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Abstract— Switched systems evolve over a sequence of con-
tinuous modes of operation, transitioning between modes in
a discrete manner. Assuming a mode sequence is known, the
evolution of a switched system is dictated by the set of times
for which the modes transition. This paper presents second-
order optimization of these switching times and compares its
convergence with first-order switching time optimization. We
emphasize the importance of the second-order method because
it exhibits quadratic convergence and because even for relatively
simple examples, first-order methods fail to converge on time
scales compatible with real-time operation.

I. INTRODUCTION

Switched systems are a class of hybrid systems where
the system evolves over a sequence of continuous modes of
operation, transitioning between modes in a discrete manner
[2]. Therefore, a switched system is described by the pair
(T ,Ψ), where Ψ is the mode sequence and T is the set of
switching times for each mode transition in Ψ. As in [16],
we assume the mode sequence is known ahead of time. Thus
our goal is to optimize T .

First-order descent methods (i.e. steepest descent) for
switching time optimization are in [3], [5], [7], [8], [16]. As
for second-order descent methods (i.e. Newton’s method), [6]
calculates the second-order descent direction for a bi-modal
LTI system, and [15] presents on-line convergence results
assuming a calculation for the second derivative is known.
We present an explicit derivation of the second-order descent
direction for non-linear switched systems.

We emphasize the importance of Newton’s method be-
cause Newton’s method exhibits quadratic convergence. This
convergence is in comparison to steepest descent which only
converges linearly (see [9], [10]). The distinction between
steepest descent and Newton’s method is the primary point
of this paper because rate of convergence is a paramount
concern for on-line implementation, an ultimate goal of
our work. For illustration, refer to Fig 1, which compares
the convergence of steepest descent with the convergence
of Newton’s method for a aircraft flight mode estimation
example presented later in the paper.

This material is based upon work supported by the National Science
Foundation under award CCF-0907869. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

This paper is organized as follows: Section II provides two
definitions of switched systems as well as presents first- and
second-order switching time descent directions for steepest
descent and Newton’s method1. Section III, uses an aircraft
flight mode estimation example for applying switched system
optimization and compares the convergences of steepest
descent and Newton’s method for the example.
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Fig. 1. Log plot of the first 30 steps comparing the convergence to the
zero gradient of the cost functional, DJ(T ) = 0, for Algorithms 1 and
2. Algorithm 1 is a pure steepest descent algorithm whereas Algorithm 2
conducts a user defined number of initial steps of steepest descent followed
by Newton’s method until convergence (see Section II). Algorithm 1 fails
to converge to the prescribed tolerance of ∥DJ(T )∥ ≤ 10−5 in the alloted
1000 steps. The results shown are from the example in Section III

II. FIRST- AND SECOND-ORDER SWITCHING TIME
OPTIMIZATION

A switched system is defined by how the system’s modes
of operation evolve over time. We present two equivalent
definitions of the state trajectories, x(t) : ℝ 7→ ℝn.

The first is the standard definition [3], [5], [7], [11], [14],
[16]:

ẋ(t) = f
(
x(t), T ,Ψ, t

)
=

{
fi

(
x(t), t

)
, where Ti−1 ≤ t < Ti

for i = 1, . . . , N
subject to: x(T0) = x0

(1)

1Section II is included in a paper we submitted to the IFAC journal,
Automatica. The paper is titled “Switching Mode Generation and Optimal
Estimation with Application to Skid-Steering.” The section has not been
published in any conference proceedings.



where N is the number of modes in the mode sequence
Ψ, T = {T1, T2, . . . , TN−1} ∈ ℝN−1 is a monotonically
increasing set of switching times, T0 is the initial time, TN
is the final time, x0 is the initial state, and fi : ℝn×ℝ 7→ ℝn

is the ith mode of operation in the sequence Ψ. A mode
sequence is assumed.

The second equivalent definition of f (⋅, ⋅, ⋅) uses step
functions to designate the activation periods of each mode:

ẋ(t) = f
(
x(t), T , t

)
=
[
1(t− T0)− 1(t− T−1 )

]
f1

(
x(t), t

)
+
[
1(t− T+

1 )− 1(t− T−2 )
]
f2

(
x(t), t

)
+ ⋅ ⋅ ⋅+

[
1(t− T+

N−1)− 1(t− TN )
]
fN

(
x(t), t

)
.

(2)
The super scripts + and − correct for the ambiguity at Ti
for i = 1, . . . , N − 1. For instance, if the current time is
t = T−i , then the current mode is fi and if the current time
is t = T+

i , then the current mode is fi+1. Once again, Ψ is
assumed. We prefer Eq (2) over Eq (1) because the switching
times explicitly enter Eq (2). This makes apparent what the
switching time derivatives of f

(
x(t), T , t

)
are.

The rest of Section II is concerned with optimizing the
switched system with respect to switching times.

A. Steepest Descent and Newton’s Method

Let us choose the performance of the switched system to
be the integral of the Lagrangian, ℓ(⋅, ⋅), plus a terminal cost
m(⋅, ⋅),

J(T ) =

TN∫
T0

ℓ
(
x(�)

)
d� +m

(
x(TN )

)
. (3)

The goal is to find the switching times that minimize the
cost function. In other words, the goal is to find:

arg min
T
J(T ).

Descent techniques are commonly employed to conduct such
a minimization [9]. Descent techniques are iterative and have
the following form:

Tk+1 = Tk + 
dk

where k is the current iteration of the descent, 
 is the step
size and d is the step direction.

This paper investigates two descent techniques: steepest
descent and Newton’s method. The descent directions for
the two techniques are (see [9], [10]):2

Steepest Descent: d1(T ) = −DJ(T )
Newton’s Method: d2(T ) = −D2J(T )−1 ⋅DJ(T )

where steepest descent converges linearly and Newton’s
method convergences quadratically. This convergence rate
distinction stems from steepest descent suffering from poor

2The notation D is the slot derivative. For a function g, Dg(⋅) is the
partial derivative of g with respect to its single argument. Similarly,Dig(⋅, ⋅)
is the partial of g with respect to the ith argument.

conditioning of J around a minimizer while Newton’s
method does not. Furthermore, steepest descent requires a
line search in order to ensure a sufficient decrease. However,
Newton’s method’s descent direction, d2, points in a descend-
ing direction only if D2J(T ) is positive definite. Therefore,
Newton’s method may not function far from a minimizer.
(see [9])

As stated in the introduction, convergence rate is important
for on-line implementation. Therefore, we stress the value
of the quadratic convergence of Newton’s method. See [15]
for further elaboration of this point. In [15], the authors
place an upper bound on the convergence rate of an on-line
implementation scheme for switched systems which utilizes
the Newton’s method descent direction.

In order to calculate the descent directions for steepest
descent and Newton’s method, we present formulas for
DJ(T ) and D2J(T ). The formula proofs rely on a basic
understanding of State Transition Matrices (STM).3

The first-order result in the following subsection, II-B, is
not new (see [7]). However, the proof we present is new and
the technique used extends to second-order. Also, the second-
order result presented later in II-C is also presented in [8]
using a parametric approach. In contrast, though, we present
an adjoint representation of the second derivative, where our
approach instead depends on generalized functions.

B. Calculating DJ(T )

Lemma 2.1: Provided every fi(⋅, ⋅) in f is C1, the ith

switching time derivative of J(T ) is

DTi
J(T ) = �T (Ti)

[
fi

(
x(Ti), t

)
− fi+1

(
x(Ti), t

)]
(6)

where �(⋅) is the solution to the following backwards differ-
ential equation:

�̇(t) = −D1f
(
x(t), T , t

)T
�(t)−Dℓ

(
x(t)

)T
subject to: �(TN ) = Dm

(
x(TN )

)T
.

(7)

Proof:
The switching time derivative of the cost function in the

3Consider the linear time varying (LTV) control system

ẋ(t) = A(t)x(t) +B(t)u(t)
subject to: x(t0) = x0.

(4)

The solution to this system is

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, �)B(�)u(�) d� (5)

where Φ(t, �) is the state-transition matrix (STM) corresponding to
A(t). Φ(t, �) satisfies the following properties: x(t) = Φ(t, �)x(�),
∂
∂t

Φ(t, �) = A(t)Φ(t, �), ∂
∂�

Φ(t, �) = −Φ(t, �)A(�), Φ(t, t) = I ,
Φ(t, �) = Φ(t, s)Φ(s, �). In order to calculate Φ(t, �) given A(t), solve
the differential equation d

dt
Φ(t, �) = A(t)Φ(t, �) with initial condition

Φ(�, �) = I . For reference, see [4].



direction of the variation � ∈ ℝN−1 is

DJ(T ) ⋅ � =

TN∫
T0

Dℓ
(
x(�)

)
⋅ z(�) d� +Dm

(
x(TN )

)
⋅ z(TN )

(8)
where z(t) : ℝ 7→ ℝn is the variation of x(t) due to the
variation, �, in T . The trajectory z(t) is the solution to

ż(t) = ∂
∂T ẋ(t) = D1f

(
x(t), T , t

)
⋅ z(t)

+D2f
(
x(t), T , t

)
⋅ �

subject to: z(0) = ∂
∂T x(0) = 0.

(9)

Referring to Eq (2), D1f
(
x(t), T , t

)
and D2f

(
x(t), T , t

)
become

D1f
(
x(t), T , t

)
=
[
1(t− T0)− 1(t− T−

1 )
]
D1f1

(
x(t), t

)
+
[
1(t− T+

1 )− 1(t− T−
2 )
]
D1f2

(
x(t), t

)
+ ⋅ ⋅ ⋅+

[
1(t− T+

N−1)− 1(t− TN )
]
D1fN

(
x(t), t

)
and

D2f
(
x(t), T , t

)
=
{
�(t− T−

k )fk

(
x(t), t

)
− �(t− T+

k )fk+1

(
x(t), t

)}N−1

k=1

(10)

where �(⋅) is the Dirac delta function.
Define A(t)≜D1f

(
x(t), T , t

)
and B(t) ≜ D2f

(
x(t), T , t

)
so that

ż(t) = A(t) ⋅ z(t) +B(t) ⋅ �
subject to: z(0) = 0.

This differential equation is of the same form as Eq (4) and
has the solution

z(t) =

t∫
T0

Φ(t, �)B(�) ⋅ � d� (11)

where Φ(t, �) is the STM corresponding to A(t) in Eq (10).
Plugging z(⋅) into DJ(T ) ⋅ � in Eq. (8), we see that

DJ(T ) ⋅ � =

TN∫
T0

Dℓ
(
x(�)

) �∫
T0

Φ(�, s)B(s) ⋅ � ds d�

+Dm
(
x(TN )

) TN∫
T0

Φ(TN , s)B(s) ⋅ � ds.

Moving Dℓ
(
x(�)

)
and Dm

(
x(TN )

)
into their respective

integrals and switching the order of integration of the first
term results in

=

TN∫
T0

TN∫
s

Dℓ
(
x(�)

)
Φ(�, s)B(s) ⋅ � d� ds

+

TN∫
T0

Dm
(
x(TN )

)
Φ(TN , s)B(s) ⋅ � ds.

(12)

Now, we combine the integrals and move all terms not
depending on � outside the inner integral and denote the
inner integral plus the terminal term as �(s)T :

=

TN∫
T0

[ TN∫
s

Dℓ
(
x(�)

)
Φ(�, s) d� +Dm

(
x(TN )

)
Φ(TN , s)

]
︸ ︷︷ ︸

�(s)T⋅B(s) ⋅ � ds.

where � is the solution to the backwards differential equa-
tion:

�̇(t) = −D1f
(
x(t), T , t

)T
�(t)−Dℓ

(
x(t)

)T
subject to: �(TN ) = Dm

(
x(TN )

)T
.

This result is verified by taking the time derivative of �(t)
or by comparing to Eqs. (4) and (5). DJ(T ) becomes

DJ(T ) ⋅ � =

TN∫
T0

�(s)TB(s) ds ⋅ �.

Integrating the �-functions in B(s) pick out the times for
which the �-functions’ arguments are 0, such that

DTi
J(T ) ⋅ �i = �T (Ti)

[
fi

(
x(Ti), t

)
− fi+1

(
x(Ti), t

)]
⋅ �i

for i = 1, 2, . . . , N − 1, where �i is the ith index of �. This
completes the proof.

C. Calculating D2J(T )

Lemma 2.2: Provided every fi(⋅, ⋅) in f is C2, the second-
order switching time derivative of J(T ) is

DTi,TjJ(T ) =

[[
fi

(
x(Ti), Ti

)
− fi+1

(
x(Ti), Ti

)]T
�(Ti)

+�(Ti)
T
[
D1fi

(
x(Ti), Ti

)
−D1fi+1

(
x(Ti), Ti

)]]
⋅Φ(Ti, Tj)

[
fj

(
x(Tj), Tj

)
− fj+1

(
x(Tj), Tj

)]
(13)

when i ∕= j and

=
[
fi

(
x(Ti), Ti

)
− fi+1

(
x(Ti), Ti

)]T
�(Ti)

⋅
[
fi

(
x(Ti), Ti

)
− fi+1

(
x(Ti), Ti

)]
+�(Ti)

T

[
D1fi

(
x(Ti), Ti

)
fi

(
x(Ti), Ti

)
−2D1fi+1

(
x(Ti), Ti

)
fi

(
x(Ti), Ti

)
+D1fi+1

(
x(Ti), Ti

)
fi+1

(
x(Ti), Ti

)
+D2fi

(
x(Ti), Ti

)
−D2fi+1

(
x(Ti), Ti

)]
−Dℓ

(
x(Ti)

)[
fi

(
x(Ti), Ti

)
− fi+1

(
x(Ti), Ti

)]
(14)

when i == j, where �(t) is the numerical solution to Eq (7)
and �(t) ∈ ℝn×n is the numerical solution to

�̇(t) = −A(t)T�(t)− �(t)A(t)−D2ℓ
(
x(t)

)
−

n∑
k=1

�k(t)D2
1f k
(
x(t), T , t

)
subject to: �(TN ) = D2m

(
x(t)

)
.

(15)

Proof: This proof follows from the proof for Lemma
2.1. We find that the second derivative of J(T ), D2J(T ),
depends on the second variation of x(t), which we label �(t).
The differential equation, �̇, is affine linear and therefore
has a corresponding integral equation which makes use of
STM. We switch the order of integration of D2J , in order



to extract an adjoint differential equation, which may be
calculated separately. The rest of the proof investigates what
the integrals of the x and T derivatives of f (⋅, ⋅, ⋅) are.

Let �1 and �2 be different variations of T and z1(t) and
z2(t) be the variations of x(t) corresponding respectively to
�1 and �2. Then, in order to find D2J(T ) ⋅ (�1, �2), take the
switching time derivative of DJ(T ) (i.e. Eq (8)):

∂

∂T

(
DJ(T ) ⋅ �1

)
= D2J(T ) ⋅ (�1, �2) +DJ(T ) ⋅ �

=

TN∫
T0

D2ℓ
(
x(�)

)
⋅
(
z1(�), z2(�)

)
+Dℓ

(
x(�)

)
⋅�(�) d�

+D2m
(
x(TN )

)
⋅
(
z1(TN ), z2(TN)

)
+Dm

(
x(TN)

)
⋅�(TN)

(16)

where � is the second-order variation of T and �(t) is the
second-order variation of x(t). �̇(t) is found by taking the
second-order switching time derivative of ẋ(t)

�̇(t) = ∂2

∂T 2 ẋ(t)

= A(t) ⋅ �(t) +B(t) ⋅ � +
(
z1(t)T �1

T
)

⋅

⎛⎝ D2
1f
(
x(t), T , t

)
D1,2f

(
x(t), T , t

)
D2,1f

(
x(t), T , t

)
D2

2f
(
x(t), T , t

) ⎞⎠(z2(t)
�2

)
subject to: �(0) = ∂2

∂T 2 x(0) = 0.

(17)

Define C(t) ≜

⎛⎝ D2
1f
(
x(t), T , t

)
D1,2f

(
x(t), T , t

)
D2,1f

(
x(t), T , t

)
D2

2f
(
x(t), T , t

) ⎞⎠. Notice

that �̇(t) is linear with respect to �(t) and therefore, Eq (17)
is of the same form as (4). Thus, �̇(t) has solution

�(t) =

t∫
T0

Φ(t, �)

[
B(�) ⋅ � +

(
z1(�)T �1

T
)
C(�)

(
z2(�)
�2

)]
dt.

Plugging �(t) into Eq (16), we see that

D2J(T ) ⋅ (�1, �2) +DJ(T ) ⋅ �

=

TN∫
T0

[
z1(�)TD2ℓ

(
x(�)

)
z2(�)+Dℓ

(
x(�)

) �∫
T0

Φ(�, s)

⋅
[
B(s) ⋅ � +

(
z1(s)T �1

T
)
C(s)

(
z2(s)
�2

)]
ds
]

d�

+z1(TN )TD2m
(
x(TN )

)
z2(TN ) +Dm

(
x(TN )

)
⋅
TN∫
T0

Φ(TN , s)

[
B(s) ⋅ � +

(
z1(s)T �1

T
)
C(s)

(
z2(s)
�2

)]
ds.

Note that

DJ(T ) ⋅ � =

TN∫
T0

Dℓ
(
x(�)

) �∫
T0

Φ(�, s)B(s) ⋅ � ds d�

+Dm
(
x(TN )

) TN∫
T0

Φ(TN , s)B(s) ⋅ � ds,

which is obvious from Eq (12). Therefore,

D2J(T ) ⋅ (�1, �2) =

TN∫
T0

[
z1(�)TD2ℓ

(
x(�)

)
z2(�)

+Dℓ
(
x(�)

) �∫
T0

Φ(�, s)
(
z1(s)T �1

T
)
C(s) ⋅

(
z2(s)
�2

)
ds
]

d�

+z1(TN )TD2m
(
x(TN )

)
z2(TN )

+Dm
(
x(TN )

)TN∫
T0

Φ(TN , s)
(
z1(s)T �1

T
)
C(s)

(
z2(s)
�2

)
ds.

Split the integral over d� , move Dℓ
(
x(�)

)
and

Dm
(
x(TN )

)
into their respective integrals and switch the

order of integration of the double integral. This results in

=

TN∫
T0

z1(�)TD2ℓ
(
x(�)

)
z2(�) d� +

TN∫
T0

TN∫
s

Dℓ
(
x(�)

)
⋅Φ(�, s)

(
z1(s)T �1

T
)
C(s)

(
z2(s)
�2

)
d� ds

+z1(TN )TD2m
(
x(TN )

)
z2(TN ) +

TN∫
T0

Dm
(
x(TN )

)
⋅Φ(TN , s)

(
z1(s)T �1

T
)
C(s)

(
z2(s)
�2

)
ds.

We combine the integrals over ds, and notice that �(�)T

enters the equations. Furthermore, we switch the dummy
variable s to � and put everything back under one integral:

=

TN∫
T0

[
z1(�)TD2ℓ

(
x(�)

)
z2(�) + �(�)T

(
z1(�)T �1

T
)

⋅C(�)

(
z2(�)
�2

)]
d� + z1(TN )TD2m

(
x(TN )

)
z2(TN ).

Expand C(⋅) out

=

TN∫
T0

z1(�)TD2ℓ
(
x(�)

)
z2(�)

+�(�)T
[
z1(�)TD2

1f
(
x(�), T , �

)
z2(�)

+z1(�)TD1,2f
(
x(�), T , �

)
�2

+�1
T
D2,1f

(
x(�), T , �

)
z2(�) + �1

T
D2

2f
(
x(�), T , �

)
�2
]

d�

+z1(TN )TD2m
(
x(TN )

)
z2(TN ).

Switching to an index notation where �k(⋅) is the kth

component of �(⋅) and f k(⋅, ⋅, ⋅) is the kth component of
f (⋅, ⋅, ⋅), results in

=

TN∫
T0

z1(�)TD2ℓ
(
x(�)

)
z2(�)

+z1(�)T
n∑
k=1

�k(�)D2
1f k
(
x(�), T , �

)
z2(�)

+z1(�)T
n∑
k=1

�k(�)D1,2f k
(
x(�), T , �

)
�2

+�1
T

n∑
k=1

�k(�)D2,1f k
(
x(�), T , �

)
z2(�)

+�1
T

n∑
k=1

�k(�)D2
2f k
(
x(�), T , �

)
�2 d�

+z1(TN )TD2m
(
x(TN )

)
z2(TN ).



Rearranging the terms allows D2J(T ) ⋅ (�1, �2) to be the
summation of three parts:

D2J(T ) ⋅ (�1, �2) = P1 + P2 + P3 (18)

where

P1 =

TN∫
T0

z1(�)T
[
D2ℓ

(
x(�)

)
+

n∑
k=1

�k(�)D2
1f k
(
x(�), T , �

)]
⋅z2(�) d� + z1(TN )TD2m

(
x(TN )

)
z2(TN ),

P2 =

TN∫
T0

�2
T

n∑
k=1

�k(�)D2,1f k
(
x(�), T , �

)
z1(�)

+�1
T

n∑
k=1

�k(�)D2,1f k
(
x(�), T , �

)
z2(�) d�

and

P3 =

TN∫
T0

�1
T

n∑
k=1

�k(�)D2
2f k
(
x(�), T , �

)
�2 d�.

First, let us examine P1. Let

g(�) = D2ℓ
(
x(�)

)
+

n∑
k=1

�k(�)D2
1f k
(
x(�), T , �

)
.

Thus,

P1 =

TN∫
T0

z1(�)T g(�)z2(�) d�+

z1(TN )TD2m
(
x(TN )

)
z2(TN ).

Plugging Eq (11) in for z⋅(⋅) results in

=

TN∫
T0

[ �∫
T0

Φ(�, s)B(s)�1 ds
]T
g(�)

�∫
T0

Φ(�, w)B(w)�2 dw d�

+
[ TN∫
T0

Φ(TN , s)B(s)�1 ds
]T
D2m

(
x(TN )

) TN∫
T0

Φ(TN , w)

⋅B(w)�2 dw.

The integrals may be specified as

=

TN∫
T0

�∫
T0

�∫
T0

�1
T
B(s)TΦ(�, s)T g(�)Φ(�, w)B(w)�2 ds dw d�

+

TN∫
T0

TN∫
T0

�1B(s)TΦ(TN , s)
TD2m

(
x(TN )

)
⋅Φ(TN , w)B(w)�2 ds dw.

Note that the volume of the triple integral is given by
� = max(s, w). Therefore, the order of integration may be
switched to:

=

TN∫
T0

TN∫
T0

TN∫
max(s,w)

�1
T
B(s)TΦ(�, s)T g(�)Φ(�, w)

⋅B(w)�2 d� ds dw +

TN∫
T0

TN∫
T0

�1B(s)TΦ(TN , s)
T

⋅D2m
(
x(TN )

)
Φ(TN , w)B(w)�2 ds dw.

We combine the double integral with the triple integral and
rearrange the terms so that only the ones depending on � are
inside the internal integral:

=

TN∫
T0

TN∫
T0

B(s)T
[ TN∫

max(s,w)

Φ(�, s)T g(�)Φ(�, w) d� + Φ(TN , s)
T

⋅D2m
(
x(TN )

)
Φ(TN , w)

]
B(w) ds dw ⋅ (�1, �2).

(19)

Let

�(t) =

TN∫
t

Φ(�, t)T g(�)Φ(�, t) d�

+Φ(TN , t)
TD2m

(
x(TN )

)
Φ(TN , t)

where �(t) ∈ ℝn× n is the integral curve to the following
differential equation

�̇(t) = −A(t)T�(t)− �(t)A(t)− g(t)
= −A(t)T�(t)− �(t)A(t)−D2ℓ

(
x(t)

)
−

n∑
k=1

�k(t)D2
1f k
(
x(t), T , t

)
subject to: �(TN ) = D2m

(
x(TN )

)
.

Then, depending on whether s > w, s < w or s == w,
�(⋅) enters into Eq (19) as shown:

P1 =

⎧⎨⎩

TN∫
T0

TN∫
T0

B(s)T�(s)Φ(s, w)B(w) ds dw ⋅ (�1, �2)

when s > w,
TN∫
T0

TN∫
T0

B(s)TΦ(w, s)T�(w)B(w) ds dw ⋅ (�1, �2)

when s < w, or
TN∫
T0

TN∫
T0

B(s)T�(s)B(w) ds dw ⋅ (�1, �2)

when s == w.

(20)

The s < w case may be rewritten as

P1
s<w
=

TN∫
T0

TN∫
T0

B(w)T�(w)Φ(w, s)B(s) ds dw ⋅ (�2, �1).

Use i and j to index �1 and �2 respectively, where i, j =
1, . . . , N − 1. Integrating the �-functions in B(s) and B(w)
will pick out times s = Ti and w = Tj such that

P1ij =

⎧⎨⎩

[
fi

(
x(Ti), t

)
− fi+1

(
x(Ti), t

)]T
�(Ti)Φ(Ti, Tj)

⋅
[
fj

(
x(Tj), t

)
− fj+1

(
x(Tj), t

)]
⋅ (�1i , �2j )

when i > j,[
fj

(
x(Tj), t

)
− fj+1

(
x(Tj), t

)]T
�(Tj)Φ(Tj , Ti)

⋅
[
fi

(
x(Ti), t

)
− fi+1

(
x(Ti), t

)]
⋅ (�1i , �2j )

when i < j, or[
fi

(
x(Ti), t

)
− fi+1

(
x(Ti), t

)]T
�(Ti)[

fi

(
x(Ti), t

)
− fi+1

(
x(Ti), t

)]
⋅ (�1i , �2j )

when i == j.

(21)

Note that the commutative property holds for P1.
Now for P2. We start by calculating D2,1f k

(
x(t), T , t

)
:

D2f
(
x(t), T , t

)
={

�(t− T−
a )D1fka

(
x(t), t

)T
− �(t− T+

a )D1fka+1

(
x(t), t

)T}N−1

a=1

.



Once again, choose the ith index of �1 and the jth index
of �2 where i, j = 1, . . . , N − 1. This corresponds to the
ith index of z1(t) and the jth index of z2(t), where the kth

index of z⋅(⋅) is

z⋅k(t) =

t∫
T0

Φ(t, �)
[
�(� − T−

k )fk

(
x(�), �

)
−�(� − T+

k )fk+1

(
x(�), �

)]
d��⋅k.

(22)

Specifying these indexes allows us to revert back to matrix
representation for �(⋅) and f (⋅, ⋅, ⋅). Thus,

P2ij =

TN∫
T0

�2j �(�)T
[
�(� − T−

j )D1fj

(
x(�), �

)
−�(� − T+

j )D1fj+1

(
x(�), �

)]
z1i (�)

+�1i �(�)T
[
�(� − T−

i )D1fi

(
x(�), �

)
−�(� − T+

i )D1fi+1

(
x(�), �

)]
z2j (�) d�.

(23)

Integrating over the �-functions picks out the times for which
the �-functions’ arguments are zero:

= �2j �(T−
j )TD1fj

(
x(T−

j ), T−
j

)
z1i (T−

j )−

�2j �(T+
j )TD1fj+1

(
x(T+

j ), T+
j

)
z1i (T+

j )

+�1i �(T−
i )TD1fi

(
x(T−

i ), T−
i

)
z2j (T−

i )−

�1i �(T+
i )TD1fi+1

(
x(T+

i ), T+
i

)
z2j (T+

i ).

The indexes i and j relate in three possible ways. Either
i > j, i < j, or i == j. Let us start with the case i > j:

Recall that T is a set of monotonically increasing times.
Therefore, if i > j, then Ti > Tj . Furthermore, by
referencing Eq (22), observe that z⋅i(t) is non-zero only
after time t = T−i due to the �-functions. Consequently,
z1i (T ⋅j) = 0. Therefore,

i>j
= �1i �(T−

i )TD1fi

(
x(T−

i ), T−
i

)
z2j (T−

i )

−�1i �(T+
i )TD1fi+1

(
x(T+

i ), T+
i

)
z2j (T+

i ).

Omitting the − and + superscripts for they are no longer
helpful, we see that

i>j
= �1i �(Ti)

T
[
D1fi

(
x(Ti), Ti

)
−D1fi+1

(
x(Ti), Ti

)]
z2j (Ti).

Plugging Eq (22) in for z2j (Ti) results in

i>j
= �1i �(Ti)

T
[
D1fi

(
x(Ti), Ti

)
−D1fi+1

(
x(Ti), Ti

)]
⋅
Ti∫
T0

Φ(Ti, �)�(t− Tj)
[
fj

(
x(�), �

)
− fj+1

(
x(�), �

)]
d��2j .

the integration over the �-function results in

P2ij
i>j
= �(Ti)

T
[
D1fi

(
x(Ti), Ti

)
−D1fi+1

(
x(Ti), Ti

)]
⋅Φ(Ti, Tj)

[
fj

(
x(Tj), Tj

)
− fj+1

(
x(Tj), Tj

)]
⋅ (�1i , �2j ).

(24)

For the i < j case, an equivalent process will reveal that
the is and js switch places, which is to be expected due to
the commutative property of mixed partials.

Finally, we analyze the i == j case. First, note that
because i == j, the perturbations �1i and �2j are equivalent

and therefore, z1i (t) are z2j (t) are equivalent. Eq (23) for this
case becomes

P2ij
i==j
= 2 �2i �(T−i )TD1fi

(
x(T−i ), T−i

)
z1i (T−i )

−2 �2i �(T+
i )TD1fi+1

(
x(T+

i ), T+
i

)
z1i (T+

j ).

Plugging Eq (22) in for the z1i (⋅) terms, we see that

i==j
= 2 �2i �(T−

i )TD1fi

(
x(T−

i ), T−
i

) T−
i∫

T0

Φ(T−
i , �)

⋅
[
�(� − T−

i )fi

(
x(�), �

)
− �(� − T+

i )fi+1

(
x(�), �

)]
d��1i

−2 �2i �(T+
i )TD1fi+1

(
x(T+

i ), T+
i

) T+
i∫

T0

Φ(T+
i , �)

⋅
[
�(� − T−

i )fi

(
x(�), �

)
− �(� − T+

i )fi+1

(
x(�), �

)]
d��1i .

Again, we integrate over the �-functions, but, unlike before,
we must be careful because the times for which two of the
�-function’s arguments are zero is at the upper bounds of
their integrals. Thus,

i==j
= 2 �2i �(T−

i )TD1fi

(
x(T−

i ), T−
i

)
1
2

Φ(T−
i , T

−
i )

⋅fi
(
x(T−

i ), T−
i

)
�1i − 2 �2i �(T+

i )TD1fi+1

(
x(T+

i ), T+
i

)
⋅
[
Φ(T+

i , T
−
i )fi

(
x(T−

i ), T−
i

)
− 1

2
Φ(T+

i , T
+
i )

⋅fi+1

(
x(T+

i ), T+
i

)]
�1i .

We recall that Φ(T−i , T
−
i ) = Φ(T+

i , T
+
i ) = I and note

that Φ(⋅, ⋅) is a continuous operator, so Φ(T+
i , T

−
i ) = I .

Therefore, while omitting the no longer helpful − and +
super-scripts,

P2ij
i==j

= �(Ti)
T
[
D1fi

(
x(Ti), Ti

)
fi

(
x(Ti), Ti

)
−2D1fi+1

(
x(Ti), Ti

)
fi

(
x(Ti), Ti

)
+D1fi+1

(
x(Ti), Ti

)
fi+1

(
x(Ti), Ti

)]
⋅ (�1i , �2i ).

(25)

Finally, we are left with P3. Again, Let us index �1 with i
and �2 with j where i, j = 1, . . . , N − 1. Start with the ijth

component of D2
2f k
(
x(�), T , �

)
D2

2f k
(
x(�), T , �

)
ij

=⎧⎨⎩
(

∂
∂Ti

�(� − T−
i )
)
fki

(
x(�), �

)
−
(

∂
∂Ti

�(� − T+
i )
)
fki+1

(
x(�), �

) ⎫⎬⎭ , i == j

0 , i ∕= j

Let us revert back to matrix representation for �(⋅) and
f(⋅, ⋅). Clearly, when i ∕= j, P3ij

i ∕=j
= 0. For the i == j case,

conducting chain rule on D2
2f k
(
x(�), T , �

)
ij

results in:

D2
2f k
(
x(�), T , �

)
ij

i==j
= −�̇(� − T−

i )fki

(
x(�), �

)
+�̇(� − T+

i )fki+1

(
x(�), �

)
.

Then, P3 becomes

P3ij
i==j

=

TN∫
T0

[
− �(�)T �̇(� − T−

i )fi

(
x(�), �

)
+�(�)T �̇(� − T+

i )fi+1

(
x(�), �

)]
d� ⋅ (�1i , �2i ).



Conducting integration by parts, we see that

i==j
=

[ TN∫
T0

[
�̇(�)T fi

(
x(�), �

)
+ �(�)TD1fi

(
x(�), �

)
ẋ(t)

+�(�)TD2fi

(
x(�), �

)]
�(� − T−

i ) d�

−
TN∫
T0

[
�̇(�)T fi+1

(
x(�), �

)
+ �(�)TD1fi+1

(
x(�), �

)
ẋ(t)

+�(�)TD2fi+1

(
x(�), �

)]
�(� − T+

i ) d�

]
⋅ (�1i , �2i ).

Integrating over the �-functions picks out the times for which
the �-functions’ arguments are zero:

i==j
=

[
�̇(T−

i )T fi

(
x(T−

i ), T−
i

)
− �̇(T+

i )T fi+1

(
x(T+

i ), T+
i

)
+�(T−

i )TD1fi

(
x(T−

i ), T−
i

)
ẋ(T−

i )

−�(T+
i )TD1fi+1

(
x(T+

i ), T+
i

)
ẋ(T+

i )

+�(T−
i )TD2fi

(
x(T−

i ), T−
i

)
−�(T+

i )TD2fi+1

(
x(T+

i ), T+
i

)]
⋅ (�1i , �2i ).

Plugging Eq (1) in for ẋ(⋅) and Eq (7) in for �̇(⋅) and
simplifying reveals

P3ij
i==j

= −Dℓ
(
x(Ti)

)[
fi

(
x(Ti), Ti

)
− fi+1

(
x(Ti), Ti

)]
+�(Ti)

T
[
D2fi

(
x(Ti), Ti

)
−D2fi+1

(
x(Ti), Ti

)]
.

(26)

Recall from Eq (18) that D2J(T )⋅(�1, �2) = P1+P2+P3 is
the summation of Eqs (21) and (24) for the case when i ∕= j
and the summation of Eqs (21), (25) and (26) for the case
when i == j.

D. Steepest Descent and Newton’s Method Algorithms

With Lemmas 2.1 and 2.2, we can compile optimiza-
tion algorithms using the first- and second-order descent
directions of steepest descent and Newton’s method. Before
doing so, however, we provide a few remarks important for
implementation.

1) One calculation of �(t) and �(t) from TN to T0
suffices to fully specify all components of DJ(T ) and
D2J(T ), regardless of the number of switching times.

2) When calculating Φ(Ti, Tj), calculate Φ(Tk, Tk+1)
for k=1,. . ., N−1 once and keep in memory. Then,
Φ(Ti, Tj) = Φ(Ti, Ti−1)Φ(Ti−1, Ti−2) ⋅ ⋅ ⋅Φ(Tj+1, Tj),
thus reducing the total number of calculations.

We present the algorithm, Optimization Algorithm, which
conducts a user defined number of initial steps of steepest
descent, followed by Newton’s method. Steepest descent’s
descent direction, d1(T ), is calculated from Eq (6), where
x(t) is calculated from Eq (2) and �(t) is calculated from
Eq (7). Newton’s method’s descent direction, d2(T ), is
calculated from Eqs (6), (13) and (14), where x(t) and �(t)
are calculated as before and �(t) is calculated from Eq (15).
The algorithm has the following arguments: T0 are the initial
switching times, sdinit is the number of initial steps of
steepest descent, kmax is the maximum number of steps (for
implementation), and � is the convergence criteria tolerance.

Optimization Algorithm: desc()
T ∗ = desc(T0, sdinit, kmax, �):

k = 0; Tk = T0

while ∥DJ(Tk) > �∥ and k < kmax do
if k < sdinit then

Calculate d1(Tk)
Choose 
 according to Armijo line search (see [1])
Tk+1 = Tk + 
d1(Tk)

else
Calculate d2(Tk)
Tk+1 = Tk + 
d2(Tk)

end if
k = k + 1

end while
T ∗ = Tk

III. EXAMPLE

Due to the increasing demand of air travel coupled with
the desire for minimal flight time and fuel consumption, the
idea of “free” flight was proposed [12], [13]. The concept is
to lessen or remove the air traffic controller’s input into flight
trajectory decision making and transition the responsibility
to the pilots. This responsibility includes resolving trajectory
conflicts of multiple aircrafts. As Tomlin et al. state, the new
control must be provably safe [12], [13]. Tomlin et al.’s work
is concerned with finding control laws such that multiple
aircrafts remain in “safe” regions relative to one another. A
difficulty in this work is the estimation of the behavior of an
aircraft, which is pertinent to ensuring safe distances between
two aircrafts. We present an example demonstrating how
switching time optimization may be used for this purpose.

Suppose an aircraft is flying at a fixed altitude and there-
fore, its configuration may be represented by three variables,
x = {X,Y,  }, for its position and orientation in ℝ2. The
craft’s motion is dictated by the following kinematic model:

ẋ(t) = f
(
x(t), �(t), !(t)

)⎡⎣ Ẋ

Ẏ

 ̇

⎤⎦ (t) =

⎡⎣ �(t) cos (t)
�(t) sin (t)

!(t)

⎤⎦
where �(t) is its linear velocity and !(t) is its angular
velocity. The presented model is the same model as used in
[12], [13]. Now, suppose the aircraft will either fly straight,
bank left, or bank right at fixed velocities. This assumption
may be a reasonable one if, for instance, the aircraft is
performing a “roundabout” maneuver for collision avoidance,
as described in [13]. The following are the three flight modes:

� = 1 : � = �c, ! = 0, (Straight),
� = 2 : � = �c, ! = !c, (Bank Left) and
� = 3 : � = �c, ! = −!c, (Bank Right)

where �c = 4 nautical miles per minute and !c = 1 radian
per minute.



We include disturbances in the simulation. The distur-
bances may be from pilot, sensor and model errors. The
errors are represented as a random walk entering additively
to v and !. The perturbed velocity is vp = v + V (0, 4)
and the perturbed rotational velocity is !p = ! + Ω(0, 1),
where V and Ω are Gaussian signals with mean of 0 and
standard deviation of 4 and 1 respectively. The measured
trajectory, xm is found by simulation using vp and !p such
that the aircraft flies the maneuver described in Table I.
Figure 2 shows the perturbed X − Y trajectory as well as
the unpertrubed X − Y trajectory for comparison.
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Fig. 2. Comparison between two measured X−Y trajectories of an aircraft
maneuver. One is with disturbances and the other is without.

Time (t) [0,3) [3,7) [7,10]
Mode (�) 1 2 3

TABLE I
THE TIMES AND FLIGHT MODES OF A MANEUVER FOR THE TRUE

SYSTEM.

Using a quadratic performance index, Eq (3) is specified
with

ℓ
(
x(�)

)
= 1/2

(
x(�)− xm(�)

)T
Q
(
x(�)− xm(�)

)
and

m
(
x(TN )

)
= 1/2

(
x(TN )−xm(TN )

)T
P
(
x(TN )−xm(TN )

)
where Q and P are symmetric positive semi-definite (i.e.
QT = Q ≥ 0 and PT = P ≥ 0). For the example, we set Q
and P to Q = diag(1, 1, 1) and P = diag(1, 1, 10).

The initial switching times are arbitrarily chosen to be
T0 = (2, 5)T . First, we call Optimization Algorithm with
desc(T0, ∞, 1000, 10−5) so that the algorithm only uses
the steepest descent direction. Without Newton’s method,
the algorithm fails to converge to the prescribed accuracy

within the alloted 1000 steps. Around the 25th step, the
algorithm stagnates because the step size that meets the
sufficient decrease requirements of the Armijo line search [1]
is 
 = 1.8 ⋅ 10−9. Now we call the algorithm with desc(T0,
3, 1000, 10−5) for comparison. This time, the algorithm
converges to the switching times T ★ = (3.1789, 7.0696)T

in three steps of Newton’s method after the initial three
steps of steepest descent. Compare this result with Table I.
Furthermore, Fig 1, presented in the introduction, compares
the convergences of steepest descent and Newton’s method
for this example.

IV. CONCLUSION

This paper presents a second-order descent direction used
in Newton’s method for optimizing the switching times
of a switched system. Newton’s method exhibits quadratic
convergence. This convergence is in comparison to the linear
convergence of steepest descent. For the presented example,
the convergence of steepest descent and Newton’s method
are compared.
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