 4×4 matrix operations because of their importance in
computer graphics and multimedia applications. Current im-
plementations are typically limited to 32- or 64-bit precision,
but future hardware is likely to support full 80-bit precision
that can be used to greatly improve performance without
sacrificing accuracy or modifying the tree description and
algorithms.

With the caching optimization in particular, the tree equa-
tions scale to large systems well enough that we can use a tree
description as a basis for fast and accurate dynamic simulation.

IV. D ISCRETEMECHANICS

It is useful to consider continuous Lagrangian mechanics
before introducing discrete mechanics and variational inte-
grators. Lagrangian mechanics use Hamilton’s Least Action
Principle to derive the equations of motion for a system from
an abstract quantity called the Lagrangian. The Lagrangian
L(q, q̇) is defined as the system’s kinetic energy minus its
potential energy.

L(q, q̇) =
∑

k

Tk(q, q̇)−
∑

k

Vk(q)
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where q is the state configuration vector anḋq is its time
derivative. For a tree description,q is the vector of all variables
used to parameterize coordinate transformations. Common
potentials include gravity and springs. Examples of both are
discussed later.

The kinetic energy,Tk(q, q̇), takes on a particularly nice
form if we define a coordinate frame at each center of mass
and align the axes with the body’s principal axes[8][24]. In
this case, the inertia matrix is a constant 6x6 diagonal matrix
and the kinetic energy is written asTk(q, q̇) = 1

2vbT
s,kMkvb

s,k

(recalling thatvb is the body velocity) where the inertia matrix
is

Mk =


mk 0 0 0 0 0
0 mk 0 0 0 0
0 0 mk 0 0 0
0 0 0 Ixx,k 0 0
0 0 0 0 Iyy,k 0
0 0 0 0 0 Izz,k


The resulting Lagrangian is:

L(q, q̇) =
∑

k

1
2vbT

s,kMkvb
s,k −

∑
k

Vk(q) (11)

Note that givenVk(q), (11) can be numerically evaluated
from a tree description using (5). We continue to assume that
Vk(q) and derivatives are known. Their actual computation is
discussed in Sec. IV-C. The Lagrangian (11) has an associ-
ated quantity called the Action which is the integral of the
Lagrangian along a trajectory.

S(q([t0, tf ])) =
∫ tf

t0

L(q(τ), q̇(τ))dτ (12)

The Least Action principle states that the system will
naturally follow the trajectory that minimizes4 the action. A
variational principle is used to minimize (12) to get the Euler-
Lagrange equations [19]:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = 0 (13)

This is a second order differential equation that can be
integrated to simulate the system and obtain a trajectory
q(t) from a set of initial conditionsq(t0) and q̇(t0). How-
ever, numeric integration introduces error in the simulated
trajectory. Since the dynamics are treated as generic ordinary
differential equations, the error is introduced in ways that do
not preserve important mechanical properties like conservation
of energy and momentum. Additional features like constraints
also perform poorly and exhibit unrealistic behavior like
objects ‘sinking’ into hard surfaces [27].

Recent research has found that explicitly including the
discrete approximations at a more fundamental level of the
dynamics derivation leads to integration schemes that respect
the fundamental symmetries in dynamics.5 This approach is

4To be rigorous, the Least Action Principle states that the action should be
extremized, not minimized. While in practice it is almost always minimized
(hence the name Least Action Principle), the distinction should be remem-
bered.

5There are also specially designed numeric integrators for continuous
dynamics that preserve the same properties (e.g. the Newmark scheme). It
has been shown that these special integrators can often be derived from a
variational integrator by choosing a particular discrete Lagrangian [31].

t0 t1 t2 t3 t4 t5 t6 t7 t8 tf

L
(q

,
q̇
)

(a) Left Approximation

t0 t1 t2 t3 t4 t5 t6 t7 t8 tf

L
(q

,
q̇
)

(b) Midpoint Approximation

t0 t1 t2 t3 t4 t5 t6 t7 t8 tf

L
(q

,
q̇
)

(c) Right Approximation

t0 t1 t2 t3 t4 t5 t6 t7 t8 tf

L
(q

,
q̇
)

(d) Trapezoidal Approximation

Fig. 3: The discrete Lagrangian approximates segments of the
continuous action integral. The area of each shaded region
represents a value of the discrete Lagrangian.

called discrete mechanics and the resulting integrators are
known as Variational Integrators [16]. Variational integrators
conserve (or nearly conserve, depending on the particular
integrator) fundamental quantities like momentum and energy
[17]. They are also well suited for problems involving holo-
nomic constraints, impacts, and non-smooth phenomenon [12].

In discrete mechanics, we find a sequence
{(t0, q0), (t1, q1), . . . , (tn, qn)} that approximates the
continuous trajectory of a mechanical system (qk ≈ q(tk)).
We assume a constant time step (tk+1 − tk = ∆t ∀ k) for
simplicity, but in general the time step can be varied to
use adaptive time stepping algorithms. For example, [20]
describes a method that adapts the time step to maintain
perfect energy conservation.

To derive a variational integrator, we define a discrete
Lagrangian that approximates the action integral over a short
interval.

Ld (qk, qk+1) ≈
∫ tk+1

tk

L(q(τ), q̇(τ))dτ

Figure 3 shows several choices of approximations to deter-
mine the discrete Lagrangian. The order of accuracy for the
approximation is directly related to the order of accuracy for
the resulting trajectory [20].

The discrete Lagrangian replaces the system’s action inte-
gral with an action sum.

S(q([t0, tf ])) =
∫ tf

t0

L(q(τ), q̇(τ))dτ ≈
n−1∑
k=0

Ld (qk, qk+1)

(14)
The action sum is minimized with a variational principle

to get an implicit difference equation, analogous to the Euler-
Lagrange equations in (13), called the Discrete Euler-Lagrange
(DEL) equation.

D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0 (15)

where Dnf(. . . ) is the derivative off(. . . ) with respect to
its n-th argument. This is known as theslot derivative. Note
that the derivation of (15) is analogous to the approach used
to derive the continuous dynamics equation (13).

Whereas the continuous Euler-Lagrange equation is an
ODE that is integrated to find the trajectory of the system,
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the discrete Euler-Lagrange equation (15) presents a root-
finding problem to get the next configuration. Given two initial
configurationsq0 andq1, we solve

f(qk+1) = D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0 (16)

to determineq2. We then move forward and iterate to find
q3, q4, . . . , qN . The resulting sequence is the discrete trajec-
tory. This procedure is illustrated in Fig. 4.

q0 q1 q2 q3 . . .

Step 1

Step 2

Step 3

Fig. 4: A root finder solves the discrete Euler Lagrange
equation to determine the next configuration from the previous
and current configurations. This process is iterated to find the
entire trajectory.

A. Creating a Variational Integrator

There are generally two common approaches to implement
a variational integrator.6 In the first, one explicitly finds the
equations of motion (the discrete Euler-Lagrange equation)
manually or with symbolic algebra software. For large systems
the complexity essentially requires a symbolic algebra package
such asMathematica, but such tools only make the task
possible in a formal sense. Realistically, the equations become
so large and complex that they are impractical to manipulate.

Alternatively, the system can be described using a special
choice of coordinates that result in special Lagrangian forms
[15]. The most common examples are treating everything as a
point mass (L(q) = q̇T Mq+V (q)) [18] or treating each body
as being free in space and imposing the mechanical structure
through constraints [6]. Integrators based on these forms have
excellent performance because of their simplicity, but lose the
benefits and convenience of generalized coordinates.

With the tree description,we can achieve comparable
performance and still work in generalized coordinates. The
integrator works for arbitrary systems, not dependent on sym-
bolic algebra software, and by taking advantage of caching,
performance scales very well.

We begin by considering (16). At each time step, we
must solvef(qk+1) = 0. The Newton-Raphson root finding
algorithm [25] performs very well for this problem. The
Newton-Raphson root solver uses a linear model function
to iteratively improve the estimated root until a satisfactory
solution is found:

Seedqk+1 = qk

while f(qk+1) 6= 0 do
z = −Df−1(qk+1) · f(qk+1)
qk+1 = qk+1 + z

return qk+1

(17)

6Though we focus on variational integrators, this discussion largely applies
to continuous Lagrangian mechanics.

This algorithm requires that the derivativeDf(·) is avail-
able:

Df(qk+1) = D2D1Ld (qk, qk+1) (18)

We must now choose a discrete Lagrangian to implement
(16) and (18). A common choice is the generalized midpoint
approximation [32].

Ld(qk, qk+1) = L
(
(1− α)qk + αqk+1,

qk+1−qk

∆t

)
∆t (19)

whereα ∈ [0, 1] is an algorithm parameter andα = 1
2 leads to

second order accuracy [32]. Figures 3a, 3b, and 3c correspond
to (19) with α = 0, α = 1

2 , andα = 1, respectively.
We find derivatives of (19) using the chain rule:

D1Ld(qk, qk+1) =

∂

∂q
L

(
(1− α)qk + αqk+1,

qk+1 − qk

∆t

)
(1− α)∆t−

∂

∂q̇
L

(
(1− α)qk + αqk+1,

qk+1 − qk

∆t

) (20)

D2Ld(qk−1, qk) =

∂

∂q
L

(
(1− α)qk−1 + αqk,

qk − qk−1

∆t

)
α∆t+

∂

∂q̇
L

(
(1− α)qk−1 + αqk,

qk − qk−1

∆t

) (21)

D2D1Ld(qk, qk+1) =

∂2

∂q∂q L
(
(1− α)qk + αqk+1,

qk+1−qk

∆t

)
(1− α)α∆t+

∂2

∂q̇∂q L
(
(1− α)qk + αqk+1,

qk+1−qk

∆t

)
(1− α)−

∂2

∂q∂q̇ L
(
(1− α)qk + αqk+1,

qk+1−qk

∆t

)
α−

∂2

∂q̇∂q̇ L
(
(1− α)qk + αqk+1,

qk+1−qk

∆t

)
1

∆t

(22)

Eq. (20), (21), and (22) allow us to calculate (16) and (18)
in terms of the continuous Lagrangian and its derivatives.

We continue by finding the necessary derivatives of the
continuous Lagrangian (11):

∂L

∂qi
=

∂

∂qi

[∑
k

1
2vbT

s,kMkvb
s,k −

∑
k

Vk(q)

]

=
∑

k

[
1
2

∂vb
s,k

∂qi

T

Mkvb
s,k + 1

2vbT
s,kMk

∂vb
s,k

∂qi

]
−
∑

k

∂Vk

∂qi
(q)

=
∑

k

vbT
s,kMk

∂vb
s,k

∂qi
−
∑

k

∂Vk

∂qi
(q) (23)

Eq. (23) is evaluated from the tree structure using (5) and (6).
The remaining derivatives are found similarly.

∂2L
∂qi∂qj

=

∑
k

[
∂vbT

s,k

∂qj
Mk

∂vb
s,k

∂qi
+ vbT

s,kMk

∂2vb
s,k

∂qi∂qj

]
−
∑

k

∂2Vk

∂qi∂qj
(q) (24)

Eq. (24) is evaluated from the tree description using (5), (6),
and (7).

∂L

∂q̇i
=
∑

k

vbT
s,kMk

∂vb
s,k

∂q̇i
(25)
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Eq. (25) is evaluated from the tree using (5) and (8).

∂2L

∂qi∂q̇j
=
∑

k

[
∂vbT

s,k

∂q̇j
Mk

∂vb
s,k

∂qi
+ vbT

s,kMk

∂2vb
s,k

∂qi∂q̇j

]
(26)

Eq. (26) is evaluated from the tree structure using (5), (6), (8),
and (10).

∂2L

∂q̇i∂q̇j
=
∑

k

[
∂vbT

s,k

∂q̇j
Mk

∂vb
s,k

∂q̇i
+ vbT

s,kMk

∂2vb
s,k

∂q̇i∂q̇j

]
(27)

Eq. (27) is evaluated from the tree using (5), (8), and (9).
Once (23) - (27) can be evaluated, we can completely evaluate
(20), (21), and (22) and, therefore, implement a variational
integrator for an arbitrary tree description. The user only needs
to provide a tree description and two initial configurations to
simulate the system.

B. Continuous Lagrangian Dynamics

We note that this approach also works for the continu-
ous dynamics in generalized coordinates. The Euler-Lagrange
equation (13) is expanded using the chain rule:

∂2L

∂q̇∂q̇
q̈ +

∂2L

∂q∂q̇
q̇ − ∂L

∂q
= 0 (28)

where the Lagrangian’s dependence onq and q̇ has been
dropped. This is similar to the standard form,M(q)q̈ +
C(q, q̇)q̇ + V (q) = 0, but left in terms of the Lagrangian.
If the operator ∂2L

∂q̇∂q̇ is invertible7, (28) can be solved for̈q:

q̈ =
(

∂2L

∂q̇∂q̇

)−1(
∂L

∂q
− ∂2L

∂q∂q̇
q̇

)
(29)

We can evaluate the above using (23), (26), and (27).
A standard numeric integration package such as MATLAB
integrates (29) to simulate the system. Again, this avoids
explicitly calculating the equations of motion, which tend to
be intractably large for complex systems.

Comparing (29) to the discrete algorithm (17) highlights an
similarity between the two methods. Both algorithms require
large matrix inversions to solve the dynamics. In both cases,
we can detect a singular matrix and abort the simulation.

C. Potential Energies

Potential energies are included in the simulation through
the generalized termsV (q) and their derivatives. Each type
of potential energy has a different form forV (q). These
are implemented manually, but in a way that uses the tree
calculations and makes them applicable to arbitrary systems.
This technique provides a great deal of flexibility for including
potentials.

The common potential energies encountered in mechanical
systems are gravity and springs. We demonstrate a basic
gravity model and linear spring.

7This is the system’s inertia tensorM(q) expressed in generalized coordi-
nates.

1) Gravity: We commonly use the simple model of gravity
for mechanical systems:

F = m~g

where~g is the gravity vector, typically[0 0 − 9.81]T . The
potential created by this force as applied to a mass at point
ps,k(q) is:

V (q) = −mk~g · ps,k (30)

The two derivatives are straightforward:

∂V
∂qi

(q) = −mk~g · ∂
∂qi

ps,k (31)

∂2V
∂qi∂qj

(q) = −mk~g · ∂2

∂qi∂qj
ps,k (32)

Eq. (30), (31), and (32) are evaluated using (2), (3), and
(4) from a tree description. Typically, we would automatically
add a gravity potential for every mass in the system. For
more exotic simulations, however, we might selectively add
this gravity model for some masses and a different model for
others. In this way the approach is very flexible.

This same approach can be taken for the nonlinear gravity
model (F = −Gm1m2

r2 r̂) commonly used in celestial mechan-
ics.

2) Springs: Suppose we have a linear spring with spring
constantk and natural lengthx0 connecting two pointsp1

andp2. The potential energy for the spring is

V (q) = 1
2k(x− x0)2

wherex is the distance betweenp1 and p2. The derivatives
are found manually:

∂V
∂qi

(q) = k (x− x0) ∂x
∂qi

∂2V
∂qi∂qj

= k ∂x
∂qj

∂x
∂qi

+ k (x− x0) ∂2x
∂qi∂qj

The spring lengthx is

x(q) = (~vT~v)
1
2

where~v = p1 − p2. The derivatives are found:

∂x
∂qi

(q) = x−1~vT ∂~v
∂qi

∂2x
∂qi∂qj

(q) = − 1
2x−2 ∂x

∂qj
~vT ∂~v

∂qi
+

x−1 ∂~v
∂qj

T ∂~v
∂qi

+

x−1~vT ∂2~v
∂qi∂qj

Finally, the spring vector~v and its derivatives are found:

~v(q) = p1 − p2 (33)

∂~v
∂qi

(q) = ∂p1
∂qi

− ∂p2
∂qi

(34)

∂2~v
∂qi∂qj

(q) = ∂2p1
∂qi∂qj

− ∂2p2
∂qi∂qj

(35)

Eq. (33) through (35) are evaluated with (2), (3), and (4)
from the tree representation. This same approach is taken to
include nonlinear springs, torsional springs, etc.
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D. Constraints

Both continuous and discrete Lagrangian mechanics can
include constraints in the system. The tree representation
does not change how constraints are included, but can help
in calculating the necessary values. Similarly, the constraints
do not change the tree representation at all. The constraints
depend on the values provided by tree, but the tree does not
depend on the constraints.

In discrete mechanics, we typically only deal with holo-
nomic constraints and therefore do not discuss non-holonomic
constraints here. However, [5] shows how to do this, and that
technique could be implemented using the method presented in
the present work. A holonomic constraint restricts the system
to a sub-manifold of the configuration. Holonomic constraints
are defined ash(q) = 0 ∈ R for valid configurations. A system
may be subject to many holonomic constraints at once. These
are grouped together as a vector of the individual constraints:

h(q) =


h1(q)
h2(q)

...
hm(q)

 ∈ Rm

1) Continuous Constrained Dynamics:The constrained
Euler-Lagrange equations are derived by minimizing the action
S(q(·)) subject to the constrainth(q(τ)) = 0 ∀ τ ∈ [t0, tf ].
The derivation [19] yields the constrained Euler Lagrange
equations:

∂2L

∂q̇∂q̇
q̈ +

∂2L

∂q∂q̇
q̇ − ∂L

∂q
= ∂h

∂q

T
(q)λ (36a)

∂2h
∂q∂q (q) · (q̇, q̇) + ∂h

∂q (q)q̈ = 0 (36b)

Note that the original constrainth(q) doesn’t directly appear
in (36). Instead, the holonomic constraints are enforced in
(36b) as constraints on the acceleration. This often leads to
errors that slowly creep into the simulation during numeric
integration. As the error grows, the constraints are increasingly
violated.

Special techniques, such as projecting the system into the
constraint sub-manifold or introducing damped-spring restor-
ing forces, are used to fix this but these tend to add or remove
energy from the system and introduce simulation parameters
that have to be adjusted for individual scenarios. Bad choices
for these parameters can introduce unstable dynamics.

2) Discrete Constraint Dynamics:The constrained varia-
tional integrator is derived by minimizing the discrete action
sum (14) subject toh(qk) = 0 ∀ k = 0 . . . N . This leads to
the constrained DEL equations [20]:

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = DhT (qk)λk

h(qk+1) = 0

We now haven + m non-linear equations to solve in terms
of qk+1 andλk. We define a new equation for the root solver:

f

([
qk+1

λk

])
=
[
D2Ld(qk−1, qk) + D1Ld(qk, qk+1)−DhT (qk)λk

h(qk+1)

]

and find the necessary derivative:

Df

([
qk+1

λk

])
=
[
D2D1Ld(qk, qk+1) −DhT (qk)

Dh(qk+1) 0

]
The discrete integrator enforcesh(qk) = 0 directly at every

time step. This eliminates the aforementioned error creep and
results in trajectories that always satisfy the constraint.

From the above, constraints are included in the simulation
by providing h(q) and Dh(q) for each type of constraint.8

In the following sections, we present several constraints as
examples.

3) Wire Constraint: A wire constraint holds two points at
a fixed distance apart, as if they are connected by a stiff wire.

Suppose we have two pointsp1(q), p2(q) ∈ R3 to be a fixed
distanceL ∈ R apart. The constrainth(q) is

h(q) = 0

= ||p1 − p2||2 − L2

= (p1 − p2)
T (p1 − p2)− L2 (37)

The above is evaluated using (2) from a tree representation.
The derivative is found manually

∂h

∂qi
(q) = ∂

∂qi

(
(p1 − p2)

T (p1 − p2)− L2
)

= 2 (p1 − p2)
T
(

∂p1
∂qi

− ∂p2
∂qi

)
(38)

and is evaluated using (2) and (3).
Again, by implementing (37) and (38) and providing a

way to define the constraint, the simulator can use the wire
constraint in arbitrary systems.

4) Point Constraint : Another common holonomic con-
straint is for two points to be coincident. This can be used, for
example, to create a pin or spherical joint holding two parts
together.

A natural approach is to use the wire constraint from above
with L = 0. However, this introduces singularities because
the constraint force direction (determined by (38)) is zero (or
numerically near zero) when the constraint is satisfied.

Instead, we declare multiple constraints, each with a fixed
direction. In this case, each constraint requires the distance
between two points along an axis to be zero:

h(q) = n̂ · (p1 − p2)

where n̂ is the direction of the constraint. Termsp1 and p2

are the two points to be constrained and are calculated from
(2).

The derivative

∂h
∂qi

(q) = n̂ ·
(

∂p1
∂qi

− ∂p2
∂qi

)
is evaluated using (2) and (3).

To connect two points, we define multiple constraints with
orthogonal directions. For example, to connect two points
in R3, we define three constraints with linearly independent
directions (e.g.[1, 0, 0], [0, 1, 0], and [0, 0, 1]). We could also
redefine the constraint so thatn̂ is specified relative to one of
the coordinate frames associated withp1 or p2.

8The continuous case also requiresD2h(q), but we focus on the discrete
case.
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5) Screw Constraint :One limitation of the proposed six
primitive transformations is they cannot naturally represent
screw joints. However, we can build a screw joint by using
constraints.

A screw motion is a rotation about an axis by an angleθ
followed by a translation along the same axis by a distance
d. The ratio of the distance to the angle is called the pitch
p = d/θ [21].

We define the constraint equation:

h(q) = pqθ − qd (39)

whereqθ is a configuration variable that is parameterizing a
rotation andqd is a configuration variable that is parameteriz-
ing a translation.

The derivative is:

∂h

∂qi
(q) =


p i = θ

−1 i = d

0 d 6= i 6= θ

(40)

To set up a screw joint, we create a frame with a rotation
about an axis and add a child that translates along the same
axis:

. . .

g0 : Rx(q0)

g1 : Tx(q1)

. . .

A screw constraint is created usingq0 for qθ and q1 for qd.
The resulting system will model a screw joint.

E. Forcing

Another common extension to Lagrangian mechanics is
external forcing. Forcing is used to include dissipation (e.g.
friction), control inputs (e.g. motor torque), and other effects.
The Lagrange d’Alembert principle is used to introduce exter-
nal forcing to the continuous Euler-Lagrange equation [19]. A
forcing term is added to the action integral:

δ

∫ tf

t0

L(q(τ), q̇(τ)) dτ +
∫ tf

t0

fc(q(τ), q̇(τ), τ) · δq dτ = 0

wherefc(q, q̇, t) is the total external forcing expressed in the
system’s generalized coordinates. This derivation leads to the
forced Euler-Lagrange equation:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = fc(q, q̇, t)

In discrete mechanics, we approximate the continu-
ous force fc(q, q̇, t) with left and right discrete forces
f−d (qk, qk+1, tk, tk+1) andf+

d (qk, qk+1, tk, tk+1) such that:

f−d (qk, qk+1, tk, tk+1) ·δqk +f+
d (qk, qk+1, tk, tk+1) ·δqk+1

≈
∫ tk+1

tk

fc (q(τ), q̇(τ), τ) · δq dτ

F =

















fx

fy

fz

τx

τy

τz

















(fx, fy, fz)

τz

τyτx

Fig. 5: The wrenchF combines a force applied to the origin
of a coordinate frame and torques applied about each axis.

The discrete forcing can be determined from a number of
approximations. For example, we may choose an approxima-
tion analogous the discrete Lagrangian:

fα−
d (qk, qk+1, tk, tk+1) =

1
2fc

(
(1− α)qk + αqk+1,

qk+1−qk

∆t , (1− α)tk + αtk+1

)
∆t

fα+
d (qk, qk+1, tk, tk+1) =

1
2fc

(
(1− α)qk + αqk+1,

qk+1−qk

∆t , (1− α)tk + αtk+1

)
∆t

The discrete analog to the Lagrange d’Alembert principle
is:

δ

N−1∑
k=0

Ld (qk, qk+1) +
N−1∑
k=0

(
f−d (qk, qk+1, tk, tk+1) · ∂qk+

f+
d (qk, qk+1, tk, tk+1) · ∂qk+1

)
= 0 (42)

Solving (42) leads to the forced discrete Euler-Lagrange
equation:

D2Ld (qk−1, qk) + f+
d (qk−1, qk, tk−1, tk) +

D1Ld (qk, qk+1) + f−d (qk, qk+1, tk, tk+1) = 0 (43)

We again use (43) to solve forqk+1 from a given previous
and current configuration,qk−1 andqk.

1) Transforming Forces:The above includes forces that
are expressed in generalized coordinates. However, we often
describe forces using linear vectors and torques relative to a
body frame in the system. These forces must be transformed
into generalized coordinates.

A wrench,F , combines a linear force and three torques into
a single vector inR6. The linear force is applied to the origin
of a coordinate frame. The three torques are applied about
each axis of the frame. See Fig. 5.

The wrenchF is transformed into generalized coordinates
by the body Jacobian [21] for the coordinate frame,gs,i(q):

fc =
[
Jb

s,i

]T
F

wheref is the equivalent force in generalized coordinates.
The Jacobian can be calculated from values provided by the

tree representation (specifically, (2) and (3)):

Jb
s,i =

[(
g−1

s,i
∂gs,i

∂q0

)∨ (
g−1

s,i
∂gs,i

∂q1

)∨
. . .

(
g−1

s,i
∂gs,i

∂qn

)∨]
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A similar approach can be used to include forces applied
to a frame but specified in spatial coordinates by using the
spatial Jacobian.

V. I MPLEMENTATION: trep

We have been developing a simulation package called
trep 9 based on Sections III and IV. Thetrep package
allows a user to create a tree representation of a mechanical
system and provides cached implementations of (2) through
(10). A variational integrator is implemented on top of the
tree representation to simulate arbitrary mechanical systems in
generalized coordinates. Additionally,trep can calculate the
continuous mechanics (i.e.̈q, λ) but does not provide numeric
integration facilities.

The trep package is implemented as a Python package
with a C-back-end for performance critical sections. This
arrangement makes it particularly convenient to use without
sacrificing speed. In this section, we consider several important
aspects of the implementation and give an example to illustrate
the relative ease of specifying systems in the implementation.

A. Variational Integrator

The trep package implements a forced, constrained vari-
ational integrator using the methods described in this paper.
The combined integration equations are:

f

([
qk+1

λk

])
=D2Ld(qk−1, qk) + f+

d (qk−1, qk, tk−1, tk)+
D1Ld(qk, qk+1) + f−d (qk, qk+1, tk, tk+1)−DhT (qk)λk

h(qk+1)


(44)

We can improve the performance of (44) by noticing that
several terms are constant with respect to parametersqk+1 and
λk. We define the terms

pk = D2Ld(qk−1, qk) + f+
d (qk−1, qk, tk−1, tk)

πk = Dh(qk)

In the absence of forcing,pk is the momentum quantity
conserved by the integrator [32]. In general, however, it is
defined only for computation convenience. The integrator
equation becomes:

f

([
qk+1

λk

])
=[

pk + D1Ld(qk, qk+1) + f−d (qk, qk+1, tk, tk+1)− πT
k λk

h (qk+1)

]
(45)

The derivative is:

Df

([
qk+1

λk

])
=[

D2D1Ld(qk, qk+1) + D2f
−
d (qk, qk+1, tk, tk+1) −πT

k

πk+1 (= Dh(qk+1)) 0

]
(46)

9The nametrep is derived from “tree representation”

This avoids calculatingD2Ld(·) during each root solver
iteration. Note that introducing thepk term removes the
explicit dependence onqk−1 and the integrator becomes a one
step mapping(qk, pk) → (qk+1, pk+1).

We now require an initialization procedure for the integra-
tor:

Require: q0, q1

Set tree:q = (1− α)q0 + αq1, q̇ = q1−q0
∆t

p1 = D2Ld(q0, q1) + f+
d (q0, q1)

Set tree:q = q1, q̇ = q1−q0
∆t

π1 = Dh(q1)
λ0 = 0
return q1, p1, π1, λ0

Recall that the root finding algorithm is:

Seedqk+1 = qk

Seedλk = λk−1

while |f(qk+1, λk)| < tolerance do
z = −Df−1(qk+1, λk) · f(qk+1, λk)[
qk+1

λk

]
=
[
qk+1

λk

]
+ z

return qk+1, λk

If this is implemented naively, each root solver iteration
writes four configurations to the tree. First, we setq = (1 −
α)qk + qk+1 to find the top part of (45), thenq = qk+1 to
find the bottom part of (45), and then repeat for (46). Each
write erases the cached values in the tree, so avoiding writes
reduces computation and improves performance.

By expanding the algorithm and rearranging the order of
evaluation, we can reduce the number of writes to two per
iteration. Additionally, once the solution is found, we calculate
pk+1 with the tree already in the correct cached state. The
optimized simulation algorithm is as follows:

Require: qk, pk, πk, λk−1

Seedqk+1 = qk

Seedλk = λk−1

Set tree:q = qk+1

f2 = h(qk+1)
Df2,1 = πk+1 = Dh(qk+1)
Set tree:q = (1− α)qk + αqk+1, q̇ = qk+1−qk

∆t
f1 = pk +D1Ld(qk, qk+1)+f−d (qk, qk+1)−πT

k λk

Df1,2 = −πT
k

Df2,2 = 0
while |f | < tolerance do

Df1,1 = D2D1Ld(qk, qk+1) + D2f
−
d (qk, qk+1)

z = −Df−1 · f[
qk+1

λk

]
=
[
qk+1

λk

]
+ z

Set tree:q = qk+1

f2 = h(qk+1)
Df2,1 = πk+1 = Dh(qk+1)
Set tree:q = (1− α)qk + αqk+1, q̇ = qk+1−qk

∆t
f1 = pk+D1Ld(qk, qk+1)+f−d (qk, qk+1)−πkλk

pk+1 = D2Ld(qk, qk+1) + f+
d (qk, qk+1)

Set tree:q = qk+1, q̇ = qk+1−qk

∆t
return λk, qk+1, pk+1, πk+1
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By carefully arranging the order in which components
are evaluated, this algorithm minimizes writes to the tree
configuration to maximize the use of cached values.

B. System Specification

One advantage of uniformly representing systems using
trees is that we can specify systems using compact forms. S-
expressions, the syntactic form used in the LISP programming
language, is well suited for this task. In this section, we briefly
describe the s-expression syntax used intrep to specify
new systems.10 These expressions allow one to quickly create
new simulations without having to write any new code, thus
improving reliability.

As an example, Listing 1 is the s-expression used to describe
the device shown in Fig. 6. The first three terms ((ry “J” . . . ),
(tx -1.5 . . . ), (tx 1.5 . . . )) define the three “arms” for the
device. The last four terms (point-constraint... ) con-
nect the arms form the closed kinematic chains. We emphasize
that Listing 1 is actual input totrep , not pseudo-code.

A

B

C
DE

F

GG2

H

I

J

K

L

M

N

O

O2

Fig. 6: A mechanical system with many closed kinematic
chains.

The syntax is described using regular definitions [1]. Sym-
bols beginning with $ are non-terminal expressions.Bold
tokens are literal s-expression symbols whilebold parentheses
are the s-expression parentheses. Expressions are grouped with
{curly brackets}. | is the logical “or” operator.+ requires the
preceding expression to occur one or more times.∗ requires
the preceding expression can appear zero or more times. A
trailing question mark indicates an optional expression that
occurs zero or one time.

Table II shows the syntax for defining mechanical systems.
1) $system:A $system expression defines a tree represen-

tation of a mechanical system. It is simply a list of components
to include in the system.

C. $system-component

$system-components are frames, constraints, potential ener-
gies, and forces.trep is designed to let users easily add new

10Note that the s-expressions are merely implemented by a Python script
that builds systems throughtrep ’s Python API. The same API can be used
to build systems directly in code instead of using s-expressions

Listing 1: S-Expression definition for the system in Fig. 6
(mechanical-system (gravity 0 0 -9.81)

(ry "J" (Name "J")
(tz -0.5 (Name "I") (Mass 1))
(tz -1.0

(ry "H" (Name "H")
(tz -1.0 (Name "G") (Mass 1))
(tz -2.0 (Name "O2")))))

(tx -1.5
(ry "K" (Name "K")

(tz -1.0 (Name "L") (Mass 1))
(tz -2.0

(ry "M" (Name "M")
(tz -0.5 (Name "N") (Mass 1))
(tz -1.0 (Name "O"))))))

(tx 1.5
(ry "A" (Name "A")

(tz -1.0 (Name "B") (Mass 1))
(tz -2.0

(ry "C" (Name "C")
(tz -0.375 (Name "D") (Mass 1))
(tz -0.75

(ry "E" (Name "E")
(tz -0.5 (Name "F") (Mass 1))
(tz -1.0 (Name "G2"))))))))

(point-constaint "G" "G2" (1 0 0))
(point-constaint "G" "G2" (0 0 1))
(point-constaint "O" "O2" (1 0 0))
(point-constaint "O" "O2" (0 0 1)))

constraints, potentials, and forces that can be included in this
group and supported by s-expressions.

D. $gravity

$gravity expressions include a global linear gravity poten-
tial. The three numbers define the gravity force vector.

1) $frame: A $frame expression defines a coordinate frame.
The parent of the frame is implied by the expression’s location.
Frames declared in a $system expression are children of the
world frame. Frames declared as arguments to another frame
are children of that frame.

$transform-type defines the transformation to the frame
from its parent. The following $transform-param is the trans-
formation’s parameter. At least one type-param pair is re-
quired. If two or more are specified, the frame is expanded
into multiple frames with each following frame being the
child of the previous. For example,(TX 0.1 TY 0.2 TZ
0.3 . . . ) is equivalent to(TX 0.1 (TY 0.2 (TZ 0.3
. . . ))) . The remaining parameters will apply to the final
frame.

A number of $frame-option expressions can be included to
modify the frame.

Subsequentframe sub-expressions create new frames that
are children of the current frame.

2) $transform-type:A $transform-type expression defines
the transformation that relates a child frame to its parent. The
values correspond to translations along and rotations about the
X, Y , andZ axes.

3) $transform-param:A $transform-param expression de-
fines the driving parameter for the transformation between a
child frame and its parent.

A $number parameter indicates a fixed, constant transfor-
mation.
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$system→ (SYSTEM $system-component+)
$system-component→ $gravity | $frame| $point-constraint| . . .
$gravity→ (GRAVITY $number $number $number)
$frame→ ( {$transform-type $transform-param}+ $frame-option* $frame*)
$transform-type→ TX | TY | TZ | RX | RY | RZ
$transform-param→ $number| $string | (D $string)
$frame-option→ $mass| $name
$mass→ (MASS $string)
$name→ (NAME $string)
$point-constraint→ (POINT-CONSTRAINT $string $string $number $number $number $name?)

TABLE II: Syntax for defining tree-form mechanical systems intrep .

A $string or(D $string) parameter makes the transformation
dependent on a dynamic configuration variable. The $string
becomes the name of the configuration variable.

4) $mass: A $mass expression defines a mass. The first
number is the mass of the object. The second, third, and fourth
numbers are the mass’Ixx, Iyy, andIzz rotational inertias. If
the rotational inertias are not specified, they default to zero to
create a point mass.

5) $point-constraint: A $point-constraint expression cre-
ates the constraint described in Section IV-D4. The two strings
specify the names of the frames that are to be joined. The
three numbers define the direction vector for the constraint.
An optional name can be specified.

E. Automatic Visualization

Because a tree description encodes so much structure of
a mechanical system, automatically generating visual repre-
sentations is trivial. This provides immediate feedback on a
system’s definition and simulation in a form that is accessible
to users. Whereas bad simulations can be hard to identify from
plots of configuration variables, they are almost immediately
apparent when animated. Not only does this save time and
effort, it also eliminates a subtle class of errors where a
manually created visualization does not correctly represent the
system being simulated or analyzed.

VI. EXAMPLE SIMULATIONS

Several examples are provided to demonstrate the variety of
systems we can simulate withtrep and make comparisons
where appropriate. Animated results of these simulations can
be viewed at our websitehttp://robotics.colorado.edu/trep.

A. N -link Pendulum

The N -link pendulum provides a practical way to numer-
ically study how a simulator scales with system size. This
is particularly true in generalized coordinates where a link is
explicitly dependent on every link above it, making this a sort
of worse-case scenario.

The N -link pendulum consists ofN links in a plane. Each
link has a mass (with rotational inertia) attached at the bottom.
The simulation starts with the pendulum links aligned and the
top link rotated by 45 degrees.

Fig. 7 plots simulation runtime against the number of
links N in the pendulum. The simulations last 20 seconds
and use a step-size of 0.01s. The dashed line represents
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Fig. 7: Simulation runtime vs. number of pendulum links. The
dashed line represents simulations run without caching while
the solid line represents simulations with caching.

simulations without caching in the tree calculations. The solid
line represents simulations with caching.

The non-caching times are on par with simulations based
on symbolic equations of motion. The results show the value
of caching using this method. The simulations are drastically
faster and they grow at a slower rate as pendulum size
increases.

B. Closed-Chain Device

Closed kinematic chains are typically considered as chal-
lenging features to handle in dynamics simulation. The mech-
anism shown in Fig. 6 is an example of a device with many
closed kinematic chains [22].

While force-balance simulators can handle this system, they
must introduce restoring forces to maintain the constraints over
time. This causes artificial energy dissipation that can be seen
on relatively short time scales.

This system was simulated intrep and the freely available
Open Dynamics Engine (ODE) [28]. The system was simulated
for 120 seconds with a time step of0.01s. The ODEruntime
was1.86s. The trep runtime was22.1s. The total energy as
a function of time is plotted in Fig. 8.

While ODE outperformstrep time-wise by a factor of
10, it introduces significant damping while the variational
integrator maintains near constant energy. Additionally, the
trep simulation is carried out in generalized coordinates
while theODEsimulation consists of seven independent bodies
connected by constraints. The speed advantage may not be
useful when the resulting trajectory is fundamentally flawed.
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Fig. 8: A mechanical system with many closed kinematic
chains. Total energy of the closed chain device simulated
for 120 seconds with a time step of0.01s. The variational
integrator simulation is shown in black. The ODE simulation
is shown in gray.

C. Scissor Lift

Finally, we consider the mechanism shown in Fig. 9,
commonly found in industrial lifts (and old cartoons). We
consider the mechanism to be hanging rather than lifting to
avoid introducing actuation.

Fig. 9: The scissor lift has many bodies and closed kinematic
chains but only one degree of freedom.

The scissor lift has many links and many closed kinematic
chains, but can be reduced to a single degree of freedom
(DOF). Additionally, its complexity is parameterized by vary-
ing the number of segments. We can write the Lagrangian for
the equivalent one DOF system and use an accurate numeric
integrator to generate a benchmark trajectory for comparison.

A schematic of the device is shown in Fig. 10. The top

L

msθ1

mL

k

Fig. 10: A schematic for the top of the scissor lift. Each link
has massmL at the center and no rotational inertia.
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Fig. 11: Simulated trajectories for the scissor lift with 5
segments.

segment is pinned in the upper left. The upper right joint is
pinned to a massmS that slides horizontally without friction.
Each link has massmL at its center and rotational inertiaI.

The Lagrangian for a lift is

L(θ, θ̇) =
N∑

n=1

(
mLL2

((
1
2 − n

)2 cos2 θ1 + 1
2 sin2 θ1 + I

)
θ̇2
1

+ 2mLg(n− 1
2 )L sin θ1

)
+ 1

2mSL2 sin2 θ1θ
2
1

whereN is the number of segments.
A benchmark solution was generated for a 5 segment lift

from the above Lagrangian using Mathematica’sNDSolve[]
function. The system was simulated withtrep for 10 seconds
with a time step of0.01s and took 1.74 seconds to compute.
The system was also simulated inODEwith time steps of
0.01s, 0.001s, and 0.0001s and took 0.19, 1.85, and 18.47
seconds to compute, respectively. The simulated trajectories
are plotted in Fig. 11.

The variational integrator tracks the benchmark solution
almost perfectly. TheODEsimulation, on the other hand, is
clearly unsatisfactory. The0.01s trajectory dissipates most of
the energy immediately. The smaller time step trajectories are
only slightly better. They dissipate energy more slowly but
still depart from the true trajectory quickly. All three solutions
result in an incorrect period of oscillation.

The variational integrator continues to perform well for
long time scales. Fig. 12 shows the trajectory after 1000
seconds. There is a slight phase shift from accumulated error,
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Fig. 12: Long-time simulated trajectories for the scissor lift
with 5 segments.

but the amplitude, shape, and frequency are still close to the
benchmark trajectory.

1) Scissor Lift Complexity Analysis:Traditional complexity
analysis in mechanics considers the computational effort to
calculate the state derivative depending on the number of
bodies or degrees of freedom in the system. This type of
complexity analysis is useful to compare similar algorithms,
but becomes less meaningful as algorithms grow further apart.
This is particularly true when comparing discrete mechanics,
where the system is advanced by a root-finding problem, and
continuous dynamics, where the system is advanced with nu-
meric integration. There are additional fundamental differences
like how constraints are handled.

We can consider comparing methods by running simulations
with equivalent parameters and measuring the computational
time taken as in Fig. 11. As we saw, however, this doesn’t
account for the validity of the result, and the amount of error
in the simulation can vary widely.

Another approach is to include simulation error in our com-
parison. Given a benchmark trajectoryθb(t) and a simulation
resultθs(t), the simulation error is defined as

e =
∫ tf

t0

(θb(τ)− θs(τ))2 dτ (47)

First, we choose a desired error and simulation time. An
N -segment lift is simulated until the error exceeds the desired
error. If the simulation time is longer than the desired time,
we increase the step size and re-run the simulation. If the
simulation time is shorter, we decrease the step size. We iterate
until the achieved simulation time is approximately equal to
the desired time.

Figure 13 shows the results of this analysis when the desired
time was 15 seconds and the desired error was 0.1. In this
caseODEscales so poorly that the results must be plotted
logarithmically. The results show that despiteODE having
linear dynamics, it does not perform as well as the variational
integrator because the integrator stepsize must be reduced to
maintain an acceptable error.

Of course, the results of this analysis are limited to the
scissor lift. There may be other examples that favorODE
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Fig. 13: Simulation runtime vs. Number of Segments in a
scissor Lift. The simulation runtime was found by setting the
time step so that the simulation time was15s ± 1% when
accumulated error exceeded0.1. The y-axis is logarithmic.

over trep . The main point is that the result of traditional
complexity analysis thatODEshould always scale better can
be misleading in practice because of error.

VII. C ONCLUSION

Tree descriptions have enabled us to create a variational
integrator for arbitrary mechanical systems in generalized
coordinates. The recursive equations derived from the hier-
archy lend themselves well to optimization (both fundamental
optimizations like caching and incremental improvements like
using vectorized hardware) that make the technique scale to
large systems in generalized coordinates. The organization
and structure used in the description has also proven to
be convenient to work with (for example, to automatically
generate visualizations).

The tree description is also appealing for its versatility.
Though we emphasize variational integrators here, the same
approach works for the continuous dynamics with the tradi-
tional Euler-Lagrange equation.

Similarly, variational integrators can be derived with spe-
cial forms instead of the tree description. This can improve
performance at the expense of generalized coordinates. Such
integrators would still retain the benefits of good energy
behavior and hack-less holonomic constraints.

It is unlikely that a variational integrator in generalized
coordinates will ever outperform a constrained force-balance
simulation,11 but this technique at least makes them fast
enough to be practical for many large systems. The additional
benefits they offer, like good energy behavior and directly
including holonomic constraints, are important enough for
many applications to be worth the performance penalty.

There are two major areas to continue developing this
work. The controls community has developed robust trajectory

11Here we mean outperform purely in terms of computational speed given
similar time steps. A broader definition of performance that includes the
accuracy of the trajectory may tip the balance in favor of variational integrators
as seen in Sec. VI-C.
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exploration algorithms that are very versatile [14], generalized
coordinates are essential to keep the state size small and
to develop meaningful cost/objective functions. As a result,
these techniques have been limited to small systems or require
highly optimized models that are hand-tailored to the problem.
We believe that the methods in this paper will expand their
practical application to complex mechanical systems. The tree
description is also well suited to derive the higher derivatives
and linearized dynamics needed for trajectory exploration.

Our simulator is also missing some important components.
Some, like collisions and impacts [29], have been studied and
developed for variational integrators [12]. These algorithms
just need to be adapted to work with the tree representation.
Others, like non-holonomic constraints [10], have been largely
ignored in discrete mechanics (with a few exceptions [5]) but
are needed to study phenomenon like slip-steered vehicles and
contact mechanics. The tree framework may also be extended
to explicitly include compliant/elastic meshes [23] that can be
attached to coordinate frames.
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