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Abstract— Switching-time optimization has applications in
local motion planning using the geometry of the nonlinear
vector fields that govern the control system. In this paper,
we present an algorithm for computing the second derivative
of a switching-time cost function that enables second-order
numerical optimization techniques that often converge quickly
compared to first-order only algorithms. The resulting algo-
rithms (for both first and second derivatives) each require only
a single integration along the time horizon, yielding excellent
computational performance. We present an example that uses
this method to do local motion planning for a parallel parking
maneuver for a kinematic car using the infinitesimal Lie bracket
expansion that is used to demonstrate controllability. This
same expansion allows one to construct a sequence of motions
and approximate switching times that can then be used in
the switching time optimization for a finite (non-infinitesimal)
motion.

I. INTRODUCTION

Switched dynamic systems discontinuously switch from
one dynamic function to the next in a known sequence as
certain switching times are reached. Each dynamic function
(i.e. ẋ = f(x, u, t)) is itself continuous and differentiable.
Hybrid systems can be represented as switched mechanical
systems when the ordering of the active states (or modes)
are known. Switching time optimization is the problem
of determining a set of switching times that minimize a
cost function. For example, we can design a cost function
whose minimizer will be the best approximation of a desired
trajectory.

Geometric planning tools for nonlinear systems often
represent local planning tasks as switched systems where
the switching arises from turning on and off vector fields
that generate the Lie algebra. This paper provides the tools
necessary to optimize over the switching times so that the
infinitesimal motion provided by the Lie bracket motion can
be turned into a finite motion that is feasible for the real
system.

In this paper, we consider autonomous dynamic systems
which have no control input (i.e. ẋ = f(x, t)). These opti-
mizations are implemented with standard iterative, numerical
algorithms [17][18] (e.g. the Steepest descent algorithm).
The focus of research has been algorithms to calculate the
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derivatives of a cost function with respect to the switching
times [12], [4], [2], [1], [11], [20], [5], [14], [13], [16],
[23]. In general, these works have focused specifically on
calculating first derivatives [12], [5], [14], [13], [16], though
some have also discussed (but not computed) the second
derivative [11], [20], [23]. Switching time optimization is
useful for system identification problems as well. It is used in
[7] to determine the slip-state (i.e. which wheels have traction
and which do not) of a slip-steered vehicle. In that particular
case, the authors demonstrate significant performance ben-
efits by implementing a second-order optimization. Lastly,
switching time optimization techniques typically assume that
mode order is known, whereas [4], [2], [1], [16], [8] focus
on optimizing over mode order as well.

The work in [12], [5], [14], [13], [16] represents the
state-of-the-art for calculating the first derivative. In that
work, the authors present an elegant algorithm to calculate
the derivative with respect to every switching time with a
single backwards integration of a differential equation that is
independent of the number of switching times. The algorithm
is developed with constrained optimization techniques that
use Lagrangian multipliers.

This paper uses a different approach to find the same result
as [12] that involves fewer steps and relies on fundamental
principles in calculus instead of constrained Lagrange multi-
plier techniques. More importantly, the derivation generalizes
to find the second derivative of the cost function using an
equally simple single integration strategy.

Optimizations that use only the first derivative are re-
stricted to the steepest descent algorithm and achieve linear
convergence. The second derivative enables implementations
of Newton’s Method that have quadratic convergence. The
difference between convergence rates are often significant in
practice [7], [8]. We present a local planning example that
compares both methods and demonstrates the importance of
using the second derivative in the optimization.

Section II establishes the precise problem definition. Sec-
tions III and IV derive the first derivatives of the trajectory
and cost function, respectively. The same technique is ex-
tended to find the second derivatives of the trajectory and cost
in Sec. V and VI. Section VIII applies the techniques to a
planning example where the Lie bracket is used to determine
mode order and approximate switching times.



II. PROBLEM DEFINITION

Consider an n-dimensional non-linear system governed by
a sequence of N dynamic models:

d
dt [x(t)] = f(x, t) =


f1(x, t) τ1 ≤ t < τ2

f2(x, t) τ2 ≤ t < τ3
...
fN (x, t) τN ≤ t < τN+1

(1)

with τ1 = t0 and τN+1 = tf defining the time horizon and
with initial condition x(t0) = x0. Each fk(x, t) is at least
C2 in x.

We seek the N−1 switching times1 τ2 . . . τN that optimize
a total cost:

J(τ2, τ3 · · · τN ) =
∫ tf

t0

`(x(t), t) dt (2)

where `(x, t) is an arbitrary C2 (in x) incremental cost
function chosen for a specific problem. For example we
might choose

`(x, t) = (x− xd(t))T (x− xd(t))

to find the switching times that result in the best possible
tracking of the desired trajectory xd.

The optimization problem is approached using standard
iterative numeric algorithms (i.e. Gradient-descent, Newton’s
Method). The mathematical problem considered in this paper
is how to calculate the first and second derivatives of the cost
function needed to implement these algorithms in a planning
task. Before we find the first derivative, we mention several
conventions used throughout this paper.

A. Notation

The most important notational point for this paper is that
we abbreviate a trajectory as x(t) when strictly it should be
x(x0, τ1, τ2 · · · τN , t). This is a crucial point to remember
when taking derivatives of x(·) with respect to a switching
time τi since a switching time may also be an argument as
the time parameter.

For any time-dependent function y(t), we refer to a
segment yk(t) to be y(t)∀ t ∈ [τk, τk+1). Note that, when
there is continuity, yk(τk+1) = yk+1(τk).

We prefer to think of linear and bilinear maps, especially
derivatives, as operators and write M ◦U to mean “the linear
operator M applied to U”. For finite dimensional linear
operators, we use square brackets [M ] to indicate matrix
representations (e.g. M ◦ U = [M ]U and M ◦ (U, V ) =
UT [M ]V ).

We use Df(x) notation for derivatives.
Dnf(arg1, arg2, ...) ◦ (∂argN ) represents the derivative of
f(·) with respect to the n-th argument. This is called the
slot derivative. Finally, Dvarf(arg1, arg2, . . . ) ◦ (∂var) is
the derivative of f(·) with respect to the variable var.

1Having τ2 be the first switching time is awkward, but otherwise the first
trajectory will be x0(t), which clashes with the conventional notion that x0

is a constant initial condition.

III. FIRST DERIVATIVE OF x(t)

The first derivative of the cost function, Dτix(t) ◦ ∂τi,
involves the derivatives of the trajectory x(t) with respect to
each switching time τi ∀ i = 2 · · ·N .

Lemma 3.1:

Dτi
x(t) ◦ ∂τi =

{
0 t < τi

Φ(t, τi) ◦Xi t ≥ τi
Xi =

(
fi−1(x(τi), τi)− fi(x(τi), τi)

)
∂τi

(3)

where Φ(t, τ) is the state transition matrix for the state
system ẋ = A(t)x with A(t) = [D1f(x(t), t)].

Proof: Use the fundamental theorem of calculus with
(1) and continuity of x(t) to express each segment of the
trajectory in integral form.

x0(t) = x0

xk(t) = xk−1(τk) +
∫ t

τk

fk(x(s), s) ds (4)

Derivatives of x0(t) are clearly zero and will not be explicitly
mentioned for the rest of the discussion. Take the derivative
of (4) with respect to τi.

Dτi
xk(t) ◦ ∂τi = Dτi

xk−1(τk) ◦ ∂τi
+Dtxk−1(τk) ◦ dτk

dτi
− fk(xk(τk), τk)dτk

dτi

+
∫ t

τk

D1fk(xk(s), s) ◦Dτi
xk(t) ◦ ∂τi ds

= Dτixk−1(τk) ◦ ∂τi
+ fk−1(xk−1(τk), τk)dτk

dτi
− fk(xk(τk), τk)dτk

dτi
(5)

+
∫ t

τk

D1fk(xk(s), s) ◦Dτi
xk(s) ◦ ∂τi ds

where the third term appears from the Leibniz Integral rule
and

dτk
dτi

=

{
∂τi k = i

0 k 6= i.

This is the intuitive notion that the derivative of an indepen-
dent variable with respect to itself is the identity, and with
respect to any other independent variable is zero.

Use the fundamental theorem of calculus to express (5) in
differential form.

Dτixk(τk) ◦ ∂τi = Dτixk−1(τk) ◦ ∂τi
+fk−1(xk−1(τk), τk)dτk

dτi
− fk(xk(τk), τk)dτk

dτi

∂
∂tDτixk(t) ◦ ∂τi = D1fk(xk(t), t) ◦Dτixk(t) ◦ ∂τi

We have a linear differential equation that is the same form
for all k and i. Solutions to linear differential equations can
be represented by a state transition matrix operating on an
initial condition [9]

Dτixk(t) ◦ ∂τi = Φk(t, τk) ◦Dτixk(τk) ◦ ∂τi (6)

where Φk(t, τ) is the state transition matrix for the linear
system with A(t) = [D1f(xk(t), t)].



The initial conditions, on the other hand, for the differen-
tial are dependent on the relationship between k and i. For
k < i:

Dτi
xk(τk) ◦ ∂τi = Dτi

xk−1(τk) ◦ ∂τi
= Φ(τk, τk−1) ◦Dτi

xk−1(τk−1) ◦ ∂τi

This is a recursive equation, with k decreasing with each
recursion. Since k < i, it will terminate with k = 0 which
is clearly 0 from (6). Therefore the initial condition will be
zero for each k < i and so Dτi

x(t) = 0 for t < τi.
For k = i we find

Dτixk(τk)◦∂τi = fk−1(xk−1(τk), τk)∂τi−fk(x(τk), τk)∂τi

For k > i we again find

Dτi
xk(τk) ◦ ∂τi = Dτi

xk−1(τk) ◦ ∂τi
= Φ(τk, τk−1) ◦Dτi

xk−1(τk) ◦ ∂τi

In this case, the k towards i decreases with each recursion,
terminating on k = i. As a result, we have a continuous flow
along the differential equation from the initial condition at
t = τi as stated in the Lemma. This continuity allows us to
drop the k subscript and consider the derivative (for t ≥ τi)
as a single trajectory.

The state transition matrix of a linear system has several
well-known [9] properties:

Φ(t, t) = I (7a)
d
dtΦ(t, τ) = A(t) ◦ Φ(t, τ) (7b)
d
dτΦ(t, τ) = −Φ(t, τ) ◦A(τ) (7c)

Φ(t, τ) = Φ(t, s) ◦ Φ(s, τ) (7d)

We use of these identities in the following section to derive
the first derivative of the cost function J(·).

IV. FIRST DERIVATIVE OF J(·)

The first derivative of J(·) is calculated using one of two
approaches. The first comes from directly differentiating the
cost function and integrating forward in time. The second,
which is equivalent to the results in [12] arises by trivially
modifying the first method to integrate backwards in time
rather than forwards. This trivial change produces signifi-
cant improvements in the computational effort required to
calculate the first derivative.

Lemma 4.1: The derivative of the cost (2) with respect to
each switching time τi is

Dτi
J(·) ◦ ∂τi = ψ(tf , τi) ◦Xi (8)

where ψ(tf , τ) : Rn → R is found by integrating

ψ(t, t) ◦ U = 0 (9a)
∂
∂τ ψ(t, τ) ◦ U = −D1`(x(τ), τ) ◦ U (9b)

− ψ(t, τ) ◦D1f(x(τ), τ) ◦ U

backwards along τ from tf to τi

Proof: Take the derivative of (2). The resulting inte-
grand from t0 to τi is zero because Dτi

x(t) = 0 for t < τi,
leaving us with

Dτi
J(·) ◦ ∂τi =

∫ tf

τi

D1`(x(s), s) ◦Dτi
x(s) ◦ ∂τi ds (10)

Substitute (3) into the above and recognize that Xi is
independent of the variable of integration, s and can be
pulled outside the integration by linearity of the integral.

Dτi
J(·)◦∂τi =

(∫ tf

τi

D1`(x(s), s)◦Φ(s, τi) ds
)
◦Xi (11)

Define the linear operator ψ(t, τ) to represent the expression
in parentheses.

ψ(t, τ) ◦ U =
(∫ t

τ

D1`(x(s), s) ◦ Φ(s, τ) ds
)
◦ U (12)

Substituting (12) into (11) results in the first part of the
Lemma, (8).

The above provides a complete set of equations to cal-
culate Dτi

J(·), but we must integrate ψ(tf , τi) (which also
needs Φ(t, τ)) for each2 τi.

Remember that the purpose of ψ(t, τ) is to evaluate the
cost derivative (8) which requires ψ(tf , τ2) · · ·ψ(tf , τN ). If
we think of the integration (12) as a forward differential
equation in t, we are finding ψ(t, τ) for (infinitely) many
values of t and a single value of τ . However, we only need
ψ(t, τ) for a single value of t (namely, tf ) and many values
of τ (namely, τ2 · · · τN ). Differentiating (12) with respect to
τ and integrating backwards from tf to τ2 will find all of
our values of ψ(tf , τi) in a single integration.

Evaluate (12) with τ = t to find the initial condition (9a)
for the integration and differentiate (12) with respect to τ :

∂
∂τ ψ(t, τ) ◦ U = −D1`(x(τ), τ) ◦ Φ(τ, τ) ◦ U

−
∫ t

τ

D1`(x(s), s) ◦ Φ(s, τ) ◦A(τ)U ds

= −D1`(x(τ), τ) ◦ U

−
(∫ t

τ

D1`(x(s), s) ◦ Φ(s, τ) ds
)
◦A(τ)U

= −D1`(x(τ), τ) ◦ U − ψ(t, τ) ◦D1f(x(τ), τ) ◦ U (13)

where the first term comes from the Leibniz integral rule and
we have used the identities from (7). This proves the final
statement of the Lemma.

Lemma 4.1 is a useful result, particularly because it does
not involve the state transition matrix Φ(t, τ). This further
reduces the computational effort required to calculate the first
derivative.

This result has previously been reported by [12], where
it was derived using multiplier methods. Here we have
only used basic derivative rules. The derivation has fewer

2This can be reduced to a single integration by finding each ψ(tτk+1 , τk)
using appropriate linear compositions. However, that method still requires
more computational effort (integrating an n × n matrix) and algorithmic
complexity (more linear compositions and addition) than the result from
backwards integration.



steps and additionally provides a way to calculate (12)
with forward integration if desired. Most importantly, this
approach naturally extends to the second derivative.

V. SECOND DERIVATIVES OF x(t)

The second derivative of x(t) is found using the same
strategy from Sec. III. We find a differential equation describ-
ing the second derivative and then show that the solutions
can be expressed with a state transition matrix and an
analogous bilinear operator. We also derive two identities
(Corollary 5.3) of the new operator that will be useful for
the second derivatives of the cost.

The second derivative of x(t) is symmetric (i.e, mixed
partials commute), so we assume i ≥ j for the remainder of
the paper without loss of generality. This is only for brevity;
the same strategy will find the full second derivative without
assuming symmetry a priori.

Proposition 5.1: With i ≥ j (and t ≥ τi), the second
derivative of the trajectory satisfies a differential equation
(14a) with initial condition (14b).

d
dtDτj

Dτi
x(t) ◦ (∂τj , ∂τi) =

D1f(x(t), t) ◦Dτj
Dτi

x(t) ◦ (∂τj , ∂τi) (14a)

+D2
1f(x(t), t) ◦ (Dτj

x(t) ◦ ∂τj , Dτi
x(t) ◦ ∂τi)

DτjDτix(τi) ◦ (∂τj , ∂τi) = (14b)

For i = j:
D1fi(x(τi), τi) ◦ fi(x(τi), τi)∂τj∂τi

+D1fi−1(x(τi), τi) ◦ fi−1(x(τi), τi)∂τj∂τi
− 2D1fi(x(τi), τi) ◦ fi−1(x(τi), τi)∂τj∂τi
+D2fi−1(x(τi), τi) ◦ ∂τj∂τi
−D2fi(x(τi), τi) ◦ ∂τj∂τi

For i > j:(
D1fi−1(x(τi), τi)−D1fi(x(τi), τi)

)
◦

Φ(τi, τj) ◦Xj∂τi
Proof: Use the same technique as in the proof of

Lemma 3.1.3 Differentiate (5) and apply the fundamental
theorem of calculus. Consider each combination of k T i
and k T j to find the individual initial conditions. This is
straightforward and not reproduced here.

Unlike the first derivative, the ODE for the second deriva-
tive (14a) is not linear, but it is affine. If we think of the
affine term as an input, the ODE can be modeled as a forced
linear system.

We can use the forced linear system form to express the
second derivative in terms of a state transition matrix and a
new bilinear operator, φ(t, τ) that is analogous to Φ(t, τ),
the first order state transition matrix.

Lemma 5.2: The second derivative of the trajectory,
Dτj

Dτi
x(t) ◦ (∂τj , ∂τi), is

Dτj
Dτi

x(t) ◦ (∂τj , ∂τi) =

Φ(t, τi) ◦Xi,j + φ(t, τi) ◦
(
Φ(τi, τj) ◦Xj , Xi

) (15)

3See the journal submission
http://robotics.mech.northwestern.edu/∼murphey/murphey-TAC2009sub.pdf
for the complete proof.

where Φ(t, τ) is the state transition matrix in Lemma 3.1
and φ(t, τ) : Rn×Rn → Rn is the bilinear operator defined
as

φ(t, τ) ◦ (U, V ) = (16)∫ t

τ

Φ(t, s) ◦D2
1f(x(s), s) ◦ (Φ(s, τ) ◦ U,Φ(s, τ) ◦ V )

and Xi,j is the initial condition from (14b).
Proof: The solution for a forced linear system is

x(t) = Φ(t, t0) ◦ x0 +
∫ t

t0

Φ(t, s) ◦B(s) ds

Treating (14a) as a forced linear system, the solutions be-
come

DτjDτix(t) ◦ (∂τj , ∂τi)

= Φ(t, τi) ◦Xi,j +
∫ t

τi

Φ(t, s) ◦D2
1f(x(s), s)◦

(Dτj
x(s) ◦ ∂τj , Dτi

x(s) ◦ ∂τi) ds

= Φ(t, τi) ◦Xi,j +
∫ t

τi

Φ(t, s) ◦D2
1f(x(s), s)◦(

Φ(s, τj) ◦Xj ,Φ(s, τi) ◦Xi
)

ds

= Φ(t, τi) ◦Xi,j +
∫ t

τi

Φ(t, s) ◦D2
1f(x(s), s)◦(

Φ(s, τi) ◦ Φ(τi, τj) ◦Xj ,Φ(s, τi) ◦Xi
)

ds

= Φ(t, τi) ◦Xi,j + φ(t, τi) ◦
(
Φ(τi, τj) ◦Xj , Xi

)
where we’ve taken advantage of the linearity of the integral
with respect to a independent variables to pull out Xi and
Xj .

As stated earlier, φ(t, τ) is a bilinear/second-order analogy
to the state transition matrix. The identities (7) for state
transition matrix allowed us to simplify the first derivative
calculation. We derive two similar properties for φ(t, τ).

Corollary 5.3: For φ(t, τ) : Rn × Rn → Rn defined in
(16), the following identities hold.

φ(t, t) ◦ (U, V ) = 0 (17a)
∂
∂τ φ(t, τ) ◦ (U, V ) = (17b)

−Φ(t, τ)◦D2
1f(x(τ), τ) ◦ (U, V )

−φ(t, τ)◦
(
D1f(x(τ), τ) ◦ U, V

)
−φ(t, τ)◦

(
U,D1f(x(τ), τ) ◦ V

)
Proof: Both properties follow directly from (16).

Corollary 5.3 enables the same strategy from Sec. IV for
the second derivative of the cost.

VI. SECOND DERIVATIVE OF J(·)
The derivation of the second derivative is similar to the

first derivative. We find a forward integration method for the
calculation that is sufficient but computationally expensive.
The integration is replaced with with a backwards differential
equation in time that results in a much improved algorithm.
In particular, we avoid computing φ(t, τ).



Theorem 6.1: The second derivative with respect to
switching times τj and τi ≥ τj is

Dτj
Dτi

J(·) ◦ (∂τj , ∂τi) = (18)

−D1`(x(τi), τi) ◦Xi∂τjδ
j
i + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

where δji is the Kronecker delta and Ω(t, τ) ◦ (U, V ) : Rn×
Rn → R is the bilinear operator found by integrating

Ω(t, t) ◦ (U, V ) = 0n×n (19a)
∂
∂τΩ(t, τ) ◦ (U, V ) = −D2

1`(x(τ), τ) ◦ (U, V ) (19b)

−ψ(t, τ) ◦D2
1f(x(τ), τ) ◦ (U, V )

−Ω(t, τ) ◦
(
D1f(x(τ), τ) ◦ U, V

)
−Ω(t, τ) ◦

(
U,D1f(x(τ), τ) ◦ V

)
backwards over τ from tf to τi

Proof: The proof is analogous to that of Lemma 4.1
and is only outlined here.4 Take the derivative of (10) with
respect to another switching time τj . The resulting integral
is split into a form that matches ψ(t, τ) and a second term,
called Ω(t, τ) with the form

Ω(t, τ) ◦ (U, V ) =
∫ t

τ

D1`(x(s), s) ◦ φ(s, τ) ◦ (U, V )

+D2
1`(x(s), s) ◦ (Φ(s, τ) ◦ U,Φ(s, τ) ◦ V ) ds

(20)

This results in the first part of the theorem, (18).
The initial condition (19a) is seen to be zero directly from

the definition of Ω(t, τ), giving (19a) of the Lemma.
Equation (19b) of the Lemma is found by differentiating

(20) with respect to τ and applying the identities for Φ(t, τ)
from (7) and the identities for ψ(t, τ) found in (17).

Theorem 6.1 is the natural extension of Lemma 4.1 to
the second derivative. It has the same property that φ(t, τ),
the analogous second order state transition matrix, is no
longer required and provides an algorithm for calculating
every second derivative from a single integration. The first
order operator ψ(t, τ) and the second derivatives of `(x, t)
and f(x, t) both appear, as one would expect.

It is useful to write (19b) in matrix form to see how it is
calculated in practice:
∂
∂τ [Ω(t, τ)] = −[D2

1`(x(τ), τ)]− [ψ(t, τ) ◦D2
1f(x(τ), τ)]

− [D1f(x(τ), τ)]T [Ω(t, τ)]− [Ω(t, τ)][D1f(x(τ), τ)]

While Theorem 6.1 avoids φ(t, τ), it does rely on Φ(t, τ).
The state transition matrix for the first derivative has re-
appeared in the initial condition for the second derivative
(14b) and the second derivative of the cost (18). There does
not seem to be a computationally beneficial way to eliminate
this requirement.

We can, however, calculate every value of Φ(t, τ) that we
need in a single integration along the trajectory by taking

4See the journal submission
http://robotics.mech.northwestern.edu/∼murphey/murphey-TAC2009sub.pdf
for the complete proof.

advantage of (7d). It allows us to calculate the state transition
matrix of each segment Φ(τk+1, τk). These are composed to
find Φ(τi, τj) for any i,j pair.

VII. OPTIMIZATION ALGORITHM

We optimize (2) with a standard numeric iterative ap-
proach [18] that relies on the derivatives that we have
found. In each iteration, we choose a descent direction
z = −[H]−1[DτJ(·)]T where H is a positive semidefinite
matrix.

Choosing H = I gives the Steepest Descent algorithm.
This is a first order optimization that has linear convergence.
H = DτDτJ(·) (i.e. the Hessian of J ·) results in Newton’s
Method, a second order optimization with quadratic conver-
gence. The Hessian must be checked to be positive definite or
the cost might increase. When this test fails, implementations
typically fall back to a first-order or modified second-order
iteration.

Both first- and second-order algorithms benefit from the
Armijo Line Search [3] algorithm. This is a simple algorithm
that reduces the magnitude of the step size until there
is a sufficient decrease. Satisfying the sufficient decrease
condition guarantees that the optimization will eventually
converge.

We must also keep the switching times ordered properly
(i.e. τk+1 ≥ tk). In this work, after calculating the descent
direction z, we find the largest ε ∈ (0, 1] such that x + εz
is ordered. This is an improvised method that has worked in
practice; better and formal techniques are subjects for future
research.

VIII. EXAMPLE: THE KINEMATIC CAR

We consider the kinematic car as an example system
for switching time optimization. First, the switching times
needed to follow a (known to be admissible) path are found
by optimization. Second, we use switching time optimization
to find a parallel parking trajectory based on the Lie bracket
that indicates such a motion should be possible. That is, we
push the infinitesimal Lie bracket generator into an actual
non-infinitesimal trajectory.

We consider the kinematic car with the dynamic function:

ẋ =


Ẋ

Ẏ

θ̇

φ̇

 = fcar(x, u) =


u1 cos(θ)
u1 sin(θ)
u1 tan(φ)

u2

 (21)

Distinct dynamic models are derived from the kinematic
car by applying piecewise-constant inputs:

f1(x) = fcar(x, u1)
f2(x) = fcar(x, u2)

...

fN (x) = fcar(x, uN )



1: Trajectories for the kinematic car at each iteration of the optimization. The solid line is the kinematic car and the dashed
line is the desired trajectory.

A. Following a Valid Trajectory

For the first example, we consider a parallel parking
maneuver made up of 7 sequential inputs:

Move Forward: u = [ 0.3, 0]
Turn Steering Clockwise: u = [ 0, −2.8]
Move Backward u = [ −0.2, 0]
Turn Steering Counterclockwise u = [ 0, 2.9]
Move Backward u = [ −0.09, 0]
Turn Steering Clockwise u = [ 0, −1.8]
Move Forward u = [ 0.09, 0]

For the optimization, we consider the magnitude and
sequence of the inputs to be known but the switching times
are unknown.

The Armijo optimization parameters [3] are α = 0.6,
β = 0.0001, and zero tolerance = 10−4. The initial
switching times were equal intervals from 0 to 7 seconds.
Both optimizations converged to the correct switching times:

(τ1 · · · τN+1) = (0, 1, 1.5, 2.5, 3.5, 4.414, 5.248, 7)

The first order-only optimization took over 30,000 steps
to converge. The second order optimization, which initially
took 10 first order steps, converges in 24 iterations. Fig. 1
shows the trajectories for each iteration of the optimization.

We would likely reject 30,000 iterations as impractical
for actual applications (certainly for real-time). The second
order optimization reduces this by three orders of magnitude
to where even real-time optimizations could be possible. The
next example will use the same system for a more practical
application of switching time optimization.

B. Lie Bracket Trajectory

Lie brackets[6], [10], [19] are infinitesimal operations that
take advantage of two vector field not commuting to locally
produce motion in a direction outside the linear span of
the vector fields. The above parallel parking maneuver is
a common example of Lie bracket motion. Even though the

car only moves forward/backward and rotates the steering,
it is able to achieve a net sideways movement by using the
correct sequence of inputs.

The Lie bracket is formally based on infinitesimal motion,
but its derivation suggests that we could determine a se-
quence of inputs for the above example from the Lie bracket
instead of arbitrary design. For complex systems, this could
be the basis for a local motion planning algorithm.

Suppose we seek a trajectory from q = (0, 0, 0, 0) to q =
(0,−1, 0, 0). The Lie bracket to produce sideways motion
for the kinematic car (21) is the nested bracket

[
∂fcar

∂u1
,
[
∂fcar

∂u2
, ∂fcar

∂u1

]]
= (0,−1, 0, 0) (22)

which corresponds to infinitesimal movements with the fol-
lowing inputs:

u = [ 1, 0]
u = [ 0, 1]
u = [ 1, 0]
u = [ 0, −1]
u = [ −1, 0]
u = [ −1, 0]
u = [ 1, 0]
u = [ 0, 1]
u = [ −1, 0]
u = [ 0, −1]

We setup an optimization using the above inputs5 and
add a final “constant” function (i.e. u = [0, 0]) to give the
optimization flexibility in the duration of the maneuver.

Since any trajectory is acceptable, we choose a zero

5Note that the three consecutive movements [1, 0], [1, 0], and [−1, 0]
were collapsed into a single movement.



2: The trajectory at the 1st, 5th, 10th, 15th, 20th, and 22nd
(final) iteration. The dot shows the desired final position.

incremental cost and non-zero terminal cost6:

`(x, t) = 0

m(x, t) = ||x− (0,−1, 0, 0)||2

The optimization was run with α = 0.001, β = 0.6,
zero tolerance = 10−4 and the initial condition7

(τ1 · · · τN+1) = (0, 2, 2.5, 3, 3.5, 5.5, 6, 6.5, 7, 12.5)

The optimization took 10 steepest descent steps followed
by 12 second-order steps for a total of 22 iterations. A
steepest descent optimization did not converge after 30,000
iterations. Figure 2 shows the final trajectory with several
intermediate trajectories. The final switching times were

(τ1 · · · τN+1) =
(0, 1.33, 2.01, 2.58, 3.34, 5.45, 6.97, 7.06, 8.50, 12.5)

To generalize to arbitrary end points in a neighborhood
of the initial condition, one need only change the terminal
condition of the optimization (and potentially compute the
infinitesimal approximation of an end point using the Lie
bracket, typically using the Campbell-Baker-Hausdorff ex-
pansion [19]. If the distance to be traversed is larger than
what a single motion can provide, then computing multiple
Lie bracket motions—and therefore optimizing over more
switching times—may be desirable.

IX. CONCLUSIONS AND FUTURE WORK

We have presented derivations for the first and second
derivatives of the cost function. While the first derivative has
been reported previously, our derivation is more direct and
uses basic calculus tools. More importantly it generalizes to
second derivative easily. The local motion planning examples
demonstrate the value of the second derivative for fast
convergence even for very nonlinear systems.

6Terminal costs will be covered in detail in an expanded version
of this work. They are a straight-forward modification that only
affect the boundary conditions of the φ and Ω operators. See
http://robotics.mech.northwestern.edu/∼murphey/murphey-TAC2009sub.pdf
for details of how to treat terminal conditions.

7The Lie bracket also suggests the initial (relative) timing: the two fields
in each bracket should be about the same length. For example, consider
the Lie bracket [f, [g, h]]. If we move along f for ε seconds, the [g, h]
movement should also be ε seconds
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