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Abstract— Simulations of orbiting bodies that experience self-impact

during manuevers are known to potentially lead to numerical in-

stability. In this paper it is demonstrated that the dynamics of an

orbiting articulated body experiencing forcing and impacting can be

stably simulated using variational integration. A prominent advantage

of using variational integration is that conservation properties are

maintained (even in the presence of external forcing) and natively can

resolve impacts. Using variational integration, the configuration of the

spacecraft is updated discretely to ensure that the system—subject

to any applied constraints, forces, or impacts—will yield a new

configuration that satisfies all conservation properties. Furthermore,

variational integrators allow impacts to be easily implemented into the

configuration update.

I. INTRODUCTION

Variational integration is a numerical technique for simulating
mechanical systems that preserve energy and momenta character-
istics in the presence of external forcing and impacts[3], [10]. It
scales well [7], [6] with the number of rigid bodies in a system,
allowing one to treat interconnected bodies in an efficient manner.

In comparison to other implicit time stepping methods such as
those found in [1], [2], variational integration methods represent the
update map for a constrained system experiencing an impact as a
root solving problem. Although this can lead—in principle—to an
indeterministic number of steps in the update, it has the benefit of
only returning an answer that satisfies the equations of motion, and
it does so without any artificial stabilization (even in the presence
of closed kinematic chains [7]). Moreover, variational integration
methods provide physics-based ways of resolving multiple simulta-
neous impacts and yield unique solutions for systems like Newton’s
cradle [13] where one expects unique solutions (in contrast to [4]).

Variational integrators are in particular better for solving impacts
because they involve rootsolving problems that take into account
the impact condition. Typical differential algebraic techniques nu-
merically integrate differential equations using Euler integration
or the Runge-Kutta methods (or variants) and then use artificial
stabilization to deal with the increase in index that occurs during
impact because of the resulting closed kinematic chain. Specifically,
variational integrators are a discretized form of the Euler-Lagrange
equations (called the Discrete Euler-Lagrange (DEL) equations)
used to solve for future configurations of a mechanical dynamical
system. This update rule only relies on rootsolving, and any
rootsolving technique can be used. An added advantage of using
variational integration in the context of orbital docking procedures
is that they preserve energy and momentum characteristics of the
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mechanical system which are often degraded when one uses dif-
ferential algebraic techniques (because of the artificial stabilization
interacting with the energetic properties of the system). For space
vehical simulations, it is critical that energy and momentum are
conserved to ensure the simulated orbital elements, attitude, and
impacts are realistic. This work was largely motivated by interest
from our colleagues at NASA in simulating robotic arms engaged
in manipulation tasks while in orbit.1

Related work on simulating the behavior of orbiting impact-
ing bodies is the Space Docking HIL (Hardware-In-the-Loop)
Simulation [9], based on a Stewart 6-DOF (Degree-Of-Freedom)
motion system. The authors derived the equation of motion for
the relative movement between the “active spacecraft” (Space
Shuttle) and “passive spacecraft” (ISS) in the form of a 2nd order
differential equation using Newton’s 2nd Law (as opposed to this
paper’s use of Euler-Lagrange equations). While their dynamic
simulation software calculated the relative movement between the
two spacecraft, a major problem was found: The Stewart platform’s
inherent phase lag resulted in unstable docking dynamics, and the
controller and simulation were both contributing to the instability.
The authors then had to use a phase compensation controller, adding
in random gains that would cause the output frequency to increase
or decrease in magnitude; hence, “correcting” for the Stewart
platform’s phase lag and obtaining “docking dynamics that are
well replicated”. Another computer simulation [17] incorporating
autonomous rendezvous and docking (ARVD) capability into a six-
spacecraft formation model faced similar problems: The docking-
control algorithm aligned the spacecraft attitudes which, similar
to [9], required gain input: During docking and undocking, [17]
explained that the modeling process did “not induce unacceptable
transient translational motions if the rate-feedback gains [were] set
at sufficiently large values so that the trajectories during formation
acquisition and rendezvous/docking phases [were] non-oscillatory”.
For small gain values, the authors found that dynamics describing
spacecraft motion could become chaotic. This is precisely the sort
of “hand tuning” that we would like to avoid, and we show in this
paper that variational integration can resolve self-impact while in
orbit without any tuning parameters being added to the simulation
in order to obtain realistic results. As the goal of simulation is to
replicate physical behavior, we believe that variational integration is
a superior method because all discrete time calculations are derived
directly from the laws of physics.

This paper discusses the details of simulating a simplified model
of the Canadarm while docking a payload onto the International
Space Station (ISS) using variational integration to simulate both

1Indeed, our colleagues have found that numerical simulations of self-
impact during docking have to be stabilized so much that they do not have
confidence in the physical meaning of the simulation.



the free dynamics and the self-impact dynamics. This simulation
involves the dynamic responses of the combined Candaram-ISS
system while experiencing impacts between the payload and ISS
docking port, forcing from three proportional-derivative (PD) con-
trollers applying torque to the arms, and gravitational force from
Earth. A variational integration simulation requires the system’s
Discrete Euler-Lagrange (DEL) equations [7], initial conditions,
and a root solver (in this case, a Newton-Raphson root solver
provided in Mathematica). Although we do not deal with elastic
body deformations here, we showed in a previous CASE publication
[12] that variational integrator methods are efficient for constrained
elastic body dynamics. We later used that same methodology for
a model of the human hand [5]. Elastic body assumptions will be
incorporated in future work.

Fig. 1. Transformation Frames for a simplified model of the International
Space Station and the Canadarm.

The paper is organized as follows: Section II derives the equa-
tions of motion required to set up a variational integrator in addition
to the implementation of impacts within a variational integrator.
Section III describes the equations and assumptions used to de-
velop the ISS/Canadarm model. Section IV provides details on the
equations used, discretization required, and rootfinding algorithm
implemented in order to create the variational integrator. Section
IV also covers the steps required to solve the equations of motion
during impact. Section V summarizes the simulation results with
plots and snapshots of the system during a docking procedure.
Sections VI has conclusions and future work on elastic mechanics
and optimal control for docking procedures.

II. OVERVIEW OF VARIATIONAL INTEGRATION

Variational integrators are formed by replacing the action integral
with a discrete action sum. Let us consider a sequence of the form
(t0, q0), (t1, q1), ..., (tn, qn), where qk = q(tk). For simplicity,
consider a fixed time step, that is h = tk+1− tk for all k. Now we
define a discrete Lagrangian that approximates the action integral
over one time step:

Ld(qk, qk+1, h) = L (q̄, ¯̄q) ≈
Z

tk+1

tk

L(q(τ), q̇(τ)) dτ,

where we used the midpoint rule q̄ = (qk+1 + qk)/2 and ¯̄q =
(qk+1−qk)/h. This leads to approximating the action integral with

an action sum

S =
n−1X

k=0

Ld(qk, qk+1, h). (1)

Minimizing (1) gives us the discrete Euler-Lagrange (DEL) equa-
tion:

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0, (2)

where DiLd is the slot derivative–the derivative of Ld with respect
to its ith argument. This equation uses the previous two states to
find the next state, thus defining a mapping of the form

(qk−1, qk) → qk+1.

In the case of external forcing—which is relevant here because
of control torques being applied to the arms—the DEL equation
becomes

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h)+

f+
d

(qk−1, tk−1, qk, tk)+f−
d

(qk, tk, qk+1, tk+1) = 0, (3)

where f−
d

and f+
d

are left and right discrete forces.
Now, assume that we have determined that an impact happens

during the kth time step, more precisely between tk−1 and tk. This
can be determined using a collision detection algorithm, a simple
implementation of which would be to check for negative values of
a function φ that describes the boundary C of the surface at each
time step. Now, since we are interested mainly in what happens at
the collision and not outside it, let us refer to tk−2 as to (for told),
tk−1 as tc (for tcurrent), and tk as tn (for tnew). Let the collision
time be t1 = tc + α1h, with α1 ∈ [0, 1]. We will denote the value
of the configuration at the time of impact t1 as q1.

Applying the variational principles as before over the interval
[tk−1, tk], we get the following set of equations:

D2Ld(qo, qc, h) + D1Ld(qc, q1, α1h) = 0, (4a)
φ1(q1) = 0, (4b)

D3Ld(qc, q1, α1h)−D3Ld(q1, qn, (1− α1)h) = 0, (4c)
λ1∇φ1(q1) + D2Ld(qc, q1, α1h)

+D1Ld(q1, qn, (1− α1)h) = 0, (4d)

where the unknowns are q1, α1, and qn and there is no forcing
(adding forcing only requires adding the same forcing terms as
before to Equations 4(a,c,d)). Equation (4b) simply states that qi

must lie on the boundary at the time of impact.

III. MODEL OF THE INTERNATIONAL SPACE STATION AND
CANADARM

In order to use variational integration to model the International
Space Station (ISS) and the Canadarm, we need to know the
inertial and forcing properties of the system. The ISS is in an
elliptic, synchronous orbit with semimajor axis a = 6, 731, 290
m, mass mISS = 344, 378 kg, and length LISS = 73 m. It
travels at an average speed of 7706.6 m/s and has a period of
5460 s [16]. The kinetic energy of the system can be derived
using equations for the body velocity [11] which include both
translational and rotational energy terms. These body velocities are
generally most easily calculated using homogeneous transformation
matrices, represented by a 4 × 4 matrix GXY that is the matrix
representation of the rigid body transformation from frame X to
frame Y. These transformations are used to translate and rotate
a system of coordinate frames that are referenced to the world
frame W located at Earth’s center of mass (COM). We use rigid
body motions to describe the relationship between every coordinate



frame shown in Fig. 1. The general form of the homogeneous

transformation matrix is: G =

»
R p
0 1

–
where R is a 3x3 rotation

matrix and p is a 3x1 point. These transformations generalize all
coordinates with respect to W. Referring to Figure 1, following the
world frame is a translation from Earth’s COM to frame A, centered
on the International Space Station’s (ISS) COM. A rotation of angle
θ defines frame B, the ISS orientation. Next, a rotation of angle
Ψ defines frame C, Arm1’s orientation. A translation along frame
C’s x-axis (Arm1) to frame D, defines the location of Arm1’s tip.
Frame D rotates by an angle α to frame E. Next, a translation
along frame E’s x-axis (Arm2) to frame F, defines the tip of Arm2.
The final rotation and translation are an angle β to frame G and a
translation along frame G’s x axis (Arm3) to frame H, the tip of
Arm3. The origin of frame H is the location of the end effector
which holds the payload. To transform coordinates from frame W
to frame H, the transformation matrices are matrix multiplied as
GWH = GWA.GAB .GBC .GCD.GDE .GEF .GFG.GGH . Hence,
the system’s configuration vector is q = [xISS , yISS , θ, Ψ, α, β]T .

The total energy of the the ISS and Canadarm can be derived as
follows. The total kinetic energy is KE = (vb)T .I.vb where vb

is the body velocity and I is the diagonal constant inertia tensor
for each body relative to its body frame. The potential energy
is simply the gravitational potential energy PE=−Gmem

r
where

two-body dynamics are assumed, G is the gravitational constant
6.673E−11 m3/s2kg, me is the mass of Earth, and r is the radius
between Earth and the location of the mass m for each body.

For the 2D orbital problem in this paper, only moments of inertia
about the out-of-plane motion of the ISS, Canadarm sections, and
payload are needed: IISS =

mISSL
2
ISS

12 , IArm1 =
mArm1L

2
Arm1

3 ,
IArm2 =

mArm2L
2
Arm2

3 , IArm3 =
mArm3L

2
Arm3

3 , and Ip =
mpL2

Arm3 where mx is the mass of x, Ix is the inertia of x,Lx

is the length of x, Arm1, Arm2, and Arm3 correspond to the three
sections of the Canadarm shown in figure 1, and p denotes payload.
The body velocities are: VWX = G−1

WX
.ĠWX for each body X .

Assuming the end effector has the payload and is in some position
away from the docking station, three proportional-derivaitive (PD)
controllers are used to guide the payload into the docking station.
The PD controllers are given the configuration of the desired
docking position, and then they apply torques to the three arm
joints until the payload is successfully docked. Specifically, the
three arm orientation angles that occur at docking position, Ψdocked

(2.932 rad), αdocked (0.741 rad), and βdocked (0.776 rad), are
given to the PD controllers. The required torques, TΨ, Tα, and
Tβ , are then calculated using the PD control law (E.g., TΨ =
kp∗(Ψdesired−Ψ)+kd∗(Ψ̇desired−Ψ̇)) at each time step and applied
to the arm joints. The proportional and derivative gain for all PD
controllers were chosen to be kp = 10 and kd = 2 respectively.

The continuous force vector, f located on the right hand side
of Eq. 3 represents the torques acting on the configuration vector
q due to the PD controller. In vector notation, f [TΨ, Tα, Tβ ] =
[0, 0, 0, TΨ, Tα, Tβ ]T because there are only torques applied to
frames C, E, and G. Using these terms, the Lagrangian is computed
as the difference between the system’s total kinetic energy and
potential energy.

IV. SIMULATION OF IMPACTS

During docking procedures, the payload bumps into the ISS while
being positioned into the docking bay by the PD controllers. In
order to integrate the system’s trajectory, the DEL equations in
Eq. 3 and Eq. 4 are updated recursively. Given two configuration
vectors, qk−1 and qk Eq. 3 is root-solved until an impact is detected.

When an impact is detected, Eq. 4 is used. Once qk+1 is known,
the original away-from-impact root finder is used to compute the
future configurations. Below is a summary of the steps required to
detect and solve configurations before, during, and after impact. For
more detail on impact equations, refer to [14].

1) Step 1: Find configuration away from impact using initial
conditions: Eq. 3 is used to find all configurations before and after
the three impact-configuration root finders (before and after impact).

2) Step 2: Test for Collisions: Given the configuration vector
qk+1; at every time step the collision detection algorithm described
above is used to verify if any point of the payload has crossed an
ISS boundary line φ (i.e. test for payload collision with the ISS).

3) Step 3: Find configuration and time at impact (qI and tI ):
After an impact is discovered, the previous two configurations of
the simulation are renamed as qk−2 and qk−1 so that the next set
of impact equations can refer to times occuring at tk−2 and tk−1.
The first impact-configuration root finder is used to find qI and tI

by using the previous two times and configuration vectors: tk−2,
qk−2 and tk−1, qk−1 respectively (where qk−1 is set equal to qk,
and qk−2 is set equal to qk−1). Because the qk+1 from step 1 has
effectively penetrated through the surface of the ISS, it is useless
for further computations of the simulation and is thrown out. It is
assumed that qI is between qk−1 and qk and tI is between tk−1

and tk.
4) Step 4: Find qk and λ: Now that the impact time and con-

figuration are known, the second impact-configuration root finder
uses qk−1, tk−1, qI , and tI to find qk (the configuration immediatly
after impact). The time, tk, corresponding to qk is set equal to the
time of the qk+1 configuration that penetrated through the surface.
At this step of the impact procedure, the current time is set to the
time tk that the configuration was at just before impact detection.

5) Step 5: Find qk+1: Equation 4 uses qI , tI , qk, and tk to solve
for qk+1 and tk+1.

6) Step 6: Return to original root finder away from impacts:
Finally, the value of qk+1 found in step 5 is updated using Eq. 3,
and the simulation away from impact continues to be computed.

V. SIMULATION

The following plots and animation snapshots are from a 4000-
iteration (∆t=.01sec) simulation where a 100 kg payload is docked.
An impact with the side of the docking bay occurs at iteration
number 1250 (12.50 seconds), followed by the impact at the time
of dock, or iteration number 2751 (27.51 seconds). The oscillatory
behavior of each arm joint angle, shown in figures 6-9, results from
the PD controllers (which, in this case, were purposefully designed
to allow impacts to occur since they are known to occur during
actual docking manuevers).

Figure 2 shows the orientation of the space station relative to
the earth (with some scaling to make it more clear). During the
docking procedure, conservation of angular momentum will dictate
that the ISS rotate as the arm moves. Moreover, impacts between
the arm/payload combination and the sides of the docking bay
are inevitable. Figures 3 and 4 indicate the beginning and end of
the simulation and the orientation of the arm relative to the space
station.

During the docking procedure the system experiences several
impacts due to a low gain controller being used. This reflects
flexibility in the arm as well as having low torques to apply. The
variational integrator has no difficulty resolving the dynamics even
though there are closed kinematic chains involved in the impact.
Moreover, no tuning parameters or other heuristics are needed to
run the simulation.



Fig. 2. ISS in Earth Synchronous Orbit

Fig. 3. Beginning of Docking Procedure: The Canadarm’s end effector
has grappled the 100 kg payload and begins to bring it towards the docking
station

Fig. 4. End of Docking Procedure: The payload is successfully docked
and the Canadarm has moved back to its original position

The rotational dynamics of the ISS and three arm segments
(during the docking procedure) are described by figures 6-9. The
rotational behavior of the entire system depends on torquing from
arm motion in addition to the required rotational energy which
keeps the ISS in an earth synchronous orbit. Figure 6 shows that
the orientation of the ISS experiences small, abrupt changes when
self-impacting occurs. PD control is apparent in figures 7-9 where
the motion of each arm segment is shown throughout the docking
procedure. As the controllers guide the payload into the docking
bay the payload encounters collisions with the ISS, causing the
planned trajectories of the arm sections to change; however, the PD

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Close-Up snapshots of Docking Simulation: (a) initial condition;
(b) the arm starts bringing the payload in; (c) the arm experiences the first
impact with the ISS; (d) the arm experiences the second impact with the
ISS; (e) the docking manuever is completed; (f) the arm moves away from
the payload.

controllers continue to command rotational accelerations to the arm
joints that bring the payload away from the impact boundary and
towards the docking bay. The non-smooth changes in the trajectories
of figures 6 and 7 at the collision times of 12.5 (iteration 1250) and
27.5 (iteration 2750) seconds show that the effects of the payload
impacts carry through the entire system. Although the impacts
interfere with the desired PD trajectory, the control feedback is
able to correct the motion until the payload is docked.

Figures 6-9 emphasize a few of the major benefits of our
control; the dynamics of each of the coordinate frames which
define the system may be analyzed individually, the mathematical
discontinuity that occurs in the configuration trajectory at impact
does not cause unrealistic behavior of the system, and during
self impacts, our method yields realistic, energy and momentum-
conserved dynamics.

When a standard Macbook is used to run the simulation, exe-
cution time was 3 minutes and 2 seconds while animation loading
took an extra 1 minute and 2 seconds, yielding a total of 4 minutes
and 4 seconds.

Figures 6-9 emphasize a few of the major benefits of our
control; the dynamics of each of the coordinate frames which
define the system may be analyzed individually, the mathematical



(a) (b)

(c) (d)

Fig. 6. Orientations during the docking procedure: (a) Orientation of the
ISS; (b) Orientation of Arm1 (c) Orientation of Arm2; (d) Orientation of
Arm3.

discontinuity that occurs in the configuration trajectory at impact
does not cause unrealistic behavior of the system, and during
self impacts, our method yields realistic, energy and momentum-
conserved dynamics.

When a standard Macbook is used to run the simulation, exe-
cution time was 3 minutes and 2 seconds while animation loading
took an extra 1 minute and 2 seconds, yielding a total of 4 minutes
and 4 seconds.

VI. CONCLUSION

Robust computer models are necessary for the development
of advanced space missions. The discrete algorithm used in this
Candadarm-ISS docking simulation resolved the dynamic behavior
of both the main body of the ISS and the arm. This simulation
capability is essential both for the future of robotic spacecraft that
will have moving parts, and for future missions involving space-
craft rendezvous. The use of variational integrators to derive the
dynamic response of a complex system yields a plausible, energy-
conserved simulation. In addition, when implementing any number
of interconnected rigid bodies with closed kinematic chains, forcing
controllers, or impacts into a variationally integrated simulation,
the results remain realistic. Next steps include deriving optimal
control laws using DMOC [15], [8]; these optimal control laws take
into account the angular moment conservation as well as potential
impacts and will be more efficient than the simple PD control used
here. Moreover, incorporating elastic mechanics into the description
of the ISS and using increasingly realistic models will be needed
to verify the performance and viability of controller designs.
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