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Abstract—We use a tree-based structure to represent me- coordinates, the benefits are usually worth the extra effort and
chanical systems comprising interconnected rigid bodies. The slower performance.
tree description provides a way to design a generic, variational - gqations of motion in generalized coordinates scale poorly
integrator that _works for a}rb_ltrary systems while staying in gen- . .
eralized coordinates. Variational integrators have the advantage beca.use the}’ repgat a grea_t deﬁl of information. For example,
of preserving constraints and energetic quantities for all time. consider a simulation of a simplified human body, an example
Moreover, by taking advantage of caching, performance scales we will consider shortly. The equations for the femur, knee,
very well. A description of the associated software is included, shank, ankle, foot, and toes all contain their own copy of
along with a closed-kinematic-chain example illustrating the o by Kinematics. The repetition reflects the dependencies
ease of_ spemfylng systems. Severe_ll other _examples, including ath L lized di Lo
comparison with the Open Dynamics Engine (ODE) software, at arise in generg 1ze _Coo_r inates. Scalability 'SSU?S Tdre
are used to illustrate the scalability of the technique. compounded by taking derivatives, where repeated application

of the product rule causes the equations to grow quickly.

The constrained free-body approach avoids this repetition
. INTRODUCTION because each body is represented independently. The structural

relationships are enforced by constraint forces instead.

There are many different algorithms for simulating me- Featherstone [11] showed that using a respresentation
chanical systems. The most popular methods in simulatigid recursive equations for a system eliminates much of the
software are those based on the Newton-Euler force balanggetition and explicitly reuses information. In this setting
approach[33]. Systems are usually represented as collectigiisre areO(n) algorithms (wheren is the number of rigid
of free bodies with mechanical structure imposed by coBodies in the system) available for simulating the (continuous)
straints. This is the approach used in the popular Open Drward dynamics by using these representations.
namics Engine (ODE) [28]. Others like OpenHRP [2] use the \ve advocate the same ideas but use a different tree rep-
Newton-Euler method but represent the system in generalizedentation based on homogeneous coordinate transforma-
coordinates [9]. Some packages, like Autolev [26] generalgns. While our method does not yield(n) dynamics, the
the full equations of motion for a system instead of algorithesulting algorithm is concise, transparent, and extendable.
mically evaluating the dynamics. The different methods haygy modifications are required to handle branching, closed
tradeoffs in computational complexity, accuracy, and easgnematic chains, or holonomic constraints. Other tree-based
of-representation. In this paper we present another algorithﬁ@thods[34] also handle closed chains, but modify the dy-
that results in scalable simulations in generalized coordinat@smics to use iterative algorithms that require solving the
that use variational integrators to guarantee desirable enefigiyerse kinematics. Additionally, this method can be extended
momentum, and constraint-satisfying behavior. to obtain the derivatives of the dynamics (i.e. linearizations)

The constrained free-body approach to dynamics is the ifat are needed for many optimal control techniques [14]. We
dustry standard in computer graphics, video games, and CAB not, however, discuss derivatives in this paper beyond those
software. The algorithms are fast and scalable, typically usifgeded for dynamic simulation.
special implementation techniques like the LCP formulation aAnother benefit, which we focus on in this paper, is that
[3] and sparse matrix methods [4]. They are flexible becaufis approach allows us to develop variational integrators
forces are explicitly added to bodies at each time step, makifg arbitrary systems in generalized coordinates. Variational
it straightforward to include anything from friction to springsntegrators are a class of symplectic integrators [13] that
to motors. The theory is also accessible because it is bame been deve|0ped by the discrete mechanics Community_
directly on intuitive force balance methods. They preserve (or nearly preserve, depending on the particular

Simulations based on generalized coordinates, on the othigegrator) fundamental properties of mechanical systems like
hand, are almost always preferred in controls analysis. Wenservation of energy, conservation of momentum, and the
want to think of a pendulum as an angle, not a body ¥ymplectic form [20]. They also deal with holonomic con-
SE(3) constrained in 5 degrees of freedom. This is importastraints and non-smooth phenomenon like collisions well.
for analyzing important system properties like stability and These properties are oftemt preserved in force-balance

controllability. However, models in generalized coordinatesimulations (or even continuous Euler-Lagrange mechanics).

are either derived manually (which is irritating, error-prone,

and not scalable) or use algebraic software to automaticallyMore generally, we may represent a system as a graph with tree descrip-

derive symbolic equations of motion (Which is less irritatin !ons as thg supset of directed acy_clic graphs [7].' However,_ the applic_atio_ns
. resented in this paper do not derive any immediate benefits to considering

less error-prone, only slightly more scalable). Nonethele rees from a graph theory perspective, so we do not advocate this perspective

when a system is simple enough to work with generalizedre.
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h(g(t)) =0V ¢
h(q(to)) =0
= P(q(t))ilte) =0
81 (q(1))q(t) + 2L (q(t)) - (4(t),4(t) = 0 V ¢

Simulations using this approach tend to violate the con-
straints as error is introduced through numeric integration.

To fix this, restoring forces resembling damped springs are
added to each constraint. This adds “magic” parameters (e.g.
the Error Reduction Parameter DB that must be tuned
for each simulation (often at the risk of introducing unstable
dynamics for bad choices of parameters) and introduces artifi-
cial energy loss. For highly constrained systems, the losses can
dominate the resulting dynamics (See the scissor lift example
; t t t ' ' in Sec. VI-C). Variational integrators work with holonomic
0 1000 2000 3000 4000 5000 constraints directly, avoiding these problems completely.

Energy [J]

Time [5] We begin with a brief overview of homogeneous represen-
Fig. 1: This plot shows the total energy of a single link plana{f"t'ons for rigid body transformations in Sec. Il. In Sec. llI

pendulum simulated for 5000 seconds with a time step introduce our tree representations for mechanical systems.

0.01s. The trajectories appear as regions rather than linggction !lli-B ?}Indhs'ecd lI-C _shom; how LO compute positions,
because the variations change rapidly compared to the Ioffecities. and their derivatives from the tree. Discrete me-

time scale. The variational integrator simulation is shown {12nics are introduced in Sec. IV and then used to implement
black. TheODEsimulation is shown in gray. a variational integrator based on the tree descriptions in

Sec. IV-A. Section IV-B briefly describes how continuous
dynamics can also be derived in this framework. Section IV-C
demonstrates how potential energies are calculated for the
system. Section IV-D and Sec. IV-E extend the variational
For example, Fig. 1 compares the total energy of a singdlgtegrator to include constraints and non-conservative forcing.
pendulum simulated using a variational integrator and ODBection V introduces a software package catiegp (avail-
ODEuses a force-balance method to compute the continuausie athttp:/robotics.colorado.edu/trepthat implements the
dynamics of a system. The variational integrator does ngfesented methods. Finally, Sec. VI presents examples that
perfectly conserve energy at each time step, but maintains timonstrate how these methods scale and compare to other
correct average energy. TH@DE solution slowly dissipates simulations.

energy over time, slowly leading to an implausible simulation.

While energy conservation does not guarantee an accurate Il. HOMOGENEOUSREPRESENTATION

solution, it is still desirable that a simulation respects known The tree description makes extensive use of homogeneous
analytical properties of a system like conservation of energgpresentations for coordinate frames and rigid body trans-
and momentum or naturally maintaining constraints. Whearmations, so a brief overview is helpful. For an in-depth
these properties are not satisfied, the resulting trajectorydiscussion on homogeneous representations, see [21].
certainly incorrect, and this is the sense in which we considerHomogeneous representations provide a convenient and
a simulation to be implausible. uniform way to represent rigid body transformations. A trans-

formation is represented as a matrix Rt ** comprising a

Variational integrators also handle holonomic constrain];gtation matrixR and the translational components
(expressed as(q) = 0 for valid configurationsg) better

than con'gnuous me_thods (quce-balance or Euler-_Lagrange). g= R p Re SO(3), peR3 1)
Holonomic constraints restrict the relative positions and 0 1

orlﬁnltatlong between_ bodll\les. r’?‘ Ipln Jo.'nt IS an gxample (Pltl this setting rigid body transformations can also be thought
a holonhomic c0n§tra|nt. .( on-nolonomic constra|nt§, on e as defining a coordinate frame relative to another coordinate
other hand, restrict relative velocities between bodies ratf}%me Thep vector defines the position of the frame’s origin
than relative positions.) In continuous dynamics, hoIonom(Ljfl:ndR'deﬁnes the orientation of the coordinate axes

constraints generally _cannot pe |mplemented directly. InSt.eadHomogeneous transformations are composed using standard
they are replaced with equivalent higher-order constram;ﬁI

) . SRS Matrix multiplication. If g, defines the coordinate transfor-
The standard approach is to ensure the simulation’s Nt tion from coordinate framé to coordinate frame:, and

conditions satls_fy the constralnts and then_reqwre everythmlg;C defines the transformation from frameto framea, the
to accelerate in a consistent way that (ideally) keeps tﬁ%nsformation from frame to framea is
constraints satisfied:

Jac = Gab * Gbe



JOHNSON AND MURPHEYSCALABLE VARIATIONAL INTEGRATORS FOR CONSTRAINED MECHANICAL SYS$BEBEITTED TOIEEE TRANSACTIONS ON ROBOTIGS

90 : Tu(qo)

x

g1 Ty(@)

Points and vectors are represented as elemeiR8.iRoints
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Points and vectors are also transformed with standard matrix
multiplication.

Pa = Gab " Pb Va = Gab * Vb

We will often make use of a Lie algebra isomorphism .
[9] casually called the “hat” operator and its inverse, the
“unhat” operator. These simply change the way we represent
special quantities that show up when working in homogeneous
coordinates, namely body velocities. The “hat” operator takes
aR® vector to aR*** matrix:

9a

17 Fig. 2: A planar human is represented with a tree structure.

y 0 —¢ b Note that although we are restricted_to simple transformation_s,

. c 0 —a y we can represent complex mechanical systems by composing
— multiple transformations.

a -b a 0 =z

b 0O 0 0 O

C

The “unhat” operatof-)" simply inverts this operation. Often  Fig. 2 also establishes the naming convention used through-
we write the hat directly above the variable (eu§.= ©0). For out the paper. Transformations that are parameterized by
more detalil, see [21]. constants are indexed with letters (e.g.4(1.0)). Variable
Homogeneous representations are useful because theytetesformations are indexed by numbers and are parameterized
generic; the same form is used for translations, rotations, amyglthe corresponding configuration variable (eg{q1)).
compositions thereof. We use this to our advantage by havinqNe
a single way to represent the various coordinate frames that
describe a mechanical system. The resulting simplicity is Q-

major advantage of tree descriptions of mechanical systems. ) ) )
R1. Frames are related to their parents through six basic

transformations: Translations along the parent’s X, Y,

and Z axes and rotations about the parent’'s X, Y, and Z
The main idea for a tree representation of a mechanical axes.

system is to attach coordinate frames throughout the systeR2. Each configuration variable is used in only one trans-

and relate them to one another with simple rigid body trans-  formation and each transformation only depends on one

formations. We organize the coordinate frames into a tree so parameter or configuration variable.

that each frame has a single parent and zero or more children.

The root of the tree is the stationary world frameFrames  Together, these two requirements establish a one-to-one
are defined in space by rigid body transformations from theifapping between configuration variables and variable transfor-
parent frame. mations. They are not absolutely necessary for this approach,
In this work, we use only six basic transformations, repréyut they significantly simplify the discussion, notation, and
sented as elements 6F(3): translations along and rotationsequations without significantly restricting the systems that can
about the parent’s X, Y, and Z. If a frame is fixed relative to thee represented.
parent, the transformation is parameterized by a constant. If thel_
frame can move, it is parameterized by a unique configuratipn

variable. The set of all configuration variables forms th ST : . .
generalized coordinates for the system. moving joints and consta_n_t nl_meers for fixed 10|_nts. This
Fig. 2 is an example tree description for a planar humarﬂngrement Ie_ads to S|mp_l|f|_cat|ons and leads to uniform gen-
Note that coordinate frames do not necessarily have to haveeéﬁl'zed coordinates consisting only of real-valued numbers.
associated mass so we can define as many frames as needed fidre practical consequence of R1 is disallowing direct SO(3)
the particular application. Consequently, a tree representatmarameterizations for free rotations. Instead, we represent free
is not unique. There are an infinite number of representatiomtation with multiple single-axis rotations (e.g. Euler angles).

for a given system. This requirement can be removed if one is willing to handle

impose the following requirements on the tree descrip-

Ill. TREEREPRESENTATIONS

he basic transformations defined by R1 are parameterized
single real-valued numbers: configuration variables for
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the extra book-keeping involved.

R2 prevents using the same configuration variable to dritgom this description, we can find positions, velocities, and
multiple transformations, which is useful for modeling systendgerivatives of the coordinate frames in the system. These
with parallel linkages. Parallel linkages and closed chains greovide a foundation for doing operations like dynamic simu-
instead handled by connecting open chains with holononiation, trajectory exploration, and analysis.

constraints.

clean way to organize and describe the system’s structure.

The position, velocities and their derivatives are found in

Table | defines the notation used throughout the paper. \t#e following sections as recursive, piecewise equations. The
will typically drop the explicit dependence apand g, for
visual clarity (e.g.gs  rather thang, »(q)).

TABLE I: Notation used for the tree representation.

(S Spatial Frame

® Constant Transformation
(D Variable Transformation depending

on g;

() €ER

Configuration variable of the-th frame.

4i(t) ER = Lagi(t)

Time derivative of thei-th configuration vari-
able.

q(t) eR™ Configuration vector comprisingo, q1, ... ,
QWL'
m; Mass of thei-th frame.
M; € R676 Inertia Tensor of the-th mass in body-fixed

coordinates.

gi(qi) € SE(3)

Transformation of the-th frame to its parent
frame.

9s,i(q) € SE(3)

Transformation from thei-th frame to the
spatial reference frame

95,1(¢) € SE(3)

Transformation thei-th frame to the j-th
frame.

vb € TeSE(3)

Body velocity (i.e., an element of the Lie
algebra) of tha-th frame relative to the spatial
reference frame.

ps,i(q) S RB

Position of thei-th frame relative to the spatial

reference frame. The position is obtained by

extracting the upper right components in (L)
from g ;.

anc(z)

The ancestors of the theth frame are the|

frames passed while moving up the tree frqm

the i-th frame to the spatial frame. For exam-
ple, frame 6 (above) has ancestdts 1, s}.

par(i)

Immediate parent frame of theth frame. For

example, the parent of frame 6 (above) is frame

2.

)
gkfﬁgk

Notation for the derivative of a transformation
of the i-th frame to its parent frame.

9 = Zox

Notation for the time derivative of a transfo
mation of thei-th frame to its parent frame.

A tree representation of a mechanical system providespgnant frame’s transformation, .
s,par

piecewise equations in this paper have a specific ordering. For
cases that can be simultaneously satisfied, the top-most case
always takes precedence.

A. Lower and Higher Pairs

The six basic transformations can be combined to create
the canonical lower and higher pair joints [30]. The six lower
pairs are revolute joints, prismatic joints, cylindrical joints,
helical joints, spherical joints, and plane pairs. A revolute
joint is simply one of the three rotation transformations. A
prismatic joint is one of the three translation transformations.
A cylindrical joint is a rotation transformation followed by
a translation along the same axis (eB.(q1)7x(g2)). A
helical joint is modeled with a cylindrical joint with an added
constraint (see Sec. IV-D5). A spherical joint is modeled
with three successive rotations about different axes (e.g.
R.(q1)Ry(g2)R.(g3)). Finally, a plane pair is modeled with
two translational transformations followed by a rotational
transformation (e.g7% (¢1)Ty(g2)R-(g3)).

The two common higher pairs are gear and cam pairs. A
simple gear pair can be modeled with two rotations and a
constraint on the configuration variables. A simple cam pair
can be modeled with a rotation and a translation followed by
a rotation along with a constraint.

More complicated mechanisms are modeled using the same
approach. The system is designed with enough transformations
to get the necessary degrees of freedom, and then constraints
are added to create the proper kinematic relationships.

We could also model joints by adding new types of trans-
formations. In particular, it is possible to add a transformation
where the user specifies a twist that generates a parameterized
element ofSE(3)[21]. This would allow direct modeling of
screw joints for example. The necessary derivatives could still
be automatically calculated and the rest of the algorithm would
remain unchanged. We have instead chosen to limit ourselves
to a basic set in order to facilitate automation and a simple
implementation.

B. Frame Positions

The rigid body transformation from any frame to the spatial
reference frame is a straightforward calculation, given the
tree representation. For the spatial reference frame, it is the
identity transformation,/. Otherwise, for framek, it is the
x) composed with the

2We emphasize that both requirements can be removed and more gené?&,al tranSformatlongk' This is expressed as a piecewise
yet more complicated, equations derived. The expanded equations are @épression fory; »(q):

particularly complex themselves, but they require more specific notation

and extra bookkeeping, so they are avoided here for clarity. Using SO(3) T k=g
parameterizations, for example, requires adding constraints on the nine matrix 9s.6(q) = (2)
elements to ensure the SO(3) matrix remains orthogonal [21]. s, par(k)Jk k#s
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Eq. (2) evaluates the transformation from any frame to thud the parent frame, transformeihto local coordinates, plus

spatial frame using only the local transformations and itselie velocity of the frame with respect to the paremj,lgk:

recursively. The recursion is guaranteed to terminate on the

k = s condition because the tree is by definition acyclic. Each b . 0 k=s

recursive call gets closer to the root node. The same is true Vs (2,4) = {g—lf[ﬁ gr+ g tar k#s

for the remaining recursive equations that are derived from the bospar®) g

tree. where g, = %gk. For the transformations defined in R1, the
The compact form of (2) is useful on its own, but it igocal velocity termg, ' ¢x reduces to a special form using a

particularly nice because we can find derivatives and end Wsté [21]. The twist is constant (i.e. it does not depend on

with similarly simple equations. The derivative of (2) withthe configuration) for each type of transformation:
respect to a configuration variahjeis found with the standard

derivative: 0 k=g
b .
oirlg,d) =9 _1. : (5)
o @ {0‘3_ I k=s * {gk 1U§7par(k)9k +&dr k#s
Tqig&k q) = i
dg; (9s par(iygr)  k #s Taking the same approach used earlier, we find derivative
0 k=s expressions.
o b N
= % (gsmar(%) Ie £ s 9q; Vs (¢, 4) =
+gs,par(k) qugk k=g
The two requirements R1 and R2 help to further simplify this 0 i ¢ anc(k)
expression. R1 guaranteg%}g;€ = 0 wheni # k. R2 implies ~15b 4 olab e (6)
22 gspar(i) = 0 Since gi(q) is the only transformation that g’jl (;-rriir(k)gk Ik Vspar( Ik 1=
depends ony;. Furthermore, we know that if; is not an Ik 3q; Vs par(k) Ik iFk

ancestor ofyy., the derivative is always zero: Eqg. (6) is evaluated recursively with itself, the local rigid body

0 k=s transformations, and (5).
2 .
9 @ i ¢ anc(k) 3) ﬁ“g,k(qacﬂ =
9. 9s,k\4) = .
Oqlg % (gs,par(k)) gk 1 # k E—s
s,par(k : i=k B
9s.par (k) Ik 0 i ¢ anc(k)
whereg; = 52-gi(qx)- Using (2) and (3), we can numerically j ¢ anc(k)
compute theexact derivative of any coordinate frame with g1t gk + 27 V0P gk
respect to any configuration variable in the system. Note) “* ‘S’paj(lkfb ’f, s-par(k) i=k=j (7)
that the derivative expression remains relatively simple and T 9k Vs par(k) Ik
compact. The mixed partial derivative with respectgfoand R e N Al
¢; is calculated using the same procedure. 951/%62,%4;@)9!@ + gk—lai%@g,par(k)g;c i=k#j
-1 _0 - . .
k=s Ik 0q;0q; Ug,par(k)gk ? # k # J
0 i ¢ anc(k) . L -
i Eq. (7) is evaluated using itself, local rigid body transfor-
- . J ¢ anc(@ mations, (5), and (6). We are also interested in derivatives of
ﬁgs,k(q) = { 9s.par(k) 9k i=k=j (4) body velocities with respect to the configuration variable time
T o) ! . . ; H
@[gs7par(k)]gk 1=k#j derivatives.
aiqi?[gs,par(k)]g;c 0} ?é k= .] 0 k = S,
3 . .
50,00 Is.par() |9k 1 F K F 25 () i ¢ anc(k) ®)
. . . —Us k\4,q) = F .
Eq. (4) uses itself recursively along with (2) and (3) to Bai "ok &k i=k
evaluate second derivatives of the rigid body transformations. g,;la%@g’par(k)gk i#k
For the applications discussed in this paper, these are the only
rivatives n . However, we emphasize that this pr r 92 o .
derivatives needed. However, we emphasize that this procedure aqfaqivg,k(M) -0 9)

can be continued to get higher derivatives as needed. One
simply takes normal derivative and uses R1 and R2 to separatgye can also find mixed partial derivatives with respect to
and simplify the various cases. configuration variableg; and their time derivatives;.

C. Frame Body Velocities 3Note that the similarity transform; '9° par(k)Jk could be replaced by

. . . . . UA AT b . .
The body velocity is the relative motion of a coordinat@ “Adioint” Adg, vy, transformation [21]. Indeed, all the following
ations can be modified to use their intrinsic counterparts. However, we

. . e
Trame with respect to the ?tat'onafy world frame, but eXpreSSﬁ[&s here on as transparent an approach as possible and do not use any
in the frame’s local coordinates. It is calculated as the velocitfferential geometric formality.
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8% ~b

mvsyk(q,q) = The twistég, is a bit more work.
§ £r.0=R;YO)R.(0)
=S .
- = R (O)RL(0)0
0 e ¢ — RTYO)R
Z‘ ¢ anc(k) ng - Rz (G)RZ(G)
. (10) 0 -1 0 0
Jj & anc(k)
—17 9 b —1.8 b P — _ |1 0 00
9k W']zvs,par(k)gk' + 9% 36, Vs par() Ik K =1 =lo o 0 o0
91;1 aq_?aqi ﬁg,par(k)gk k 7& { 0 0 0 0

=¢r.=[0 0 0 0 0 1]7
Eq. (2) through (10) demonstrate how we calculate the

forward kinematics and derivatives from a tree description. Later equations also make use of the position of a coordinate
As will be discussed later, these equations provide all tfi@me’s origin relative to the spatial world frame. The position
necessary values for simulating the system dynamics. Otlpgr, of a frame is trivially obtained by extracting the upper
applications, such as trajectory exploration in optimal comight components from the correspondigg;, transformation
trol or nonlinear controllability analysis, may require highein (2). Derivatives ofp, ;, are similarly extracted from the
derivatives. That these derivatives can be found by continuingrresponding derivative af, » in (3) and (4).
this procedure (and that they remain simple themselves) is a
major advantage of this method.
E. Performance

There are two notes on the performance of evaluating
the above equations. Values are frequently reused in these
calculations. For examples »(¢g) may be evaluated once for

Eq. (2) through (10) include terms that we have not e)fkt_self, once for each of its descendants’ positions, and then

plicitly shown how to calculate (i.ege, gl 9. gk—1, gk—:u again for derivative values. However, once it is evaluated, it

g7Y, and &,). These are found manually for each of,thés constant until a new configuration is written to the tree.

primitive transforms (defined in R1). For example, the valud¥e can therefore save the first result and reuse it until a
for a rotation about theZ axis are: new configuration is written. This avoids recursing all the

way to the base of the tree in every calculation, essentially

D. Primitive Transformations

[ cos® —sinh 0 O] flattening (2) through (10). This technique is called caching
sin @ cosf 0 0 and significantly improves performance.
R.(0) = 0 0 1 0 The second and more technical note is that (2) through
0 0 0 1 (10) involve only 4x4 matrix operations (multiplication and
) } addition). Modern computers typically have special hardware
) . support (SIMD instructions, graphics accelerators) for the
—sinf —cosf 0 O same 4«4 matrix operations because of their importance in
R.(0) = cos —sing 0 0 computer graphics and multimedia applications. Current im-
z 0 0 0 0 plementations are typically limited to 32- or 64-bit precision,
| 0 0 0 0] but future hardware is likely to support full 80-bit precision
that can be used to greatly improve performance without
_ - sacrificing accuracy or modifying the tree description and
—cosf sinf 0 0 algorithms.
RI(0) = _S(l)ne _CSSQ 8 8 With the caching optimization in particular, the tree equa-
tions scale to large systems well enough that we can use a tree
Y 0 0 0] description as a basis for fast and accurate dynamic simulation.

Higher derivatives for the six transformations in R1 can

easily be parameterized. The derivatives of translations are IV. DISCRETEMECHANICS

zero for the second derivatives and higher. The derivatives ofit is useful to consider continuous Lagrangian mechanics
rotations are cyclic (e.gR*) = R). We can therefore find the before introducing discrete mechanics and variational inte-

expression for thex'" derivative arbitrarily. grators. Lagrangian mechanics use Hamilton’s Least Action
For the six transformations given in R1, the inverse is alwayginciple to derive the equations of motion for a system from

the same transformation but by the opposite amogmt(x) = an abstract quantity called the Lagrangian. The Lagrangian
g(—x)): L(q,q) is defined as the system’s kinetic energy minus its

R-Y0) =  Ru(-0) potential energy.

R;Y() = —R/(-0) L(g,q) = ) —

T T q, Q) = Tk(Q7 Q) Vk(Q)
R;M(0) = Ri(-0) Xk: Xk:
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where ¢ is the state configuration vector amdis its time

derivative. For a tree descriptiogjs the vector of all variables §§

used to parameterize coordinate transformations. Common

potentials include gravity and springs. Examples of both are » * * * © & &« & &% '
discussed later (a) Left Approximation (b) Midpoint Approximation

Lig.q)
Lig.d)

The kinetic energyTi(q, ), takes on a particularly nice _
form if we define a coordinate frame at each center of mass* =T
and align the axes with the body’s principal axes[8][24]. In \
this case, the inertia matrix is a constant 6x6 diagonal matrix * * ° * * © © ¢ ¢ ¢ PR R e
and the kinetic energy is written ﬁ((b(j) _ %vfﬁM;@vS i (c) Right Approximation (d) Trapezoidal Approximation
(recalling that® is the body velocity) where the inertia métrixFig. 3: The discrete Lagrangian approximates segments of the

is continuous action integral. The area of each shaded region

Lia,q)

m 00 0 0 0 represents a value of the discrete Lagrangian.
0 mp O 0 0 0
0 0 mg O 0 0
My, = ) ) ) )
0 0 0 look 0 0 called discrete mechanics and the resulting integrators are
0 0 0 0 Iyr 0 known as Variational Integrators [16]. Variational integrators
0 0 0 0 0 Lz conserve (or nearly conserve, depending on the particular
The resulting Lagrangian is: integrator) fundamental quantities like momentum and energy
17]. They are also well suited for problems involving holo-
N\ 1,.0T b [
Lg,q) = Z 2Vs 6 Mits o — Z Vi) A1) nomic constraints, impacts, and non-smooth phenomenon [12].
k k

. ) In discrete  mechanics, we find a sequence
Note that givenVi(g), (11) can be numerically evaluateds (s 40, (t1,q1), ..., (tn,qn)} that approximates the

from a tree description using (5). We continue to assume th@dntinuous trajectory of a mechanical systeq & qa(tr)).
Vi(q) and derivatives are known. Their actual computation i#e assume a constant time step( — tr = AtV k) for
discussed in Sec. IV-C. The Lagrangian (11) has an assaginplicity, but in general the time step can be varied to
ated quantity called the Action which is the integral of thgge adaptive time stepping algorithms. For example, [20]

Lagrangian along a trajectory. describes a method that adapts the time step to maintain
ty ) perfect energy conservation.
S(a([to; t51)) :/t L(g(r), 4(7))dr (12) To derive a variational integrator, we define a discrete
0

hagrangian that approximates the action integral over a short

The Least Action principle states that the system wi
interval.

naturally follow the trajectory that minimizéghe action. A

variational principle is used to minimize (12) to get the Euler- trt1 )
Lagrange epquatigns [19]: (209 La (ge: ria) = / L(g(r),q(r))dr
. tr
0 0L, . oL, . . . o
5(?Tj((] q) — 87((17q) =0 (13) Figure 3 shows several choices of approximations to deter-

o _ _ _ mine the discrete Lagrangian. The order of accuracy for the
This is a second order differential equation that can kgproximation is directly related to the order of accuracy for

integrated to simulate the system and obtain a trajectape resulting trajectory [20].
q(t) from a set of initial conditions;(to) and ¢(to). HOw-  The discrete Lagrangian replaces the system’s action inte-
ever, numeric integration introduces error in the simulatggal with an action sum.
trajectory. Since the dynamics are treated as generic ordinary
differential equations, the error is introduced in ways that do ts .
not preserve important mechanical properties like conservatiort (4([to: s])) = / L(g(r),4(r)dr = La (ar, qx+1)

of energy and momentum. Additional features like constraints " F=0 (14)

also perform poorly and exhibit unrealistic behavior like The action sum is minimized with a variational principle

objects ‘sinking’ into hard surfaces [27]. _ to get an implicit difference equation, analogous to the Euler-
~Recent research has found that explicitly including the,grange equations in (13), called the Discrete Euler-Lagrange

discrete approximations at a more fundamental level of t'@BEL) equation.

dynamics derivation leads to integration schemes that respect

the fundamental symmetries in dynamichis approach is D1 Lg (g, qes1) + DaLg (qe—1,q1) =0 (15)

n—1

4To be rigorous, the Least Action Principle states that the action should \there D f( B ) is the derivative off(. B ) with respect to
extremized, not minimized. While in practice it is almost always minimize "

(hence the name Least Action Principle), the distinction should be remeﬁﬁ n-th argu_me_nt. This is known as tistot derivative Note
bered. that the derivation of (15) is analogous to the approach used

SThere are also specially designed numeric integrators for continuogs derive the continuous dynamics equation (13).
dynamics that preserve the same properties (e.g. the Newmark scheme). [t

has been shown that these special integrators can often be derived from hereasr t_he continuous- EuIer—Lagrange equation is an
variational integrator by choosing a particular discrete Lagrangian [31]. ODE that is integrated to find the trajectory of the system,
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the discrete Euler-Lagrange equation (15) presents a rootThis algorithm requires that the derivativef(-) is avail-
finding problem to get the next configuration. Given two initiaable:
configurationsgy and ¢;, we solve Df(qx+1) = DoD1Lg (g, qr+1) (18)

f(gk+1) = D1La (qks qk+1) + D2La (qr—1,9x) =0 (16)  We must now choose a discrete Lagrangian to implement
to determineg.. We then move forward and iterate to find16) and (18). A common choice is the generalized midpoint
43,44, - -, qy. The resulting sequence is the discrete trajedPProximation [32].

tory. This procedure is illustrated in Fig. 4. La(ge, qoss) = L ((1 — @)gk + agua, B qk) At (19)

wherea € [0,1] is an algorithm parameter amd= % leads to
second order accuracy [32]. Figures 3a, 3b, and 3c correspond
to (19) witha = 0, o = 3, anda = 1, respectively.

We find derivatives of (19) using the chain rule:
D1 La(qr, qk+1) =

Step 1

o _
87L ((1 — @)k + aqr1, 7Qk+1At Qk> (1—a)At—
Fig. 4: A root finder solves the discrete Euler Lagrange Gor1 — G (20)
equation to determine the next configuration from the previous — 9 ((1 — @)k + OQit1, kJrlAtk>
and current configurations. This process is iterated to find the q
entire trajectory. Do Li(qr—1,qk) =
0 qk — qr—1
. . —L{(1—=a)gr_1+ aq, —"—) aAt+
A. Creating a Variational Integrator 0q <( k-1 + g At “ 1)
There are generally two common approaches to implement QL (1= Q)1 + agr k. — qk—1
a variational integratdt.In the first, one explicitly finds the a4 A
equations of motion (the discrete Euler-Lagrange equanoB) DiLa(qe, qrar) =
manually or with symbolic algebra software. For large systems Pk
the complexity essentially requires a symbolic algebra packageiL (( — )qk + Qi1 ) (1 — a)aAt+
such asMathematica but such tools only make the task
(22)

Qk+1 9k

so large and complex that they are impractical to manipulate. -

Alternatively, the system can be described using a specialdqoq (
choice of coordinates that result in special Lagrangian forms 2
[15]. The most common examples are treating everything as a?4%4
point mass L(¢) = ¢" Mq+V (q)) [18] or treating each body  Eq. (20), (21), and (22) allow us to calculate (16) and (18)
as being free in space and imposing the mechanical structimeerms of the continuous Lagrangian and its derivatives.
through constraints [6]. Integrators based on these forms hav&\Ve continue by finding the necessary derivatives of the
excellent performance because of their simplicity, but lose tikentinuous Lagrangian (11):
benefits and convenience of generalized coordinates. or

With the tree descriptionwe can achieve comparable %~ =9 [Z LT Mya? , — Z Vi(g

) )¢
2
possible in a formal sense. Realistically, the equations becom&%L ( 1 — a)qr + aqry1, 57 qk) (1—a)-
) )a-
)

(
(1 - a)qx + aqry1,
(

9k+1—qk | 1
At

( -« qdk + aqr+1, At

performance and still work in generalized coordinat@he 94; 20k =
integrator works for arbitrary systems, not dependent on sym- S P
bolic algebra software, and by taking advantage of caching, — Z 177, k Mo? , + Lo? k Z Vk
2 an * 27 an

performance scales very well. &

We begin by considering (16). At each time step, we ob . v
must solvef(gx11) = 0. The Newton-Raphson root finding = > v M, as’_k Z 3 —~(q) (23)
algorithm [25] performs very well for this problem. The k e e

Newton-Raphson root solver uses a linear model functigny. (23) is evaluated from the tree structure using (5) and (6).
to iteratively improve the estimated root until a satisfactoryhe remaining derivatives are found similarly.

solution is found: aqaéan -
Seedgi 11 = gk ‘ bT b
) 0 0
while f(gx+1) # 0 do > l Usk Tk v M, ] Z o Ve () (24
z=—Df Nqrs1) - f(qrs1) 17) < | 94 dq; 8 aqj 0q:04;
Qht1 = Qhy1 2 Eq. (24) is evaluated from the tree descrlptlon using (5), (6),
return qk+1 and (7)

(25)

b

. . . . . oL bT avs,k
6Though we focus on variational integrators, this discussion largely applies = Vs, e My ——
to continuous Lagrangian mechanics. 9gi & 04;
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Eq. (25) is evaluated from the tree using (5) and (8). 1) Gravity: We commonly use the simple model of gravity
for mechanical systems:
0L 81157,:,M ol T 0%l (26)
— = . — + v g — ma
9q;04; x 94; "0, . kaQia(Ij F=mg
— . H T
Eq. (26) is evaluated from the tree structure using (5), (6), ( 'here_g is the gravity \_/ector, typlcally{()_ 0 —9.81)". The .
and (10). otenthl created by this force as applied to a mass at point
ps,k(q) ist
2 ot b %P V(g) = —miG - ps.k 30
oLy l L 57.’@] (27) (1) = g b %)
4995 4 i 4i94; The two derivatives are straightforward:
Eq. (27) is evaluated from the tree using (5), (8), and (9). g;/ (q) = —mu - a%psvk' (31)
Once (23) - (27) can be evaluated, we can completely evaluate
(20), (21), and (22) and, therefore, implement a variational 823/[1]‘ (q) = —mag - aq?;qus’k (32)

integrator for an arbitrary tree description. The user only needs
to provide a tree description and two initial configurations to Eq. (30), (31), and (32) are evaluated using (2), (3), and
simulate the system. (4) from a tree description. Typically, we would automatically
add a gravity potential for every mass in the system. For
more exotic simulations, however, we might selectively add
this gravity model for some masses and a different model for
We note that this approach also works for the continwthers. In this way the approach is very flexible.
ous dynamics in generalized coordinates. The Euler-Lagrangd his same approach can be taken for the nonlinear gravity
equation (13) is expanded using the chain rule: model ' = —G™7*27) commonly used in celestial mechan-
5 9 icS.

8, L.(jju 4 L.q _ oL = (28) 2) Springs: Suppose we have a linear spring with spring

9g0¢" = 990q" g constantk and natural lengthz, connecting two point,
where the Lagrangian’s dependence @rand ¢ has been andp. The potential energy for the spring is
dropped. This is similar to the standard form/(q)G + Via) = Li(z — mo)?
C(q,4)q + V(q) = 0, but left in terms of the Lagrangian. (a) = 3k(z = 20)
If the operator% is invertible/, (28) can be solved fof:  wherex is the distance betweem and p,. The derivatives

are found manually:

B. Continuous Lagrangian Dynamics

(0L (oL oL, (29) ov 0
1= \0q0q) \oq ~ 904" o (4) = k(2 — o) 5
i 3?2 _ 1.0z Ox 8%z
We can evaluate the above using (23), (26), and (27). quj = %%gqi + k(2 — 20) i

A standard numeric integration package such as MATLAB
integrates (29) to simulate the system. Again, this avoidsThe spring length: is
explicitly calculating the equations of motion, which tend to 1
. _ (7T =5
be intractably large for complex systems. z(q) = (0" )2
Comparing (29) to the discrete algorithm (17) highlights a7 —
similarity between the two methods. Both algorithms require
large matrix inversions to solve the dynamics. In both cases, S (q)=a" 10T 0T
we can detect a singular matrix and abort the simulation. ’

p1 — p2. The derivatives are found:

8%z _ 1,.—2 dz T 9%
. . 0q;0q; (9) = 27 9,V B +
C. Potential Energies 1057 o8
X - z
. . . . . . dq; 9Oq;
Potential energies are included in the simulation through L ;J 82'{
1 U

the generalized term¥& (¢) and their derivatives. Each type T U Bq0q;

of potential energy has a different form fdr(q). These . . R . L )
. . Finally, the spring vectof’ and its derivatives are found:
are implemented manually, but in a way that uses the tree

calculations and makes them applicable to arbitrary systems. #(q) = p1 — po (33)

This technique provides a great deal of flexibility for including B )

potentials. 25 (q) =58 — 2 (34)
The common potential energies encountered in mechanical . ) )

systems are gravity and springs. We demonstrate a basic a,fi;q]_ (q) = a?hg;j - 8‘31_53]_ (35)

it del and li ing.
gravily modet and finear spring Eq. (33) through (35) are evaluated with (2), (3), and (4)

"This is the system’s inertia tensai (g) expressed in generalized coordi-.from the tre? fepfes?”tat'on- Th's Sam_e approach is taken to
nates. include nonlinear springs, torsional springs, etc.
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D. Constraints and find the necessary derivative:
Both continuous and discrete Lagrangian mechanics can Df Qev1|) _ DoD1La(qr, qrs1) —DhT (qx)
include constraints in the system. The tree representation Ak Dh(qi+1) 0

does not change how constraints are included, but can helghe giscrete integrator enforcésg;,) = 0 directly at every

in calculating the necessary values.. Similarly, the constraimﬁ]e step. This eliminates the aforementioned error creep and
do not change the tree representation at all. The constraipts,its in trajectories that always satisfy the constraint.
depend on the values provided by tree, but the tree does Nokrom the above, constraints are included in the simulation
depend on the constraints. by providing h(¢) and Dh(q) for each type of constraifit.

In discrete mechanics, we typically only deal with holop, the following sections, we present several constraints as
nomic constraints and therefore do not discuss non—holonor@g@ammes_

constraints here. However, [5] shows how to do this, and thatz) wjre Constraint: A wire constraint holds two points at
technique could be implemented using the method presenteg ifixed distance apart, as if they are connected by a stiff wire.

the present work. A holonomic constraint restricts the systemsyppose we have two points(q), p2(q) € R? to be a fixed
to a sub-manifold of the configuration. Holonomic constrainistanceL € R apart. The constraint(q) is

are defined a&(¢q) = 0 € R for valid configurations. A system

may be subject to many holonomic constraints at once. These h(g) =0
are grouped together as a vector of the individual constraints: = ||p1 — p2||* = L?
_ T 2
hi(q) =(P1—p2)” (p1—p2)— L (37)
h2(q) m The above is evaluated using (2) from a tree representation.
h(q) = : €R The derivative is found manually
Oh
fim (@) 4, (4) = & ((p1 —p2)" (p1 —p2) — L2)
1) Continuous Constrained DynamicsThe constrained ' T (0p  Opo
Euler-Lagrange equations are derived by minimizing the action =2(p —p2) (aqi " Oq ) (38)

S(q(-)) subject to the constrairtt(q()) = 0 V 7 € [to,ts]. and is evaluated using (2) and (3).
The derivation [19] yields the constrained Euler Lagrange Again, by implementing (37) and (38) and providing a

equations: way to define the constraint, the simulator can use the wire
2L 2L oL - constraint in arbitrary systems.
—q+ - = %Z (A (36a) 4) Point Constraint : Another common holonomic con-
8q8q2 0q0q q straint is for two points to be coincident. This can be used, for
aeo(a) - (d,4) + G2 (a)g =0 (36b) example, to create a pin or spherical joint holding two parts

- . o together.
Note that the original constrairit(q) doesn't directly appear a natural approach is to use the wire constraint from above

in (36). Instead, the holonomic constraints are enforced i, 7 — (. However, this introduces singularities because
(36b) as constraints on the acceleration. This often leadsyt constraint force direction (determined by (38)) is zero (or
errors that slowly creep into the simulation during numerig,merically near zero) when the constraint is satisfied.

integration. As the error grows, the constraints are increasinglynstead, we declare multiple constraints, each with a fixed

violated. direction. In this case, each constraint requires the distance

Special techniques, such as projecting the system into §ig&ween two points along an axis to be zero:
constraint sub-manifold or introducing damped-spring restor-

ing forces, are used to fix this but these tend to add or remove h(q) =1+ (p1 — p2)

energy from the system and introduce simulation paramet@yfere 7, is the direction of the constraint. Terms and p,

that have to be adjusted for individual scenarios. Bad choicgg the two points to be constrained and are calculated from
for these parameters can introduce unstable dynamics. (),

2) Discrete Constraint DynamicsThe constrained varia- The derivative

tional integrator is derived by minimizing the discrete action oh . (g Ops
sum (14) subject tdi(gx) =0V k& =0...N. This leads to g, (@) =7 (BTi N Tqi)
the constrained DEL equations [20]: is evaluated using (2) and (3).
To connect two points, we define multiple constraints with
pr— T 1
DaLa(qr—1, ) + D1La(ar, qer1) = Dh™ (qi) A orthogonal directions. For example, to connect two points
h(qk+1) =0 in R3, we define three constraints with linearly independent

) i ) directions (e.g{1,0,0], [0,1,0], and 0,0, 1]). We could also
We now haven +m non-linear equations to solve in termsgdefine the constraint so thatis specified relative to one of
of gx+1 and ;. We define a new equation for the root solvert'he coordinate frames associated withor ps.

¥ Gr+1|\ _ DsLa(qe—1,qr) + D1La(qr, gr1) — DRT (qi) Mg he continuous case also requiB2h(q), but we focus on the discrete
Ak h(qk+1) casp.
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5) Screw Constraint :One limitation of the proposed six T,
primitive transformations is they cannot naturally represent A oo
screw joints. However, we can build a screw joint by using "
constraints. jzy (fa, fy, [2)

A screw motion is a rotation about an axis by an angle F= TZ
followed by a translation along the same axis by a distance 7_“”
d. The ratio of the distance to the angle is called the pitch Y b J
p=d/6 [21]. 7=

We define the constraint equation: Te Ty

h(q) = pgs — qa (39) Fig. 5: The wrenchF” combines a force applied to the origin

of a coordinate frame and torques applied about each axis.
where gy is a configuration variable that is parameterizing a
rotation andy, is a configuration variable that is parameteriz-

ing a translation. The discrete forcing can be determined from a number of
The derivative is: approximations. For example, we may choose an approxima-
- tion analogous the discrete Lagrangian:
p L=
gi(Q) =q-1 i=d (40) fa~ (@ a1ty th1) =
& 0 d#i+0 | A
5 fe ((1 —)qr + aqry1, TR, (1 — o)ty + Oﬂfk+1) At

To set up a screw joint, we create a frame with a rotation
about an axis and add a child that translates along the samgo* (¢, g1, ¢y, try1) =

axis: 1 _ 9k+1—9k _ A
ch (1 Q)Qk + agi+1, At 0 (1 a)tk + alp t
The discrete analog to the Lagrange d’Alembert principle
is:
N—-1 N-1
6> La(qrqrir) + Y, (F7 (@ Grsrs trothgr) - Ognt
A screw constraint is created usimg for ¢ and ¢; for qq. k=0 k=0
The resulting system will model a screw joint. I @y g1ty tes1) - Ogrgn) =0 (42)
Solving (42) leads to the forced discrete Euler-Lagrange
E. Forcing equation:

Another common e_xter_15ion to Lz_igrangian_ mechanics iSDng (@h—1, @) + L (@het Qo s ) +
external forcing. Forcing is used to include dissipation (e.g. _
friction), control inputs (e.g. motor torque), and other effects. DiLa (i qe1) + fa (@ Qs e teen) = 0 (43)
The Lagrange d’Alembert principle is used to introduce exter- we again use (43) to solve faf,; from a given previous
nal forcing to the continuous Euler-Lagrange equation [19]. And current configurationy,_; and gj,.
forcing term is added to the action integral: 1) Transforming Forces:The above includes forces that

t t are expressed in generalized coordinates. However, we often

5/ L(q(7), 4(7)) dr + folq(T),4(7),7) - 8q AT = 0 describe forces using linear vectors and torques relative to a

Jto to body frame in the system. These forces must be transformed

where f.(q, ¢, t) is the total external forcing expressed in thd't0 generalized coordinates.

system’s generalized coordinates. This derivation leads to théA,‘ wrench, I, f:orgbmes a linear forc_e and 'Fhree torques into
forced Euler-Lagrange equation: a single vector irR®. The linear force is applied to the origin

of a coordinate frame. The three torques are applied about
Qﬁj( ) — 57L( )= Fadnt) each axis of the frame. See Fig. 5.
ot 9¢ ¢4 Oq 9= J\4: 9, The wrenchF is transformed into generalized coordinates

i i ) by the body Jacobian [21] for the coordinate framg;(q):
In discrete mechanics, we approximate the continu- ’

ous force f.(q,¢,t) with left and right discrete forces fo= [Jgi]TF

J7 (@ Qs tr trrn) @nd £F (qr, ey, tr, trrn) such that: _ . . . .
« (@i Qi +1) d (e Qi 1) where f is the equivalent force in generalized coordinates.

The Jacobian can be calculated from values provided by the
tree representation (specifically, (2) and (3)):

~ [ i) sy ar Po=[(oi %) (%) o (%) ]

F7 (@ @ttty ton) - 0ak+ £ (Qhs Qs tos trt1) - OQr41

2 8,0 0qo st g 8,0 Oqn
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A similar approach can be used to include forces appliedThis avoids calculatingD.L4(-) during each root solver
to a frame but specified in spatial coordinates by using tlteration. Note that introducing the, term removes the

spatial Jacobian.

explicit dependence of)._; and the integrator becomes a one

step mappingqr, pr) — (qr+1, Pr+1)-

V. IMPLEMENTATION: trep

We have been developing a simulation package call&
trep ° based on Sections Il and IV. Theep package
allows a user to create a tree representation of a mechanical
system and provides cached implementations of (2) through
(10). A variational integrator is implemented on top of the
tree representation to simulate arbitrary mechanical systems in
generalized coordinates. Additionaltyep can calculate the
continuous mechanics (i.¢, \) but does not provide numeric
integration facilities.

We now require an initialization procedure for the integra-

Require: qo, 1
Set tree;g = (1 — a)q0++ aqr, ¢ = TG
p1 = DaLa(qo,q1) + fi (90, 1)

Set treeig = q1, ¢ = L2
71 = Dh(q1)
A =0

return qi, p1, 71, Ao

The trep package is implemented as a Python packageRecall that the root finding algorithm is:

with a C-back-end for performance critical sections. This

arrangement makes it particularly convenient to use without
sacrificing speed. In this section, we consider several important
aspects of the implementation and give an example to illustrate
the relative ease of specifying systems in the implementation.

Seedgy+1 = gk

Seed)\, = A1

while | f(gr+1, Ak)| < tolerance do
2= =Df @1, M) - f(@rr1s M)

A. Variational Integrator

Thetrep package implements a forced, constrained vari-
ational integrator using the methods described in this paper.

The combined integration equations are:

gk+1 _
(%) -
DyLa(qr—1,qr) + £ (Qe—1, Qs to—1, ti)+

D1 La(q, qrs1) + £ (@ Qo1 tes tirr) — DAY (qi) M
h(qr+1)

qk+1| _ |9k+1
[ SV W +z
return g1, Ak

If this is implemented naively, each root solver iteration
writes four configurations to the tree. First, we get (1 —
a)qx + qr+1 to find the top part of (45), then = gr4+1 tO
find the bottom part of (45), and then repeat for (46). Each
write erases the cached values in the tree, so avoiding writes
reduces computation and improves performance.

By expanding the algorithm and rearranging the order of
evaluation, we can reduce the number of writes to two per

(44jteration. Additionally, once the solution is found, we calculate

t+1 With the tree already in the correct cached state. The

. - b
We can improve the performance of (44) by noticing th%ptimized simulation algorithm is as follows:

several terms are constant with respect to parametersand
M. We define the terms

pe = DaLa(qe—1, k) + £ (qe—1, @i tr1, tr)

mr = Dh(qx)

In the absence of forcingy, is the momentum quantity
conserved by the integrator [32]. In general, however, it

defined only for computation convenience. The integrator

equation becomes:

([5])-

|:Pk + D1 La(qr, @ut1) + f7 (Qhs Qg1 trs tis1) — 77 A

h (qr+1)
(45)
The derivative is:
dk+1 _
or ([4:1]) -
{DleLd(qk, Qo) + Do f 7 (@ Qg 1ot tor)  —7h
Tk+1 (: Dh(Qk+1)) 0
(46)

9The nametrep is derived from “tree representation”

Require: qg, pr, Try Ap_1
SeequH =gk
Seed)\k = )\k,1
Set treeiq = qx+1
fo = h(qr41)
Df2,1 = Tk+1 = Dh(Qk+1)
Set treelg = (1 — a)qr, + agpir, ¢ = L
f1 = pr+D1La(qr, qes1) + [ (ks Grr1) — T M
Dfo=—nf
ng’g =0
while |f| < tolerance do
Dfi1 = DD La(qk, @r+1) + Daf; (qrs @et1)

is

z=— -L. f
Qe+1| _ |9k+1
L)\k } o [ Ak ] e
et treelq = qx+1
fo= h(QkH)
Df2,1 = Tk4+1 = Dh(Qk+1)
Set treeig = (1 — a)qr + agrt1, § = W

f1 = p+D1La(rs @e1)+f7 (@i Q1) =T Ak
Prt1 = DaLa(qr, qes1) + [ (@, @rt1)

Set treeiq = qir1, ¢ = P

return Mg, Gr41, Pht1, Thil
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By carefully arranging the order in which components Listing 1: S-Expression definition for the system in Fig. 6

are evaluated, this algorithm minimizes writes to the tre(ﬁqechanical_system (gravity 0 0 9.81)

configuration to maximize the use of cached values. (ry "J" (Name "J")
(tz -0.5 (Name "I") (Mass 1))
(tz -1.0
ifi i ry "H" (Name "H"
B. System Specification (ry (t (-1.0 (Namé ‘G (Mass 1)
One advantage of uniformly representing systems using 15 (tz -2.0 (Name "02"))))
trees is that we can specify systems using compact forms. S** (ry "K" (Name "K")
expressions, the syntactic form used in the LISP programming (EZ -%-8 (Name "L") (Mass 1))
language, is well suited for this task. In this section, we briefly (tz - (y "M" (Name "M")
describe the s-expression syntax usedtrgp to specify (tz -0.5 (Name "N") (Mass 1))

new systems? These expressions allow one to quickly create (tz -1.0 (Name "O")))

new simulations without having to write any new code, thus (tx 1.5
(ry "A" (Name "A")

improving reliability. (tz -1.0 (Name "B") (Mass 1))
As an example, Listing 1 is the s-expression used to describe (tz -2.0 o (N .
the device shown in Fig. 6. The first three termy ((J” .. .), ry (tz (_0?3@% (Ngme "D" (Mass 1))
(tx -1.5...), (tx 1.5...)) define the three “arms” for the (tz 075 .
) . ) (ry "E" (Name "E")
device. The last four termgg@int-constraint... ) con- (tz -0.5 (Name "F") (Mass 1))
nect the arms form the closed kinematic chains. We emphasi%e_ e (tz -1.0 (Name "G2))))))))
.. . . point-constaint "G" "G2" (1 0 0))
that Listing 1 is actual input terep , not pseudo-code. (point-constaint "G" "G2" (0 0 1))
(point-constaint "O" "02" (1 0 0))
(point-constaint "O" "02" (0 0 1))

L, % L.

Nt constraints, potentials, and forces that can be included in this
< group and supported by s-expressions.
L) L H L B

/< $gravity expressions include a global linear gravity poten-
aNEe tial. The three numbers define the gravity force vector.

D. $gravity

M

N
\/ O The parent of the frame is implied by the expression’s location.
’é\ b Frames declared in a $system expression are children of the
02

. . , } world frame. Frames declared as arguments to another frame
Fig. 6: A mechanical system with many closed kmematlgre children of that frame

chains.

/F\ r 1) $frame: A $frame expression defines a coordinate frame.
¢

$transform-type defines the transformation to the frame
rom its parent. The following $transform-param is the trans-
ormation’s parameter. At least one type-param pair is re-
quired. If two or more are specified, the frame is expanded
i\%ﬁ}&multiple frames with each following frame being the
child of the previous. For exampléTX 0.1 TY 0.2 TZ
0.3 ...) is equivalent to(TX 0.1 (TY 0.2 (TZ 0.3
.A))) . The remaining parameters will apply to the final

The syntax is described using regular definitions [1]. Syl
bols beginning with $ are non-terminal expressioBald
tokens are literal s-expression symbols whitdd parentheses
are the s-expression parentheses. Expressions are grouped
{curly bracket$. | is the logical “or” operator+ requires the
preceding expression to occur one or more timesequires
the preceding expression can appear zero or more times;

trailing question mark indicates an optional expression thafme: b ) ) be included
0CCUrS Zero or one time. A number of $frame-option expressions can be included to

n{godify the frame.

Table 1l shows the syntax for defining mechanical systems. .
1) $system:A $system expression defines a tree represen_Subsequentrame sub-expressions create new frames that

tation of a mechanical system. It is simply a list of componen?ge children of the current frame. ) i
to include in the system. 2) stransform-type: A $transform-type expression defines

the transformation that relates a child frame to its parent. The

c values correspond to translations along and rotations about the

. $system-component X.Y, andZ axes.

_$system-componen_ts are_frames, constraints, potentlal enelg) ﬁransform-param:A $transf0rm-param expression de-
gies, and forcedrep is designed to let users easily add nevines the driving parameter for the transformation between a

, _ child frame and its parent.

10Note that the s-expressions are merely implemented by a Python scrlptA b indi fixed f
that builds systems throughep 's Python API. The same API can be used _$num er parameter indicates a fixed, constant transfor-
to build systems directly in code instead of using s-expressions mation.
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$system— (SYSTEM $system-componeny+

$system-component> $gravity | $frame| $point-constraint . ..

$gravity — (GRAVITY $number $number $number

$frame — ( {$transform-type $transform-pargm $frame-option* $framey

$transform-type— TX | TY | TZ | RX | RY | RZ

$transform-param— $number| $string| (D $string

$frame-option— $mass| $name

$mass— (MASS $string

$name— (NAME $string

$point-constraint— (POINT-CONSTRAINT $string $string $number $number $number $name?

TABLE II: Syntax for defining tree-form mechanical systemstriep .

A $string or(D $string parameter makes the transformation
dependent on a dynamic configuration variable. The $string

becomes the name of the configuration variable. %0 /
4) $mass: A $mass expression defines a mass. The first 40+ /
number is the mass of the object. The second, third, and fourth o /
numbers are the mass$,,, I,,,, and/,, rotational inertias. If g 307 /
the rotational inertias are not specified, they default to zero to R K
create a point mass. k= J
5) $point-constraint: A $point-constraint expression cre- 10+ /
ates the constraint described in Section IV-D4. The two strings /’//’/
specify the names of the frames that are to be joined. The 00 S 3456 78 910
three numbers define the direction vector for the constraint. Pendulum Links

An optional name can be specified.
Fig. 7: Simulation runtime vs. number of pendulum links. The

dashed line represents simulations run without caching while

E. Automatic Visualization o . . X .
o the solid line represents simulations with caching.
Because a tree description encodes so much structure of

a mechanical system, automatically generating visual repre-
sentations is trivial. This provides immediate feedback onsamulations without caching in the tree calculations. The solid
system’s definition and simulation in a form that is accessiblé@e represents simulations with caching.
to users. Whereas bad simulations can be hard to identify fromlhe non-caching times are on par with simulations based
plots of configuration variables, they are almost immediaten symbolic equations of motion. The results show the value
apparent when animated. Not only does this save time a@fdcaching using this method. The simulations are drastically
effort, it also eliminates a subtle class of errors where faster and they grow at a slower rate as pendulum size
manually created visualization does not correctly represent thereases.
system being simulated or analyzed.

B. Closed-Chain Device

VI. EXAMPLE SIMULATIONS Closed kinematic chains are typically considered as chal-

Several examples are provided to demonstrate the variety @f9ing features to handle in dynamics simulation. The mech-
systems we can simulate witep and make comparisons@MiSM shown in Fig. 6 is an example of a device with many

where appropriate. Animated results of these simulations cgfSed kinematic chains [22]. ,
be viewed at our websitkttp://robotics.colorado.edu/trep While force-balance simulators can handle this system, they
must introduce restoring forces to maintain the constraints over

) time. This causes artificial energy dissipation that can be seen
A. N-link Pendulum on relatively short time scales.

The N-link pendulum provides a practical way to numer- This system was simulated trep and the freely available
ically study how a simulator scales with system size. Thi®pen Dynamics EnginédDE [28]. The system was simulated
is particularly true in generalized coordinates where a link fer 120 seconds with a time step 6f01s. The ODEruntime
explicitly dependent on every link above it, making this a sowas1.86s. Thetrep runtime was22.1s. The total energy as
of worse-case scenario. a function of time is plotted in Fig. 8.

The N-link pendulum consists oiV links in a plane. Each  While ODE outperformstrep time-wise by a factor of
link has a mass (with rotational inertia) attached at the bottod0, it introduces significant damping while the variational
The simulation starts with the pendulum links aligned and thietegrator maintains near constant energy. Additionally, the
top link rotated by 45 degrees. trep simulation is carried out in generalized coordinates

Fig. 7 plots simulation runtime against the number ofhile theODEsimulation consists of seven independent bodies
links N in the pendulum. The simulations last 20 secondsnnected by constraints. The speed advantage may not be
and use a step-size of 0.01s. The dashed line represeargsful when the resulting trajectory is fundamentally flawed.
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95+

97+
-994 .
Fig. 10: A schematic for the top of the scissor lift. Each link

has massn;, at the center and no rotational inertia.
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Fig. 8: A mechanical system with many closed kinematic 4l f
chains. Total energy of the closed chain device simulated {
for 120 seconds with a time step 6f01s. The variational J
. . . . . . . _T 5”
integrator simulation is shown in black. The ODE simulation ™ ———

0 1 2 3 4 5 6 7 8 9 10

is shown in gray. Time [s]

oo

Fig. 11: Simulated trajectories for the scissor lift with 5
C. Scissor Lift segments.

Finally, we consider the mechanism shown in Fig. 9,
commonly found in industrial lifts (and old cartoons). We
consider the mechanism to be hanging rather than lifting §8gment is pinned in the upper left. The upper right joint is
avoid introducing actuation. pinned to a mass g that slides horizontally without friction.

Each link has mass:, at its center and rotational inertia

The Lagrangian for a lift is

Ic

N
L(G,é)zz (mLL2 ((%—n) cos 91+ sin 91—|—I)9

n=1

+2mpg(n — %)L sin 91> + %msL2 sin® 919%

where N is the number of segments.

A benchmark solution was generated for a 5 segment lift
from the above Lagrangian using MathematiddBSolve[]
function. The system was simulated witkp for 10 seconds
with a time step 00.01s and took 1.74 seconds to compute.
The system was also simulated @DEwith time steps of
0.01s, 0.001s, and 0.0001s and took 0.19, 1.85, and 18.47
seconds to compute, respectively. The simulated trajectories

are plotted in Fig. 11.

Fig. 9: The scissor lift has many bodies and closed kinematicThe variational integrator tracks the benchmark solution
almost perfectly. TheDDEsimulation, on the other hand, is

chains but only one degree of freedom.
clearly unsatisfactory. The.01s trajectory dissipates most of

The scissor lift has many links and many closed kinematibe energy immediately. The smaller time step trajectories are
chains, but can be reduced to a single degree of freedomly slightly better. They dissipate energy more slowly but
(DOF). Additionally, its complexity is parameterized by varystill depart from the true trajectory quickly. All three solutions
ing the number of segments. We can write the Lagrangian fi@sult in an incorrect period of oscillation.
the equivalent one DOF system and use an accurate numeri€he variational integrator continues to perform well for
integrator to generate a benchmark trajectory for comparisdong time scales. Fig. 12 shows the trajectory after 1000

A schematic of the device is shown in Fig. 10. The topeconds. There is a slight phase shift from accumulated error,
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Fig. 12: Long-time simulated trajectories for the scissor lift Segments

with 5 segments. Fig. 13: Simulation runtime vs. Number of Segments in a

scissor Lift. The simulation runtime was found by setting the
twge step so that the simulation time wa8s + 1% when

but the amplitude, shape, and frequency are sill close to accumulated error exceedéd. The y-axis is logarithmic.

benchmark trajectory.

1) Scissor Lift Complexity Analysi§iraditional complexity
analysis in mechanics considers the computational effort §Qer trep . The main point is that the result of traditional
calculate the state derivative depending on the number @mplexity analysis thaDDEshould always scale better can

bodies or degrees of freedom in the system. This type & misleading in practice because of error.
complexity analysis is useful to compare similar algorithms,

but becomes less meaningful as algorithms grow further apart. VII. CONCLUSION
This is particularly true when comparing discrete mechanics, Tree descriptions have enabled us to create a variational
where the system is advanced by a root-finding problem, apglgrator for arbitrary mechanical systems in generalized
continuous dynamics, where the system is advanced with Riordinates. The recursive equations derived from the hier-
meric integration. There are additional fundamental dlﬁerencgﬁ:hy lend themselves well to optimization (both fundamental
like how constraints are handled. o _ optimizations like caching and incremental improvements like

'We can consider comparing methods by running simulatioisjng vectorized hardware) that make the technique scale to
with equivalent parameters and measuring the computatiopgyye systems in generalized coordinates. The organization
time taken as in Fig. 11. As we saw, however, this doesihq structure used in the description has also proven to
account for the validity of the result, and the amount of erJe convenient to work with (for example, to automatically
in the simulation can vary widely. generate visualizations).

Another approach is to include simulation error in our com- The tree description is also appealing for its versatility.
parison. Given a benchmark trajectaty(t) and a simulation Though we emphasize variational integrators here, the same

resultd(t), the simulation error is defined as approach works for the continuous dynamics with the tradi-
ty ) tional Euler-Lagrange equation.
e Z/ (Op(1) — Os(7))" dT (47)  Similarly, variational integrators can be derived with spe-
to

cial forms instead of the tree description. This can improve
First, we choose a desired error and simulation time. Aderformance at the expense of generalized coordinates. Such
N-segment lift is simulated until the error exceeds the des”ﬁﬁegrators would still retain the benefits of good energy
error. If the simulation time is |0nger than the desired tim%ehavior and hack-less holonomic constraints.
we increase the step size and re-run the simulation. If theyt is unlikely that a variational integrator in generalized
simulation time is shorter, we decrease the step size. We iterg¢@rdinates will ever outperform a constrained force-balance
until the achieved simulation time is approximately equal t§mulation!! but this technique at least makes them fast
the desired time. enough to be practical for many large systems. The additional
Figure 13 shows the results of this analySiS when the desm%hefits they Offer' like good energy behavior and direcﬂy
time was 15 seconds and the desired error was 0.1. In thigluding holonomic constraints, are important enough for
caseODEscales so poorly that the results must be plottaglany applications to be worth the performance penalty.
logarithmically. The results show that desp@DEhaving  There are two major areas to continue developing this

linear dynamics, it does not perform as well as the variationgbrk. The controls community has developed robust trajectory
integrator because the integrator stepsize must be reduced to
maintain an acceptable error. ' 11'Here_> we mean outperform pure;ly_in terms of computational_speed given
. . . similar time steps. A broader definition of performance that includes the
Of course, the results of this analysis are limited to the acy of the trajectory may tip the balance in favor of variational integrators
scissor lift. There may be other examples that fa@PE as seen in Sec. VI-C.
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exploration algorithms that are very versatile [14], generalizegf] B. Bollobas. Modern Graph Theory Springer, 1998.

coordinates are essential to keep the state size small al§ti Roger W. Brockett, Ann Stokes, and Frank Park.

to develop meaningful cost/objective functions. As a result,

these techniques have been limited to small systems or require

highly optimized models that are hand-tailored to the problen?]

We believe that the methods in this paper will expand th‘ﬂo

practical application to complex mechanical systems. The tree
description is also well suited to derive the higher derivatives

and linearized dynamics needed for trajectory exploration.
Our simulator is also missing some important componenisy

Some, like collisions and impacts [29], have been studied and

developed for variational integrators [12]. These algorith
just need to be adapted to work with the tree representati

Others, like non-holonomic constraints [10], have been largely

ignored in discrete mechanics (with a few exceptions [5]) b4
are needed to study phenomenon like slip-steered vehicles and
contact mechanics. The tree framework may also be extengex

to explicitly include compliant/elastic meshes [23] that can be
attached to coordinate frames.

(16]
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