
Linearizations for Mechanical Systems in Generalized Coordinates

Elliot R. Johnson and Todd D. Murphey

Abstract— We describe an algorithm for calculating the lin-
earization of the dynamics for arbitrary constrained mechanical
systems in generalized coordinates without using symbolic
equations. Linearizations of dynamics are useful tools for
controllability and stability analysis and can be used to generate
locally stabilizing controllers for linear and non-linear systems.
However, the computational expense for finding linearizations
of complex mechanical systems is often cited as a limiting
factor that prevents their use. Recent work has introduced new
methods of calculating the dynamics of arbitrary mechanical
systems in generalized coordinates without deriving large,
system-specific equations of motion. This paper extends that
approach to calculate the linearizations of the dynamics without
using the symbolic equations of motion. Using these ideas, it
becomes practical to both simulate, analyze, and control more
complex mechanical systems without sacrificing the benefits of
generalized coordinates. Furthermore, this method addresses
systems with closed kinematic chains, constraints, and external
non-conservative forcing.

The technique is applied to an example system with a closed
kinematic chain and the resulting linearization agrees with
results found by symbolically differentiating the full equations
of motion.

I. INTRODUCTION

The linearization of a dynamic system approximates the
relationship in the neighborhood of a configuration between
the dynamics and the system state/inputs as a linear system.
Linearizations of non-linear systems can be used to analyze
local stability and controllability properties [4]. Similarly, the
linearization of a system at each point along a trajectory can
be considered a time-varying linear system. Optimal control
techniques like LQR theory [1] are then used with such
linearizations to generate locally-stabilizing linear feedback
control laws with very little manual intervention.

Linearizations are typically constructed directly from
derivatives of the dynamics function. This is straightforward
when the symbolic equations of motion are known and
the derivatives can be found manually or using symbolic
algebra software packages. As systems grow to have many
degrees of freedom or closed kinematic chains, however, the
symbolic equations of motion become prohibitively large,
requiring large amounts of memory and taking long times
to evaluate. In these cases, the linearizations are difficult
to work with because the derivatives of the dynamics are

E.R. Johnson elliot.r.johnson@u.northwestern.edu
T.D. Murphey t-murphey@u.northwestern.edu
Department of Mechanical Engineering, Northwestern University, 2145

Sheridan Road, Evanston, IL, USA 60208
This material is based upon work supported by the National Science

Foundation under award IIS-0917837. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1: The graph-based approach to calculating linearizations
scales to complex mechanical systems like this dynamic
model of a human hand holding an object. The lineariza-
tion at this configuration shows that the system is locally
controllable. (The STL model was derived from http://www-
static.cc.gatech.edu/projects/large models/hand.html)

typically even larger (due to new terms introduced by the
chain and product rules) and it becomes impractical to use
the linearization [14] in which case linearizations are either
avoided or approximated by sampling methods.

Others have looked at automatic linearization, typically in
the case of automatic differentiation [6], [3]. These software
packages simply take algebraic expressions and apply chain
rule and product rule to the expressions, so the topology
of the mechanical system is never used to simplify the
linearization process. In [9], the authors linearize systems
based on their geometric properties. This work is similar to
the present work, but does not explicitly take advantage of
the mechanical topology.

Recent work by the authors [10] has introduced tools for
simulating mechanical systems in generalized coordinates
without explicitly deriving the equations of motion for the
system. These avoid large equations and improve scalability.
Those techniques use a formal graph-based description of a
system that is used to numerically calculate all the quantities
(i.e, the positions, velocities, and their derivatives for every
coordinate frame in the system) needed to calculate the

system dynamics at a particular configuration. The key
idea to this approach is to work with the general Euler-
Lagrange equations of motion and evaluate the individ-
ual terms numerically rather than plugging in symbolic
equations to find system-specific equations. A software im-
plementation of this approach is available (See trep at
http://trep.sourceforge.net).

This paper is the straightforward continuation of that
idea that makes linearizations practical for large, constrained
systems. We take derivatives of the general Euler-Lagrange
equations to find an exact equation that can be evaluated nu-
merically. This avoids dealing with large symbolic equations
and leverages the performance benefits of the graph-based
framework.

Together, these techniques have been used to simulate the
dynamics and find trajectory linearizations for the model of
the human hand shown in Fig. 1. This system has 20 degrees
of freedom and 23 non-collocated inputs. It is under-actuated
and the inputs often conflict.

The paper is organized as follows. Section II gives an
overview of the graph-based approach including how the
position and velocities of coordinate frames are calculated
(Sec. II-A) as well as how the Euler-Lagrange equations are
evaluated numerically (Sec. II-B). Section III extends the
ideas to calculate linearizations. Linearizations of systems
with constraints are discussed in Sec. III-B. Finally, the al-
gorithm is applied to a forced, constrained double pendulum
example in Sec. IV.

II. RECURSIVE DYNAMICS

Recursive approaches to calculating dynamics [13] [7] take
advantage of special representations of mechanical systems
that allow the values needed for simulation to be calculated
quickly and avoid redundant calculations.

The work in this paper is based on the methods presented
in [10]. Systems are represented as graphs where each node
is a coordinate frame in the mechanical system and the
nodes are connected by simple rigid body transformations
(typically translations along and rotation about the X , Y ,
and Z axes though any rigid body screw motion can be
used). Transformations are either constant or parameterized
by real-valued variables. The set of all variables establishes
the generalized coordinates for the system. Figure 2 is an
example of a tree that represents a two-dimensional human
form [10].

The graph description can include closed kinematic chains,
but in practice the graph is converted to an acyclic directed
graph (i.e, a tree) and augmented with holonomic constraints
to close the kinematic chains.

The tree leads to fast and transparent algorithms to numer-
ically1 calculate the positions and velocities of each frame
in the system. The subsequent dynamics calculations are
equally direct and arise naturally by keeping the equations
in general forms. We emphasize that this is only a brief

1We emphasize that while these values and the derivatives are found
numerically, they are exact derivatives, not numeric approximations.

s

g0 : Tx(q0)

g1 : Ty(q1)

g2 : Rz(q2)

g3 : Rz(q3)

gA : Ty(1
2L2)

gB : Ty(L2)

g4 : Rz(q4)

gC : Ty(1
2L3)

g5 : Rz(q5)

. . .

gD : Ty(L4)

g6 : Rz(q6)

gE : Ty(1
2L4)

gF : Ty(L1)

g7 : Rz(q7)

gG : Ty(1
2L5)

g8 : Rz(q8)

. . .

g2

gA

gC

gE

gG

2: A planar human is represented with a tree structure [10].

overview of the simulation technique meant to emphasize
the process that is being extended to find linearizations. For
a detailed discussion, see [10].

A. POSITION AND VELOCITY

The graph description establishes a hierarchy of coordinate
frames that are related to their neighbors by rigid body
transformations parameterized by real-valued configuration
variables. These relationships allow the position and velocity
of each frame to calculated by composition. For example, the
spatial configuration (i.e, position) of the k-th frame, gs,k is
calculated from its parent’s position, gs,par(k) and the local
transformation gk:

gs,k(q) = gs,par(k)gk.

Similarly, a frame’s body velocity v̂bk(q, q̇) is calculated
by appropriately transforming the parent’s body velocity
v̂bpar k(q, q̇) and adding the local body velocity:

v̂bk(q, q̇) = g−1
k v̂bpar(k)gk + g−1

k ġk.

The above two equations are recursive and traverse up
the graph towards the stationary world frame2 which has
known position and velocity (the identity and zero elements,
respectively) and terminates the recursion.

Derivatives of position and velocity are obtained directly
from the above. For example, the derivative of the k-th
frame’s position with respect to configuration variable qi is:

∂gs,k

∂qi
(q) = ∂gs,par(k)

∂qi
gk + gs,par(k)

∂gk

∂qi
.

This equation is evaluated using recursion for the first term
and the known derivative of the local transformation for the
second. Since only a simple set of local transformations
are allowed, all of these derivatives are determined before
simulating the system and have simple forms. This process

2We have omitted the details in this discussion, but every frame in a
graph description descends from the stationary world frame.

is repeated to get the higher order derivatives that are needed
for simulation and calculating linearizations.

B. CALCULATING DYNAMICS

The dynamics in generalized coordinates are calculated us-
ing the Euler-Lagrange equations. The Lagrangian is written
in terms of values that are provided by the graph description
(e.g, the position and velocity equations in Sec. II-A). This
keeps the equations general so they work with any system
described by a graph and avoids large symbolic equations by
working with the numerically calculated values.

The Lagrangian for the system is the sum of all of the
kinetic energies in the system minus each potential energy:

L (q, q̇) = KE(q, q̇)− PE(q)

=
∑
i

1
2v
bT
i Miv

b
i +

∑
i

Vi(q) (1)

where Mi is the inertia matrix for each mass in the sys-
tem. Derivatives of the Lagrangian are found directly. For
example, the first derivatives are:

∂L
∂q (q, q̇) =

∑
i

vbTi Mi
∂vb

i

∂q +
∑
i

∂Vi

∂q (2a)

∂L
∂q̇ (q, q̇) =

∑
i

vbTi Mi
∂vb

i

∂q̇ (2b)

This is continued to find any higher order derivative
required. The important point is that no other equations
are substituted in for vbTi and derivatives–these are always
provided numerically from the graph description equations.

Next, we must put the Euler-Lagrange equations in a
form that is also calculated from the Lagrangian derivatives.
This is found by expanding the time derivative in the Euler-
Lagrange equation and solving for q̈:

∂
∂t
∂L
∂q̇ (q, q̇)− ∂L

∂q (q, q̇) = f(q, q̇, u, t)
∂2L
∂q̇∂q̇ q̈ + ∂2L

∂q∂q̇ q̇ −
∂L
∂q̇ = f

q̈ =
[
∂2L
∂q̇∂q̇

]−1 (
f + ∂L

∂q̇ −
∂2L
∂q∂q̇ q̇

)
(3)

where f(q, q̇, u, t) represents the external, non-conservative
forces acting on the system and u is a vector of the system
inputs. Equation (3) is evaluated in the presented form using
the numeric values that are calculated for each term (i.e,
Eq. (2)). Note that the computational complexity of comput-
ing ∂2L

∂q̇∂q̇ , ∂L∂q̇ , ∂2L
∂q∂q̇ is O(n) where n is the number of rigid

bodies. We continue this approach to calculate linearizations.

III. LINEARIZATIONS
Linearizations approximate the behavior of a non-linear

system in the neighborhood of a state as a linear system.
Linear analysis tools are used with linearizations to deter-
mine properties of the non-linear system around that con-
figuration. For example, if the linearization is controllable,
the non-linear system will also be locally controllable at that
configuration.

Linearizations also arise simply by virtue of being deriva-
tives. First and second order derivatives of dynamics fre-
quently appear in optimization problems when the derivative

of a cost function is needed to implement an iterative descent
method [11].

Linearizations for models based on generalized coordi-
nates are often prohibitively expensive to find and evaluate
when working with symbolic equations of motion. In this
section, we demonstrate that recursive methods for simulat-
ing dynamics easily extend to calculate linearizations without
using the full symbolic equations of motion.

A. CALCULATING LINEARIZATIONS

To linearize the system, we must convert the second-order
Euler-Lagrange dynamics into a first order system by letting
x = [q q̇] which gives ẋ = [q̇ q̈]. The linearization around
x0,u0 is then

δẋ =

 ∂q̇
∂q

∂q̇
∂q̇

∂q̈
∂q

∂q̈
∂q̇


x=x0
u=u0

δx+

 0
∂q̈
∂u


x=x0
u=u0

δu

=

 0 I

∂q̈
∂q

∂q̈
∂q̇


x=x0
u=u0

δx+

 0
∂q̈
∂u


x=x0
u=u0

δu

The terms ∂q̈
∂q and ∂q̈

∂q̇ are found by differentiating (3). For
∂q̈
∂q , we find

∂3L
∂q∂q̇∂q̇ q̈ + ∂2L

∂q̇∂q̇
∂q̈
∂q + ∂3L

∂q∂q∂q̇ q̇ −
∂L
∂q = ∂f

∂q̇

∂q̈
∂q =

[
∂2L
∂q̇∂q̇

]−1 (
∂f
∂q + ∂L

∂q −
∂3L

∂q∂q̇∂q̇ q̈ −
∂3L

∂q∂q∂q̇ q̇
)

For ∂q̈
∂q̇ , we find

∂3L
∂q̇∂q̇∂q̇ q̈ + ∂2L

∂q̇∂q̇
∂q̈
∂q̇ + ∂3L

∂q̇∂q∂q̇ q̇ + ∂2L
∂q∂q̇

∂q̇
∂q̇ −

∂L
∂q̇ = ∂f

∂q̇

∂q̈
∂q̇ =

[
∂2L
∂q̇∂q̇

]−1 (
∂f
∂q̇ + ∂L

∂q̇ −
∂3L

∂q̇∂q∂q̇ q̇ −
∂2L
∂q∂q̇

)
where we have taken advantage of the fact that ∂3L

∂q̇∂q̇∂q̇ = 0
for any Lagrangian of the form (1).

Finally, we find the derivative with respect to the external
inputs u:

∂2L
∂q̇∂q̇

∂q̈
∂u = ∂f

∂u

∂q̈
∂q̇ =

[
∂2L
∂q̇∂q̇

]−1
∂f
∂u

As in calculating the dynamics, the terms of the above
equations are evaluated numerically and substituted to cal-
culate ∂q̈

∂q and ∂q̈
∂q̇ . No new structure is needed; an implemen-

tation only needs to provide functions to calculate the higher
derivatives of the Lagrangian (and the higher derivatives that
they, in turn, require).

B. CONSTRAINTS

The above discussion includes external, non-conservative
forcing. We now demonstrate how linearizations for systems
with constraints are generated. While constraints are impor-
tant for most simulation applications, they are particularly
important for the graph-based approach because holonomic
constraints allow closed-kinematic chains to be modeled.

In continuous Euler-Lagrange mechanics, both holonomic
and non-holonomic constraints[12] are defined by a function
A(q) such that

A(q)q̇ = 0 (4)

is always satisfied.3 For the remainder of this description, we
will drop the dependence of A(q) on q. In the graph-based
approach to modeling, these functions are typically written
in terms of generic frames in a system and leverage the graph
calculations to generalize to arbitrary mechanical systems.

To accommodate constraints, the Euler-Lagrange equation
is modified to include a forcing term that enforces the
constraints:

∂2L
∂q̇∂q̇ q̈ + ∂2L

∂q∂q̇ q̇ −
∂L
∂q̇ = f(q, q̇, u, t) +ATλ

where λ is an unknown vector representing the magnitude of
each constraint force. The above is differentiated as before
to calculate q̈ and its derivatives:

q̈ =
[
∂2L
∂q̇∂q̇

]−1 (
f +ATλ+ ∂L

∂q̇ −
∂2L
∂q∂q̇ q̇

)
(5)

∂q̈

∂q
=
[
∂2L
∂q̇∂q̇

]−1 (
∂f
∂q + ∂A

∂q

T
λ+AT ∂λ∂q + ∂L

∂q̇

− ∂3L
∂q∂q̇∂q̇ q̈ −

∂3L
∂q∂q∂q̇ q̇

)
∂q̈

∂q̇
=
[
∂2L
∂q̇∂q̇

]−1 (
∂f
∂q̇ +AT ∂λ∂q̇ + ∂L

∂q̇ −
∂3L

∂q̇∂q∂q̇ q̇ −
∂2L
∂q∂q̇

)
∂q̈

∂u
=
[
∂2L
∂q̇∂q̇

]−1 (
∂f
∂u +AT ∂λ∂u

)
To evaluate the above, we must be able to calculate λ

and its derivative. λ is found by differentiating (4) and
substituting (5) for q̈ [5]:

λ =
(
A
[
∂2L
∂q̇∂q̇

]−1

AT
)−1(

A
[
∂2L
∂q̇∂q̇

]−1 (
∂2L
∂q∂q̇ q̇−

∂L
∂q̇−f

)
−Ȧq̇

)
We can now take the derivative as before, making use of

the following identity for matrix inverses:
∂

∂q

[
M−1

]
= −M−1 ∂M

∂q
M−1

The derivative with respect to q is:

∂λ

∂q
=
(
A
[
∂2L
∂q̇∂q̇

]−1

AT
)−1((

∂A
∂q

[
∂2L
∂q̇∂q̇

]−1

−A
[
∂2L
∂q̇∂q̇

]−1
∂3L

∂q̇∂q̇∂q

[
∂2L
∂q̇∂q̇

]−1)(
∂2L
∂q∂q̇ q̇ −

∂L
∂q − f

)
+A

[
∂2L
∂q̇∂q̇

]−1 (
∂3L

∂q∂q∂q̇ q̇ −
∂2L
∂q∂q̇ −

∂f
∂q

)
− ∂Ȧ

∂q q̇

)
For q̇, we find:

∂λ

∂q̇
=
(
A
[
∂2L
∂q̇∂q̇

]−1

AT
)−1(

A
[
∂2L
∂q̇∂q̇

]−1 (
∂3L

∂q̇∂q∂q̇ q̇+

∂2L
∂q∂q̇ −

∂2L
∂q̇∂q −

∂f
∂q̇

)
− Ȧ

)
3Holonomic constraints of the form h(q) = 0 are differentiated with

respect to time to use this representation.

Finally, we differentiate with respect to u:

∂λ

∂u
= −

(
A
[
∂2L
∂q̇∂q̇

]−1

AT
)−1

A
[
∂2L
∂q̇∂q̇

]−1
∂f
∂u

We now have everything needed to calculate linearizations
for arbitrary mechanical systems in generalized coordinates.
There was no change in the approach used to evaluate the
derivative, only more terms to be evaluated. The equations
still rely on the graph description and are evaluated numeri-
cally so that no large system-specific symbolic equations are
generated.

IV. EXAMPLE

To demonstrate this algorithm, we now consider the ex-
ample system in Fig. 3 which models a double pendulum
with a constrained end point. A torque is applied at the base
joint to manipulate the system.

For this example, we present the parameters of the system
and numerically find the linearization of of the system in the
shown configuration using the algorithm described in this
paper. The results are consistent with the linearization found
by symbolically differentiating the full symbolic equations
of motion and

m1 m2

θ1

θ2

L = 2m

3: The example system is a double pendulum with a
constraint on the bottom mass. A torque is applied to the
base of the pendulum at θ1.

Each link is 1m long and both disks have a mass of
1kg. The system is subjected to gravity of 9.8ms2 . The
configuration vector of the system is q = [θ1, θ2].

The system is described by three local homogeneous
transformations:

g1 = R(θ1) gA = Ty(−1)
g2 = R(θ2) gB = Ty(−1)

gC = Tx(2)

where

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1



TX(x) =

1 0 x
0 1 0
0 0 1

 Ty(y) =

1 0 0
0 1 y
0 0 1


A holonomic constraint fixes the distance between the end

of the pendulum and the right anchor to be 1m.

h(q) = ||pB − pC ||2 − 1 = 0

where pB and pC are the x, y coordinates of the second
mass and anchor, respectively. The position and any of their
derivatives are provided by the tree description framework.
The holonomic constraint is converted to non-holonomic
constraints by differentiating with respect to time.

∂h

∂t
=
∂h

∂q
q̇

0 =
[∂h
∂θ1

∂h
∂θ2

∂h
∂θ1

∂h
∂θ2

]
q̇

0 = A(q)q̇

The configuration and configuration velocity must be
chosen so that both the original holonomic constraint h(q) =
0 and the derived non-holonomic constraint A(q)q̇ = 0
are satisfied. The configuration was found by inspection
from Fig. 3 and is q0 = [0.5246, 1.0472]. An appropriate
configuration velocity was found from the null space of
A(q0) and is [1.000, 2.00116].

A control torque u is applied to the first joint in the system
through the generalize force

f =
[
u(t)
0

]
.

The applied torque for the linearization calculation is u0 =
2Nm.

Once the system, constraints, and forces are fully speci-
fied, the presented algorithm is used to numerically compute
the linearization. For the specified configuration and input
torque, the linearization was found:

δẋ =


0 0 1 0
0 0 0 1

−1.133 7.690 −0.580 −1.447
5.620 −10.698 −1.155 0.577

 δx+


0
0

0.500
−1.000

 δu
The results were verified by symbolically

differentiating the full equations of motion in
Mathematica. The software implementation of our
algorithm, this example, and the Mathematica
notebook used to verify the solution can be found at
http://trep.sourceforge.net/examples/2010acc.

V. CONCLUSIONS

The same techniques that provide fast and scalable simu-
lations of arbitrary mechanical systems in generalized coor-
dinates extend to calculate exact linearizations. This enables
an important area of control theory to be used to analyze
systems that were previously computationally impractical.
Since this method is an extension of simulation tools, the
linearizations are calculated from the same system specifica-
tions so there is no need to redefine the system in another
setting. This technique also works for constrained systems so
that linearizations for systems with closed kinematic chains
are possible.

This theory is straightforward to extend to the second
derivatives of a system’s dynamics. Second derivatives arise,
for example, in optimization problems [8][2] that use New-
ton’s method to achieve quadratic convergence rates. The
second derivative is found using the same procedure pre-
sented.

REFERENCES

[1] B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice
Hall, Inc, 1971.

[2] T.M. Caldwell and T.D. Murphey. Second-order optimal estimation of
slip state for a simple slip-steered vehicle. Bangalore, India, 2009.

[3] S. Campbell. Linearization of daes along trajectories. Zeitschrift für
Angewandte Mathematik und Physik (ZAMP), 46(1):70–84, 1995.

[4] C.T. Chen. Linear System Theory and Design. Saunders College
Publishing, 1984.

[5] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion. The MIT Press,
2005.

[6] G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann,
editors. Automatic Differentiation of Algorithms. Springer, 2002.

[7] R. Featherstone. Robot Dynamics Algorithms. Kluwer Academic
Publishers, 1987.

[8] J. Hauser. A projection operator approach to optimization of trajectory
functionals. Barcelona, Spain, 2002.

[9] Anil N. Hirani. Linearization Methods For Variational Integrators
and Euler-Lagrange Equations. PhD thesis, California Institute of
Technology, 2000.

[10] E. R. Johnson and T. D. Murphey. Scalable variational integrators
for constrained mechanical systems in generalized coordinates. IEEE
Transactions on Robotics, 2010.

[11] C.T. Kelley. Iterative Methods for Optimization. Society for Industrial
Mathematics, 1987.

[12] R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[13] Y. Nakamura and K. Yamane. Dynamics computation of structure-
varying kinematic chains and its application to human figures. IEEE
Transactions on Robotics and Automation, 16(2), 2000.

[14] E. Todorov and Y. Tassa. Iterative local dynamic programming. IEEE
Adaptive Dynamic Programming and Reinforcement Learning, 2009.

