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Abstract— This paper considers how to determine the origin
of a single measurement originating from one of a group
of objects moving in close proximity. During the time in
which measurements are being received, the dynamics of the
various objects are the same except for initial conditions. We
present a method that uses techniques from filtering theory to
represent a distribution using a finite number of parameters.
This method, which we call stochastic sampling based data
association (SSBDA), is similar to a particle filter but differs
in that we use a modified probabilistic data association filter
(PDAF) in the propagation of the distribution associated with
the object’s location. Using the PDAF it is possible to see
the effect that the addition of each measurement has on the
covariance of the posterior distribution. We discuss how the
covariance of the posterior can be used for making decisions
on whether or not a particular measurement originated from
a predetermined object of interest.

I. INTRODUCTION

Data association has been used in a wide variety of track-
ing scenarios, typically focusing on multiple measurements
from multiple objects. We consider a specific version of this
problem: objects traveling in close proximity. This problem
is difficult because the objects’ dynamics are essentially the
same, the only difference between the objects are initial
conditions.

In the problem considered, only a single measurement is
received at each time step. The measurement could poten-
tially have originated from any of the objects within the sen-
sor’s range. However, we know only the initial distribution
associated with a predetermined object of interest.

The main objective of the problem being considered is
to either positively associate the measurement at each time
step with the object of interest or not. Pre-existing data
association methods, such as gating and the Kolmogorov-
Smirnov test [13], have attempted to solve this problem.
The method, which we refer to as stochastic sampling
based data association (SSBDA) is necessary because of the
constant close proximity of the various objects in the system
combined with the sparseness of measurements.

An intuitive choice of existing methods to solve this
problem is gating. In gating, a “gate” or validation region is
drawn around the expected location of the object of interest.
Measurements that fall within the gate are associated with
the object and measurements that fall outside are not. In
the systems we consider, it will often be the case that
measurements not originating from the object of interest
will fall within the validation region and thus would be
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incorrectly associated with the object of interest. Other than
the possibility of incorrectly associating measurements due to
the objects close relative proximity, there is another difficulty
with the gating algorithm.

In the gating algorithm, as well as data association algo-
rithms where clear associations (i.e., acceptance/rejection)
must be made, the user must define some threshold for
acceptance. For example, in gating the user must define
the size of the validation region. This choice has a tradeoff
between incorrect measurements that are positively associ-
ated and correct measurements that are not. The primary
contribution of this paper is the fact that SSBDA removes
the need for a user-defined acceptance region. Like any
Bayesian-based filtering algorithm, SSBDA has two steps:
prediction and update. In SSBDA, the prediction step is
different from most filtering algorithms in the fact that we
employ stochastic integration to map forward in time each of
the finite parameters that represent the prior distribution. In
the update step we use the PDAF to incorporate the addition
of the measurement. There is a distribution associated with
each of these steps, and thus a covariance. If the covariance
of the distribution associated with the update is not smaller
than the covariance of the distribution associated with the
prediction, the measurement at that time is rejected. The
covariances themselves are thus the “metric” upon which
the data is associated.

We will consider two example systems in which SSBDA is
applied, one linear and one nonlinear. The results will show
no discernible difference in SSBDA performance between
the two systems in terms of the ability to identify incorrect
measurements.

Sample-based data association methods for nonlinear sys-
tems have been previously covered in the literature. In [11],
a standard particle filter is modified to incorporate proba-
bilities of association. This process is referred to as a joint
probabilistic data association filter (JPDAF) with samples.
Due to the similarities between this method and SSBDA,
we will compare their filtering performances in Section III.
In [5],[6],[9], and [12], Markov Chain-Monte Carlo methods
(MCMC) for data association are presented. Comparison of
SSBDA to MCMC data association is a direction of future
work. The major difference between SSBDA and these pre-
existing methods is the use of stochastic integration in the
prediction step of the filtering scheme.

This paper is organized as follows. In Section II, we
introduce stochastic integration, the PDAF, and sample-based
methods by giving a brief description of each. In Section
III, the SSBDA algorithm is introduced. Analytical results
are presented, followed by an explanation of the SSBDA



algorithm. Simulation results demonstrating the performance
of the SSBDA algorithm are also presented. Finally, Section
IV includes conclusions and a discussion of future work.

II. MATHEMATICAL METHODS

The SSBDA algorithm uses several mathematical methods.
We will briefly cover stochastic integration, the PDAF, and
using a finite number of samples to represent a distribution.
A more thorough treatment of these subjects can be found
in [1],[4],[7], and [8].

A. Stochastic Differential Equations

A stochastic dynamical system consists of a base flow
on a probability space (Ω, F,P) and a deterministic flow.
The probability space triple (Ω, F,P) consists of the set Ω
which is the sample space, the σ-algebra F which consists
of subsets of Ω, and the probability measure P. In this work,
the elements ω ∈ Ω are assumed to be derived from a Wiener
Process W .

Assume that the stochastic dynamical system evolves in
an ` dimensional vector space M with vector fields Xi ∈
X`(M) for i = 0, ...,m. The general form of the stochastic
differential equation is

dx = X0(z)dt+
m∑

i=1

Xi(z) ◦ dWi, x(0) = x0 (1)

where X0 is the ‘drift vector field’ and Xi, i = 1, ...,m are
the ‘diffusion vector fields’.

B. Probabilistic Data Association Filter (PDAF)

In the SSBDA method, stochastic integration is combined
with the PDAF algorithm. The following are the discrete-
time equations of the probabilistic data association filter.
The results are well known and are thus stated merely for
convenience; for a formal derivation, see [1].

x̂(k|k − 1) = A(k)x̂(k − 1|k − 1)
P (k|k − 1) = A(k)P (k − 1|k − 1)A(k)T +Q(k − 1)
ẑ(k|k − 1) = Hx̂(k|k − 1)

ν(k) = z(k)− ẑ(k|k − 1)
S(k) , HP (k|k − 1)HT +R(k)
W (k) , P (k|k − 1)HTS−1(k)
x̂(k|k) = x̂(k|k − 1) + βiW (k)ν(k)
P (k|k) = [I −W (k)H]P (k|k − 1)

where x̂(k|k− 1) is the state prediction and A(k) the linear
dynamics. P (k|k − 1) is the covariance associated with the
state predicion, Q(k − 1) is the process noise covariance,
ẑ(k|k − 1) is the measurement prediction, and H is the
output map (assumed constant). The residual is ν(k) and its
associated covariance is S(k), and R(k) is the measurement
noise covariance. The Kalman filter gain is W (k), βi is the
probability of association, x̂(k|k) is the current state estimate
and P (k|k) its covariance.

The probability of association is central to creating the
effect that we desire in SSBDA when a false measurement
is present. The probability of association is calculated by
first finding the following parameters: λ = mk

Vk
, where Vk

is the volume of the validation region, mk is the total
number of expected measurements in the validation region.
λ is the density of measurements in the validation region.
Vk = cnz

γnz/2|S(k)|1/2, and cnz
is the volume of the nz-

dimensional unit hypersphere, nz being such that z(k) ∈
Rnz , and γ is the square of the number of standard deviations
to allow into the validation region. The βi(k) probabilities,
where i = 1, 2, . . . ,mk, are then computed as [1]

βi(k) =
εi

b+
∑mk

j=1 εj
(2)

where

εi = exp
[
−ν
′
i(k)S−1(k)νi(k)

2

]
,

and
b , (2π/γ)nz/2λVkcnz

(1− PDPG)/PD.

In (2) above, b is an “acceptance region” parameter which
encodes the geometry of the region where measurements are
most likely to fall into the PDAF algorithm. The parameters
PD and PG are the probability of detection and probability
of gating, respectively.

Note that in standard use there may be clutter in the
environment that creates erroneous measurements inside of
the validation region. In the examples that we consider we
assume that there is no clutter, more specifically mk = 1
always. No gating is used.

C. Sampling-Based Methods

The SSBDA method presented in the following section is
a sampling-based approach to the data association problem.
In sampling-based methods, a set of samples is generated
which is used to approximate a distribution. We will show
below that in SSBDA there are two distributions of interest,
p(x(k)|x(k − 1)) and p(x(k)|zk). These two distributions
are the distributions associated with the prediction and the
update, respectively. The corresponding particle sets will be
referred to as χ(k|k − 1) and χ(k|k), where, for example

χ(k|k) := {x̂1(k|k), x̂2(k|k), . . . , x̂N (k|k)}.

Note that each of the x̂i(k|k) is a realization of the distribu-
tion p(x(k)|z(k)).

The underlying concept behind using sampling-based ap-
proaches has been well covered in the Monte Carlo methods
literature ([2],[3],[8],[10]) One key aspect is that the ex-
pectations with respect to the distribution p(x(k)|data) are
approximated by∫

f(x(k))p(x(k)|data)dx(k) ≈ 1
N

N∑
i=1

f(xi(k)), (3)

where N is the number of samples and f(·) is the function
associated with various moments. Note that as the number
N gets large, the error in this approximation tends to zero.



III. SSBDA

In this section we present the SSBDA algorithm. The
main objectives of this algorithm are to use a sampling-
based approach combined with stochastic integration and
PDAF to represent distributions, and either reject or accept
measurements based on a comparison of covariances. At
each time step two distributions are found, one associated
with the prediction and one associated with the update. The
covariances of both of these distributions are found. If the
covariance of the distribution associated with the update is
not smaller than the covariance associated with the predic-
tion, the measurement is assumed to add no information to
the system and is thus rejected as having originated from the
object of interest.

In this section we present some analytical results for the
SSBDA algorithm. In particular, we will show under what
conditions this algorithm will work. Note that the following
results assume the state space is Rn.

The condition for rejecting a measurement is that the
covariance of the distribution associated with the prediction
is smaller than or equal to the covariance of the distribution
associated with the update, i.e.,

||σ(p(x(k)|z(k)))||F ≥ ||σ(p(x(k)|x(k − 1)))||F , (4)

where σ is the covariance and || · ||F is the Frobenius norm.

Lemma I For x̂i(k|k) the i-th update, x̂i(k|k − 1) the i-th
prediction, x̄(k|k) the average over all updates at time k,
x̄(k|k − 1) the average over all predictions and || · || the
Euclidean norm, if

||x̂i(k|k)−x̂j(k|k)|| ≥ ||x̂i(k|k−1)−x̂j(k|k−1)|| ∀i, j ≤ N
(5)

then

||x̂i(k|k)− x̄(k|k)|| ≥ ||x̂i(k|k − 1)− x̄(k|k − 1)|| ∀i.

Proof: Equation (5) is true for all j. As N → ∞,
x̂j(k|·) = x̄(k|·) for some j almost surely.

Lemma II For x̂i(k|k−1) the i-th prediction, W (k) the filter
gain, βi(k) the i-th probability of association, and νi(k) the
i-th innovation, all at time k, if θ(k) is the angle between the
two vectors x̂i(k|k−1)−x̂j(k|k−1) and W (k)(βi(k)νi(k)−
βj(k)νj(k)) defined by the Euclidean norm, if

||x̂i(k|k − 1)− x̂j(k|k − 1)|| ≥

− 1
2 cos θ(k)

||W (k)(βi(k)νi(k)− βj(k)νj(k))|| ∀i, j ≤ N,

(6)

then

||x̂i(k|k)−x̂j(k|k)|| ≥ ||x̂i(k|k−1)−x̂j(k|k−1)|| ∀i, j ≤ N.

Proof:

||x̂i(k|k)− x̂j(k|k)|| = ||x̂i(k|k − 1)− x̂j(k|k − 1)
+W (k)(βi(k)νi(k)− βj(k)νj(k))||

SSBDA(x0, P0, z1..., N)
for k = 1, 2, . . . do

for i = 1, 2, . . . N do
x̂i(k|k − 1) = A(k)xi(k − 1|k − 1)

+
R k

k−1X(c(s, ω)) ◦ dW (s, ω)

P (k|k − 1) = A(k)P (k − 1|k − 1)A(k)T +Q(k − 1)
S(k) = HP (k|k − 1)HT +R(k)

W (k) = P (k|k − 1)HTS(k)−1

νi(k) = z(k)−Hx̂i(k|k − 1)
εi(k) = exp(−νi(k)

TS(k)νi(k))/2
βi(k) = εi(k)/(b+ εi(k))
x̂i(k|k) = x̂i(k|k − 1) + βi(k)W (k)νi(k)
P (k|k) = (I −W (k)H)P (k|k − 1)

χ(k|k − 1) = {x̂1(k|k − 1), x̂2(k|k − 1), . . . , x̂N (k|k − 1)}
χ(k|k) = {x̂1(k|k), x̂2(k|k), . . . , x̂N (k|k)}
if covariance(χ(k|k − 1)) ≤ covariance(χ(k|k)) then
χ(k|k) = χ(k|k − 1)
Drop zk

return χ(k|k)

TABLE I: Stochastic sampling based data association algo-
rithm.

=[(x̂i(k|k − 1)− x̂j(k|k − 1))T (x̂i(k|k − 1)− x̂j(k|k − 1))

+ 2(x̂i(k|k − 1)− x̂j(k|k − 1))TW (k)(βi(k)νi(k)

− βj(k)νj(k)) + (βi(k)νi(k)− βj(k)νj(k))TWT (k)

·W (k)(βi(k)νi(k)− βj(k)νj(k))]1/2 (7)

Note that ||x̂i(k|k − 1) − x̂j(k|k − 1)||2 is the first term in
(7). Note also that ||W (k)(βi(k)νi(k)−βj(k)νj(k))||2 is the
last term in (7). When (6) is satisfied,

||x̂i(k|k)− x̂j(k|k)|| ≥ ||x̂i(k|k − 1)− x̂j(k|k − 1)||+ c

where c is a constant such that c ≥ 0, and thus

||x̂i(k|k)− x̂j(k|k)|| ≥ ||x̂i(k|k − 1)− x̂j(k|k − 1)||.

Proposition I If

||x̂i(k|k − 1)− x̂j(k|k − 1)|| ≥

− 1
2 cos θ(k)

||W (k)(βi(k)νi(k)− βj(k)νj(k))|| ∀i, j ≤ N,

then

||σ(p(x(k)|z(k)))||F ≥ ||σ(p(x(k)|x(k − 1)))||F .

Proof: If condition (6) in Lemma II is satisfied, using
Lemma I, and noting that ||σ(p(x|·))||F can be shown to be
equal to

||σ(p(x|·))||F = ||x̂i − x̄||2, (8)

Proposition I comes directly.

A. Algorithm

Table I presents the SSBDA algorithm. The inputs into
this algorithm are the initial distribution, represented by x0

and P0, the measurements, z1, z2, . . . , and the number N
of samples to use. We assume that the first measurement
occurs at time k = 1. To “create” the samples at time
k = 1, we use the initial state x0 combined with stochastic
integration. We start at x0 and perform N forward stochastic



integrations up to the time at which the first measurement
occurs. The result of performing these N integrations is
a sample-based representation of the distribution associated
with the prediction p(x(1)|x(0)), of which (3) can be used
to approximate the various moments. After performing the
N stochastic integrations, the PDAF algorithm is used to
“update” each of N predictions. What is meant by “update”
is that the measurement at time k is incorporated, through
convolution, into the distribution associated with each of the
samples. Note that the covariances and gain in the PDAF are
the same for each sample. The only difference from sample
to sample is the predicted state x̂i(k|k − 1)i, the innovation
νi(k), the probability function εi(k), the probability of
association βi(k), and the updated state x̂i(k|k).

After running the modified PDAF algorithm for each of
the N samples, the two sets χ(k|k − 1) and χ(k|k) are
formed. These two sets are approximations to the distribu-
tions p(x(k)|x(k−1)) and p(x(k)|z(k)), or the distributions
associated with the prediction and update, respectively. Note
that the process of approximating these two distributions is
parallel to the particle filter. The difference is that in the
particle filter, the measurement is incorporated into the fil-
tered state by resampling. In SSBDA there is no resampling,
the measurement is incorporated into the filtered estimate by
updating the state of each of the N samples with a PDAF.

Forming the sets χ(k|k − 1) and χ(k|k) allows us to
approximate the distributions associated with the prediction
and update of our current state at time k. These two
distributions are used to perform the main objective of
SSBDA. If the measurement does not improve the estimate
of the current state, then the measurement originated from
another nearby object. To improve the estimate of the current
state, the addition of the measurement results in a smaller
covariance of the distribution associated with the update
than that associated with the prediction. This means that
under SSBDA, if (4) is satisfied the measurement at time
k is rejected. Note that (4) being satisfied is equivalent to
(6) holding, which is the test condition for the SSBDA
algorithm.

B. Simulated Results

In this section we present simulated results of applying
the SSBDA method to dynamic systems examples. The two
systems that we consider both contain three cars constrained
to travel on a road in a “convoy.” They remain in close prox-
imity throughout the entire period in which measurements are
received. There is no relative maneuvering between the cars.
The dynamics for the cars are exactly the same in simulation
except for initial conditions. The measurement is of the car’s
position and occurs every 0.1s. The car of interest is the car
in the middle, Car 2, as shown in Figure 1. A sensor is
pointed at Car 2, but can occasionally accidently measure
one of the other cars instead.

We consider two types of roads, one flat and straight, the
other flat and curved. In the results presented below we have
assumed that the measurements in the x and y directions
are uncorrelated. We are also assuming that the various

Fig. 1: Convoy of three cars. The car in the middle, Car 2,
is the car of interest. Note that in the examples, the vertical
direction is the x axis.

noises due to the system are uncorrelated (these assumptions
are not necessary to the success of the method, but reduce
the number of computations needed for the examples). We
compare the relative sizes of two covariance matrices with
the Frobenius norm.

The results of applying SSBDA to the linear convoy of
cars problem can be seen in Figure 2. The plotted positions
(the points which make up the black lines) in this figure
correspond to update positions. In this example the number
of samples is 75 (which implies that there are 75 black lines),
i.e., N = 75. The green points are the measurements that
originated from Car 2. The red points are the measurements
that originated from one of the other two cars in the convoy,
in this case Car 3. The horizontal axis is time and the vertical
axis is the longitudinal x position along the road.

As measurements are received, each of the N -samples
traces out a trajectory. Figure 3 shows the variance in the
x−direction over time for both the prediction (solid blue
line) and the update (dashed orange line). In Figures 2 and 3,
it can be seen that the covariance associated with the update
goes up due to the addition of the incorrect measurements.
Figure 3 shows that the covariance of the update distribution
is in fact higher than the covariance of the prediction’s
distribution at these time steps where incorrect measurements
are received.

Figures 4 and 5 show the same results as those seen in
Figures 2 and 3, correspondingly, but in this case the road
to which the cars are constrained is nonlinear (note that in
Figure 4 the vertical axis is now the y−component of Car 2’s
trajectory). We are again only looking at a single dimension
because we are making the same assumptions about the noise
as we did in the linear case.

In Figure 4 we can see the same “spreading out” of the
stochastic trajectories that was present in Figure 2. Figure 5
confirms that for this nonlinear example, the variance of
the distribution associated with the update is in fact higher
than the variance associated with the prediction at the times
erroneous measurements are received.

Figure 6 shows the reason that a PDAF is used in the
SSBDA algorithm as opposed to a Kalman filter. In Figure 6,
the orange dot-dash line represents the mean of all 75 sample



Fig. 2: SSBDA using a PDAF for the linear system. The
red points are erroneous measurements, the green points are
correct measurements, and the black lines are the stochastic
trajectories.

Fig. 3: Variances of the distributions associated with the
update (dashed orange) and the prediction (solid blue) for
the linear system. The horizontal axis is time and the vertical
axis represents the variance in the x−direction.

trajectories at each time step for the linear example (i.e., this
orange line is the mean at each time step of the trajectories
in Figure 2). The blue dotted line is again a mean trajectory
over 75 individual trajectories, but in this case the SSBDA
algorithm was run using a Kalman filter in the update step
as opposed to a PDAF. Using the Kalman filter, each sample
trajectory experiences a larger effect in its filtered path
due to the erroneous measurement. The result is that the
overall average position of the filtered path is drawn away
from the true trajectory by the occurrence of an erroneous
measurement.

Figure 6 shows that using a Kalman filter in the SSBDA
algorithm skews the filtered trajectory in an undesirable way
around the erroneous measurements. Due to this skewing,
it is impossible to make correct associations. The standard
PDAF is a filtering method that takes measurement proximity
into account when forming an updated state estimate (which
is unlike the Kalman filter). Although the PDAF does not
include an engine for clear acceptance/rejection of mea-
surements, a comparison in filtering performance between
a PDAF and SSBDA is of interest.

A comparison between a JPDAF with samples [11] and
SSBDA is presented in Figures 7 and 8. In these results,
filtering performance is designated by RMS error between
the filtered trajectory and the simulated true trajectory of Car

Fig. 4: SSBDA using a PDAF for the nonlinear system. The
red points are erroneous measurements, the green points are
correct measurements, and the black lines are the stochastic
trajectories.

Fig. 5: Variances of the distributions associated with the
update (dashed orange) and the prediction (solid blue) for
the nonlinear system. The horizontal axis is time and the
vertical axis represents the variance in the y−direction.

2. In Figure 7, the three cars are close together, where close
is designated as within two standard deviations of each other
(based on the measurement noise covariance). In this figure,
the solid blue line represents the JPDAF with samples and
the dotted red line SSBDA. It can seen by inspection that
the JDAF with samples does slightly better than SSBDA,
but the performance is comparable. In Figure 8, everything
is the same as Figure 7, except that for this case the cars
are far apart, where far is designated as outside of three
standard deviations. In this case, SSBDA maintains the same
performance characteristics as in the close proximity case,
but the JPDAF with samples has error that gets larger over
time. The degradation of the filtering performance of the
JPDAF with samples is due to the structure of this problem.
Due to the large relative proximity of the single incorrect
measurement and the predicted state estimate at each time
step, the variance of the resulting update distribution be-
comes artificially skewed through the resampling process.
This skewing leads to the increasingly bad performance of
the JPDAF with samples as more measurements are received,
which is shown in Figure 8.

In these two examples comparing performance between
SSBDA and the JPDAF with samples, the three cars were
either all in close proximity or relative far proximity. In
practice, there may be more than three cars with varying
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Fig. 6: The dot-dashed orange line represents the mean tra-
jectory of the SSBDA algorithm using a PDAF in the update
step. The dotted blue line represents the mean trajectory of
the SSBDA algorithm using a Kalman filter in the update
step, i.e., does not include any probability of association.
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Fig. 7: RMS errors for a JPDAF with samples (solid blue)
and SSBDA (dotted red) for the nonlinear system when the
cars are close together (inside two standard deviations).

degrees of proximity and it may not be clear what the
threshold between close and far is. For this reason we wish
to have a single algorithm that works regardless of the which
object produces the measurement.

IV. CONCLUSIONS & FUTURE WORK

By taking a sample-based approach and using stochas-
tic integration along with a PDAF, we showed that when
Proposition I holds, SSBDA produces a distribution whose
covariance does go up. We also showed that the size of this
covariance can be used to reject measurements that did not
originate from the object of interest.

At each time step, the SSBDA algorithm uses a sample-
based approach to represent two distributions, one associated
with the prediction step and the other with the update. The
covariance of these two distributions are compared as a
basis for acceptance/rejection of measurements. The SSBDA
algorithm and this simple acceptance/rejection calculation
are the main contribution of this work.

Analytical as well as simulation results for two separate
systems were given. One of these systems was linear and the
other nonlinear. The results showed that SSBDA performance
was robust to the addition of the nonlinear dynamics.

In another set of results, the SSBDA algorithm of Table I
is modified to use a Kalman filter instead of a PDAF. These
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Fig. 8: RMS errors for a JPDAF with samples (solid blue)
and SSBDA (dotted red) for the nonlinear system when the
cars are far apart (outside 3 standard deviations).

results show that the Kalman filter based version sees more
of a negative effect due to erroneous measurements. We also
compared the JPDAF with samples and SSBDA. We showed
that, in terms of nonlinear filtering, the SSBDA algorithm
performed well regardless of object proximity, while the
JPDAF with samples had errors that grow with time when
the object relative proximity was large.

The extension of the SSBDA algorithm to a wider variety
of nonlinear systems is a focus of future work, which in-
cludes nonlinear dynamics as well as non-Gaussian stochas-
tic forcing. We are also exploring the use of MCMC data
association and how it compares to SSBDA.
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