
Second-Order DMOC Using Projection

Kristine L. Snyder
Department of Applied Mathematics

526 UCB
University of Colorado

Boulder, CO 80309
kristine.snyder@colorado.edu

Todd D. Murphey
Department of Mechanical Engineering

Northwestern University
2145 Sheridan Road

Evanston, IL 60208, USA
t-murphey@northwestern.edu

Abstract— Discrete mechanics and optimal control (DMOC)
is a recent development in optimal control of mechanical
systems that takes advantage of the variational structure of
mechanics when discretizing the optimal control problem.
Typically, the discrete Euler-Lagrange equations are used as
constraints on the feasible set of solutions, and then the
objective function is minimized using a constrained optimiza-
tion algorithm, such as sequential quadratic programming
(SQP). In contrast, this paper illustrates that by reducing
dimensionality by projecting onto the feasible subspace and
then performing optimization, one can obtain significant im-
provements in convergence, going from superlinear to quadratic
convergence. Moreover, whereas numerical SQP can run into
machine precision problems before terminating, the projection-
based technique converges easily. Double and single pendulum
examples are used to illustrate the technique.

I. INTRODUCTION AND BACKGROUND

Discrete Mechanics and Optimal Control, abbreviated
DMOC, is a method that uses variational integrators to find
the optimal control for a given discretized physical system
using ideas from Lagrangian and Hamiltonian dynamics [1],
[2]. This enables DMOC to be effective for impacts and
collisions as well as smooth motion in both linear and
non-linear systems. Rather than discretizing a continuous
equation, DMOC uses the forced discrete Euler-Lagrange
(DEL) equations over multiple time steps as constraints
and, within these constraints, minimize a cost functional
of weighted discrete control values. It avoids many of the
problems that accompany discretizing continuous equations
of motion, like inaccurate loss or gain of energy over time.

The ability of DMOC to handle both non-linearity and
impacts while retaining the essential characteristics of the
underlying physical system has made it useful in a variety
of arenas. These include undercontrolled systems, such as a
group of hovercraft that have control in only two of their
three degrees of freedom [3] and constrained multibody
dynamcs [4]. DMOC has also been used as a way to find
optimal control in hybrid systems, such as bipedal walking
in two dimensions [5].

DMOC’s effectiveness, however, depends on the method
used to solve the ultimate constrained optimization prob-
lem. Traditionally, DMOC has been solved using Sequential
Quadratic Programming (SQP) [1], [6]. SQP is a method
that combines the cost function and the linearized constraints
into an approximation of the Lagrangian function. At each

step, it solves a quadratic programming sub-problem based
on this approximation, then updates the approximation of
the Hessian for the next iteration. Though this method is
effective, because it is essentially a ’black box’ algorithm for
any arbitrary non-linear constrained optimization problem, it
typically ignores some of the analytic properties of DMOC
that could be used to improve convergence.

We present a method that uses the structure of the equa-
tions involved in DMOC to build a projection of arbitrary
configuration and control variables onto feasible configu-
ration and control variables. This projection can then be
used to reduce the dimensionality of the problem via the
constraints, allowing the optimal solution to be found via
pure Newton’s method without losing any information. We
then present preliminary findings on how the projection
method compares to both SQP with numerical derivative
calculations and gradient descent with Armijo line search.
The three methods are compared in terms of accuracy of
results and convergence properties for a variety of example
problems.

We organize the paper in the following way: Section II
provides an explanation of how the continuous system can
be modeled using discrete mechanics, while retaining the
physical characteristics of the original problem. Section III
gives a short background on the structure and use of DMOC.
Section IV provides a description of our method, including
the derivation of the projection and its relevant derivatives.
Section V compares examples of our method to both gradient
descent and numerical SQP for two non-linear systems.
Lastly, Section VI gives conclusions and future work.

II. DISCRETE MECHANICS

We begin with a continuous mechanical system with
trajectory q(t) ∈ Q (configuration space) starting at some
initial point (q(0), q̇(0))and ending at (q(T), q̇(T)). The
system is also subject to some external forcing, with the
optimal control determined by minimizing the cost functional

J(q, u) =
∫ T

0

C(q(t), q̇(t), u(t))dt.

To preserve the mechanics of the original system, the system
is constrained by the Lagrange-D’Alembert principle

δ

∫ T

0

L(q(t), q̇(t))dt+
∫ T

0

u(t)δq(t)dt = 0

for all variations δq(t) s.t. δq(0) = δq(T) = 0, where L is
the Lagrangian mapping the tangent bundle of Q, TQ, to R.

The above two equations describe a continuous con-
strained optimization problem; to perform DMOC, we need
an approximation of this continuous problem in discrete
space. A complete discussion and derivation of this dis-
cretization can be found in [2], whereas much of the fol-
lowing shorter derivation is taken from [1] and [3].

To define the discrete problem, we first convert the state
space from TQ as Q × Q by replacing a pair (q, (̇q)) with
the triplet (q0, q1) and time step h (for more details see [1]).
We then discretize the continuous path q : [0, T] → Q
via qd : {0, h, 2h, . . . , Nh} → Q, where N ∈ N and
T = Nh, and we approximate q(kh) with qk = qd(kh).
Similarly, we transform the continuous control u : [0, T] →
T ∗Q (the cotangent bundle) to the discretized values ud :
{0, h, 2h, . . . , Nh} → T ∗Q, where again, uk = ud(kh).

We next need the discretized version of the continuous
cost functional and Lagrange-D’Alembert principle. We first
discretize the Lagrangian L, giving

Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L(q(t), q̇(t))dt

≈ hL(
qk+1 + qk

2
,
qk+1 − qk

h
),

with the midpoint rule used in the discretization. Similarly,
we approximate a discretized version of the control variable:

u−k · δqk + u+
k · δqk+1 ≈

∫ (k+1)h

kh

u(t) · δq(t)dt.

where u+
k and u−k represent the right and left hand control

for the time step k. Using the discrete Lagrangian, we can
define the discrete Lagrange-D’Alembert principle, which
restricts to paths {qk}Nk=0 such that all variations {δqk}Nk=0

with δq0 = δqN = 0 require that

δ

n−1∑
k=0

Ld(qk, qk+1) +
n−1∑
k=0

u−k · δqk + u+
k · δqk+1 = 0.

Rewriting, we get the forced discrete Euler-Lagrange (DEL)
equations:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + u+
k−1 + u−k = 0. (1)

where Di represents the derivative with respect to the ith

argument (i.e. D2Ld(qk−1, qk) is the derivative of Ld with
respect to qk) for k = 1 to N . Lastly, for each time step k,
the cost functional can be rewritten as

Cd(qk, qk+1, uk, uk+1) ≈
∫ (k+1)h

kh

C(q, q̇, u)dt

which, leads to the total cost:

Jd(qd, ud) =
N−1∑
k=0

Cd(qk, qk+1, uk, uk+1). (2)

III. DMOC

The equations for all interior time steps can be described
by (1), but we must also ensure these interior points are
continuous with the fixed initial and final time steps to meet
these boundary conditions. To do so, the discrete Legendre
transforms F+ and F− are used to relate the representation
in the continuous (TQ) and discrete (Q×Q) domains. These
transforms are defined to be

F+Ld : (qk−1, qk)→ (qk, pk)
pk = D2Ld(qk−1, qk) + u+

k−1

F−Ld : (qk−1, qk)→ (qk−1, pk−1)
pk = −D1Ld(qk−1, qk)− u−k−1.

Further descriptions of these transforms can be found in [1].
Additionally, the standard Legendre transform can be used
to map TQ to T ∗Q.

FL : (q, q̇)→ (q, p) = (q,D2L(q, q̇))

This gives the following additional constraint equations
for the initial (t = 0) and final (t = T) time steps.

D2L(q(0), q̇(0)) +D1Ld(q0, q1) + u−0 = 0(3)
−D2L(q(T), q̇(T)) +D1Ld(qn−1, qn) + u+

n−1 = 0.(4)

Thus our final system consists of minimizing the discrete
cost functional (2) subject to the constraints (1), (3) and (4).

In traditional DMOC, both u−k and u+
k are calculated via

the midpoint rule as h
4 (uk + uk+1). However, to make the

projection simpler in the next section, we use a slightly
different approximation, using the left hand endpoint rather
than the midpoint rule. Instead of averaging the two controls,
we simply denote both u−k and u+

k as uk. Note that this
does not significantly change the optimal control, and that
midpoint control values can easily be recovered using the
previous definition of u−k .

We thus have the overall DEL equations

D2L(q(0), q̇(0)) +D1Ld(q0, q1) + u0 = 0(5)
D2Ld(qk−1, qk) +D1(qk, qk+1) + uk−1 + uk = 0(6)
−D2L(q(T), q̇(T)) +D1Ld(qn−1, qn) + un−1 = 0.(7)

IV. PROJECTION-BASED OPTIMIZATION

DMOC is traditionally formulated as a constrained opti-
mization problem. For this reason, the problem is generally
framed as trying to find the trajectory and control that
minimize the cost functional within a subset of the domain
that obeys the constraints

min
(q,u)∈U⊆Q×T∗Q

J(q, u).

In this formulation, the cost is computed while assuring the
trajectory and control variables meet the constraints. Thus,
though the search stays near the constraint surface, in theory,
the search is being done over the entire set of trajectory and
control values, not just those subject to the constraints.

It is equivalent to define the unconstrained minimization
problem of finding the minimal control over configuration
and control variables constrained via a projection P ,

min
x∈Bε(q,u))

J(P(q, u)),

where x is a combination of possible configuration and
control variables and Bε(q, u) is a neighborhood of (q, u).
In practice, this search can be done by projecting a given
input of arbitrary configuration and control variables onto the
subspace of admissible configurations and controls and com-
posing that projection with the cost. Thus rather than trying
to simultaneously minimize J while fulfilling the constraints,
only the subspace of admissible configurations and controls
is ever examined. We therefore use the projection to reduce
the dimensionality of the problem via the constraints before
ever attempting to find the minimum.

However, the problem now hinges on the choice of the
projection P . P must be defined so that it takes any
arbitrary combination of configuration and control variables
and maps it onto one that fulfills all of the constraint
equations. Furthermore, in order to optimize over all pos-
sible projections, we will also need both first and second
derivatives of P , DP and D2P , thus requiring P to be
at least C2 in all its arguments.

A. Projection Definition and Differentiability

The DEL equations (5), (6) and (7) can be used to define
the projection P and its derivatives for an arbitrary DMOC
problem. Recall that the initial boundary condition is

D2L(q(0), q̇(0)) +D1Ld(q0, q1) + u0 = 0.

Defining

g0(q(0), q̇(0), q0, q1) = D2L(q(0), q̇(0)) +D1Ld(q0, q1),

we can rewrite the DEL equation as

g0(q(0), q̇(0), q0, q1) + u0 = 0.

We then solve for u0 as a function of the boundary conditions
q(0) = q0 and q̇(0) and the configuration variable q1, giving

u0 = −g0(q(0), q̇(0), q0, q1). (8)

Any DEL equation for an interior point k = 1, . . . , n− 1

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + uk−1 + uk = 0,

can also be rewritten as

g(qk−1, qk, qk+1) + uk−1 + uk = 0,

where

g(qk−1, qk, qk+1) = D2Ld(qk−1, qk) +D1Ld(qk, qk+1).

Solving for uk, we have the feedback law

uk = −uk−1 − g(qk−1, qk, qk+1).

After solving the first equation for u0, the remaining interior
equations can be solved for the control variables in terms of
the configuration variables for k = 1, . . . n− 1, giving

uk = (−1)ig1(q(0), q̇(0), q0, q1)+
k∑
j=1

(−1)jg(qj+1, qj , qj−1).

(9)
This defines a projection P(q, u) = (q, u(q)), where

each ui is defined via (8) and (9). u does not appear in
the projection because it can be fully defined from the
configuration variables, so u(q) does not depend on u.

Whether the projection becomes more complex depends
on how the ending condition is met, which can be done in
two different ways. One way is to impose a terminal cost
by including a term in the cost function enforcing a steep
cost penalty for deviating from the final condition. Because
this method of prescribing the ending condition requires no
further constraints, and because we have thus far used the
n constraints to solve for n of the 2n total variables in the
system, this completes the projection.

Alternatively, imposing the ending condition using the
remaining DEL equation gives n constraints and 2n − 1
degrees of freedom, requiring one of the configuration time
steps to be solved via the others. This can be done by again
using the DEL equations (6) and (7). We first rewrite the
DEL equation (7) for the ending condition as

gn(q(T), q̇(T), qn−1, qn) + un = 0

where

gn(q(T), q̇(T), qn−1, qn) = −D2L(q(T), q̇(T)) +
D1Ld(qn−1, qn).

If we denote (5) DEL0 and (6) DELk for k = 1 . . . n− 1
we can combine them to give

0 =
n∑
i=0

(−1)iDELi

0 = g0(q(0), q̇(0), q1) + (−1)n+1gn(qn, q̇n, qn−1) +
n−1∑
i=1

(−1)ig(qi+1, qi, qi−1)

which depends only on the configuration variables. This
equation can be used to, usually implicitly, solve for either
the first or last time step in terms of the configuration
variables. Note that because qn is a boundary condition, our
last configuration variable in this case is actually qn−1.

Using these equations, we can construct an appropriate
projection P(q, u). If we include the ending condition in
the cost equation, we have a projection of our configuration
variables onto themselves, and the control as a function of
our configuration variables. Thus, our projection becomes

P(q, u) = (q, u(q)).

If the DEL equation is used to impose the ending condi-
tion, we get the projection

P(q, u) = (q1(q2, . . . , qn−1), q2, . . . , qn−1,

u1(q2, . . . , qn−1), . . . , un(q2, . . . , qn−1)).

Lemma 1: P is a projection, and Ld, L ∈ Cn → P ∈
Cn−1

Proof: For the case of terminal cost,

P(P(q, u)) = P(q, u(q)) = (q, u(q)) = P(q, u).

If the ending condition is met by including another constraint
equation

P(P(q, u)) = P(q1(q2, . . . , qn−1), q2, . . . , qn−1,

u1(q2, . . . , qn−1), . . . , un(q2, . . . , qn−1))
= (q1(q2, . . . , qn−1), q2, . . . , qn−1,

u1(q2, . . . , qn−1), . . . , un(q2, . . . , qn−1))
= P(q, u).

Furthermore, because P depends solely upon the DEL
equations, if Ld, L ∈ Cn, since P consists of elements
which are linear combinations of DLd and DL, then we
must have P ∈ Cn−1.

The necessary derivatives can be found using

DJc = DJ(P(q)) ·DP(q),

where J denotes the unconstrained cost function and Jc the
cost function constrained via the projection. Similarly, the
Hessian can be calculated via

D2Jc = D2J(P(q)) ·DP(q) +
DJ(P(q)) ·D2P(q)

where the elements of DP and D2P can be found by taking
the first and second derivatives the projection elements as
defined via the DEL equations.

We then use Newton’s method to find the minimum cost
of the projected system.

V. EXAMPLES

A. Incremental Cost

For the example of the double pendulum, the projection
method was compared to two other methods, numerical SQP
and gradient descent using Armijo line search. For all tests,
SQP was implemented using MATLAB’s fmincon function
using numerical derivatives with constraint tolerance set to
10−14. For this initial case, we used a cost function of

J(qi, ui) =
n−1∑
i=0

uTi ui (10)

where ui was defined in (8) and (9).
For our simulations, θ1 represents the angle with respect

to the vertical at the base joint and θ2 represents the angle
with respect to the vertical at the outer joint (Figure 1). The
Lagrangian of the double pendulum is

L =
1
2
(m1 +m2)l21θ̇

2
1 +

1
2
m2l

2
2θ̇

2
2

+m2l1l2θ̇1θ̇2 cos (θ1 − θ2) +
(m1 +m2)gl1 cos (θ1) +m2gl2 cos (θ2)

where m1 and m2 are the masses for the respective joints,
and l1 and l2 are the lengths of the segments from the base

l1

l2
m1

m2

!1

!2

Fig. 1. A depiction of the double pendulum system, including definitions
of the variables θ1 and θ2 and the parameters m1, m2, l1 and l2.

! " # $ % &
!!'&

!

!'&

!
"

(

(

! " # $ % &
!"

!

"

)*+,(-./
!
#

*0!

*0"

12)*+34

Fig. 2. A comparison of the first two iterates of the projection method
with the cost function J(qi, ui) =

Pn−1
i=0 uTi ui to the unforced simulation

trajectory with initial conditions θ1 = θ2 = 1
2

.

joint to the outer joint and the outer joint to the end of the
pendulum, respectively (Figure 1).

We used the forced DEL equations and the cost function
(10) to simulate the unforced system. Because the solution
was known, it allowed us to test convergence characteristics,
such as the number of iterations to reach the optimum, order
of convergence, and accuracy of solution. The parameter
values were m1 = m2 = l1 = l2 = 1. For the first test,
initial angle values were θ1,0 = 1

2 and θ2,0 = 1
2 , with zero

initial velocities. The time step h was set to 0.1 over a total
of 50 time steps, or 5 seconds.

Projection with Newton’s method converged to the optimal
(unforced) solution within 7 iterations, whereas it took nu-
merical SQP 58 iterations to converge. Furthermore, the pro-
jection method approximated the exact solution very closely
after just one iteration (Figure 2), whereas numerical SQP
took significantly longer to do so. Projection with Newton’s
method reduces the error in the trajectory, as measured via
the 2-norm, by 85% within one iteration (Figure 2), whereas
numerical SQP reduces the error by only 10% (Figure 3).

For the second test, initial angle values were θ1,0 = π
2

and θ2,0 = π
2 , with zero initial velocities. The time step h

was set to 0.1 over a total of 50 time steps, or 5 seconds. All
methods were given the same input, consisting of the optimal
trajectory perturbed by value of ε = .001 with control taking
on an initial value of 10 for all time steps.

As can be seen in Figure 4, numerical SQP converged to
a different solution than did the projection method because

! " # $ % &
!!'&

!

!'&

!
"

(

(

! " # $ % &
!"

!

"

)*+,(-./

!
#

*0!

*0"

12)*+34

Fig. 3. A comparison the first two iterates of numerical SQP with the cost
function J(qi, ui) =

Pn−1
i=0 uTi ui to the unforced simulation trajectory

with initial conditions θ1 = θ2 = 1
2

.

! " # $ % &
!"!

!&

!

&

!
"

'

'

! " # $ % &
!#!

!"!

!

"!

()*+',-.

!
#

/012+3()145'6+7(14

89/

Fig. 4. Solutions using numerical SQP and Newton’s method with a
cost of J(qi, ui) =

Pn
i u

T
i ui. This DMOC problem yields a simulation

of the system if it converges, but neither gradient descent (with ran for
1000 iterations without terminating) nor numerical SQP (which ran for 428
iterations to arrive at a non-optimal solution) implementation are able to
converge. Newton’s method converges without difficulty in 6 iterations to
the actual optimal (unforced) solution.

it was compromised by the control values. Furthermore, it
took only 6 iterations for the projection method to converge
to the correct trajectory and 428 iterations for numerical
SQP to converge to a less than optimal trajectory (Figure
5). Gradient descent was allowed to run for 103 iterations, at
which point it had still not yet converged, and is therefore not
shown. Note that if given a more accurate controls trajectory,
numerical SQP will converge to the optimal solution, but
that it requires both trajectory and control variables to be
reasonably correct to converge to the optimal value.

Figures 4 and 5 show a comparison of the 3 methods. As
can be seen in Figure 5, in addition to converging to a less
than optimal solution, numerical SQP converges more slowly.
Projection with Newton’s method converges quadratically,
whereas numerical SQP converges, at best, superlinearly, and
gradient descent converges only linearly. While it is likely
that SQP’s convergence could be improved if it were given
more derivative information, it likely would not reach the

0 20 40 60 80 10010!8

10!6

10!4

10!2

100

102

104

Iteration

2!
No

rm
 o

f G
ra

di
en

t

Gradient Descent
Projection: Newton
SQP

Fig. 5. Log of the 2-norm of the gradient versus iteration for gradient
descent, numerical SQP, and Newton’s method with a cost of J(qi, ui) =Pn
i u

T
i ui for the first hundred iterations. Gradient descent displays linear

convergence, numerical SQP displays superlinear convergence, and New-
ton’s method displays quadratic convergence, but neither gradient descent
nor SQP has a high likelihood of converging to the correct optimal trajectory
with a reasonable number of iterations.

convergence speed of projection with Newton due the the
linearization of the constraints in SQP.

Due to its effectiveness at finding unforced trajectory with
an unconstrained endpoint, it may be possible to use this
method to solve the unforced DEL equations when they are
degenerate. Initial results from simpler systems, such as the
spring and the pendulum, show that, for short time horizons,
projection with Newton’s method is faster than root-finding.

B. Terminal Cost

To impose an endpoint on the system, the cost function
was adjusted to include a steep penalty for deviating from the
final condition. For an arbitrary system, this can be written

JT =
n−1∑
i=0

uTi ui + CT (qn − qend)T (qn − qend),

where qend indicates the required ending condition in config-
uration space and CT is a coefficient representing the relative
cost of not reaching the endpoint. For the double pendulum,
this gives rise to the cost function

JT =
n−1∑
i=0

uTi ui + CT [(θ1,n − θ1,end)2 +

(θ2,n − θ2,end)2 +
(

(θ1,n − θ1,n−1)
h

− θ̇1,end
)2

+(
(θ2,n − θ2,n−1)

h
− θ̇2,end

)2

]

with CT = 1000. CT was set to be three orders of magnitude
larger than the typical control values to assure the ending
condition was met with reasonable accuracy. Increasing CT
beyond this value did not significantly affect results.

To test the effectiveness of convergence with terminal cost,
we first compared gradient descent, numerical SQP, and the
projection method with the initial condition θ1 = θ2 = 0,
and the final condition θ1 = θ2 = 0.7. The time step value

! " # $ % &
!!'&

!

!'&

"

!
"

! " # $ % &
!"

!

"

()*+,-./

!
#

,

,

)0!

)0"

12()*34

Fig. 6. A comparison of the first two iterates of the projection method
via Newton with the cost function JT (qi, ui) =

Pn−1
i=0 uTi ui+CT (qn−

qend)
T (qn−qend) to the ultimate optimal simulation trajectory with initial

conditions θ1 = θ2 = 0 and ending conditions θ1 = θ2 = 0.7.

! " # $ % &
!!'&

!

!'&

"

!
"

! " # $ % &
!"

!

"

()*+,-./

!
#

,

,

)0!

)0"

12()*34

Fig. 7. A comparison of the first two iterates of numerical SQP with the cost
function JT (qi, ui) =

Pn−1
i=0 uTi ui+CT (qn−qend)T (qn−qend) to the

ultimate optimal simulation trajectory with initial conditions θ1 = θ2 = 0
and ending conditions θ1 = θ2 = 0.7.

was set to h = 0.1 for 50 time steps, and all methods were
given an input of initial trajectory and control of all zeros.

Projection with Newton’s method converged to the optimal
solution in 7 iterations, whereas numerical SQP took 47 it-
erations. However, tracking the trajectories for each iteration
shows further advantages of using Newton’s method. In one
iteration, the difference between the optimal and estimated
trajectories, measured via the 2-norm, is reduced by 92.5%
(Figure 6), whereas numerical SQP reduces this value by
only 7.5% (Figure 7). Past one iteration, the trajectories given
by the projection method obscure the optimal trajectory.

In another test, we used the same three methods, gradi-
ent descent, numerical SQP and projection with Newton’s
method to invert the double pendulum, an unstable process.
Both initial θ and θ̇ values were set to 0, with final θ values
were set to π and θ̇ values again being 0. The time step was
set to h = 0.1 for 40 time steps or 4 seconds.

All three methods were again given an input of an optimal
trajectory perturbed by ε=0.001. In this case however, rather
than giving zero control, the control was also perturbed
by 0.001. Both SQP and Newton’s method via projection
converged to the same optimal trajectory (Figure 8) with

0 1 2 3 4−2

0

2

4

! 1

0 1 2 3 4−2

0

2

4

time (s)

! 2

Fig. 8. Optimal trajectory given by numerical SQP and projection with
Newton’s Method using the cost function JT

Pn−1
i=0 uTi ui + CT (qn −

qend)
T (qn − qend). The trajectory displays a pumping trajectory used

to efficiently invert the double pendulum, taking it from initial angles of
θ1 = θ2 = 0 to ending conditions θ1 = θ2 = π

0 20 40 60 80 10010−10

10−5

100

105

Iteration

2−
N

or
m

 o
f G

ra
di

en
t

Gradient Descent
Projection: Newton
SQP

Fig. 9. Log of the 2-norm of the gradient versus iteration for gradient
descent, numerical SQP, and projection with Newton’s method for the first
hundred iterations with a cost of JT

Pn−1
i=0 uTi ui+CT (qn−qend)T (qn−

qend). Both numerical SQP and projection with Newton’s method con-
verged to the optimal trajectory in 4 and 64 iterations, respectively, but
gradient descent did not converge within 1000 iterations. Gradient descent
exhibits linear convergence, numerical SQP superlinear convergence, and
projection with Newton’s method quadratic convergence.

Newton converging in 4 iterations and numerical SQP taking
64. Gradient descent again failed to converge within 1000
iterations. One issue with gradient descent for this problem
is that the step size for a given gradient direction is quite
small, on the order of 10−4 − 10−5, slowing convergence.

A performance comparison of the three methods is shown
in Figures 8 and 9. Clearly, projection converges much
faster than numerical SQP or gradient descent. Furthermore,
because projection depends only on the trajectory values,
with the controls calculated as part of the projection, it can
be more robust to perturbation. Specifically, if the trajectory
is perturbed by as little as .001, and the controls entered as
zero, projection will converge to the optimal trajectory, but
numerical SQP will converge to a non-optimal solution.

C. Constrained Endpoint

Traditional DMOC uses a constrained endpoint, which
creates the need to implicitly solve for the first free time

0 20 40 60 80 10010−5

100

105

1010

Iterations

2−
N

or
m

 o
f G

ra
di

en
t

Gradient Descent
Projection:Newton
SQP

Fig. 10. Log of the 2-norm of the gradient of the cost using gradient
descent, numerical SQP, and projection with Newton’s method for the
single pendulum with an ending condition of π

2
with a time step of

h=0.1. Numerical SQP converges at 58 iterations, and projection with
Newton converges after only 7. Gradient descent exhibits linear convergence,
numerical SQP superlinear convergence, and projection with Newton’s
method quadratic convergence.

step of the configuration variable in terms of the remaining
configuration variables. This implicit differentiation can sig-
nificantly complicate calculating the Hessian and sometimes
lead to ill-conditioned matrices.

For a simple system, such as the single pendulum, the
first configuration variable can be explicitly solved for, due
to cancellation of terms in the DEL equations, which are

0 = u1 + lθ̇0 −
l

h
(θ1 − θ0)−

gh

2
sin
(

(θ0 + θ1)
2

)
0 = ui−1 + ui −

l

h
(θi − 2θi−1 + θi−2)−

gh

2

(
sin(

(θi + θi−1)
2

) + sin(
(θi−1 + θi−2)

2
)
)

0 = un + lθ̇n +
l

h
(θn − θn−1)−

gh

2
sin
(

(θn + θn−1)
2

)
.

where we again have the cost functional

J(qi, ui) =
n−1∑
i=0

uTi ui.

A simulation was performed on this system for l = 1. Time
steps of both h = 0.1 and h = 0.05 were used to test the
effectiveness of projection as compared to numerical SQP
with initial condition 0, ending condition π

2 for 101 time
steps. An initial input of zeros for both control and trajectory
was given for both size time steps. Both methods converge to
a gradually pumping trajectory, but as can be seen in Figures
10 and 11, projection with Newton’s method significantly
outperforms both numerical SQP and gradient descent.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an approach to DMOC that provides
local quadratic convergence that in practice is consider-
ably faster than “black box” optimization techniques that
utilize numerical differentiation approximations However,

0 20 40 60 80 10010−5

100

105

1010

1015

Iteration

2−
No

rm
 o

f G
ra

di
en

t

Gradient Descent
Projection: Newton
SQP

Fig. 11. Log of the 2-norm of the gradient of the cost using gradient
descent, numerical SQP, and projection with Newton’s Method for the single
pendulum with an ending condition π

2
and a time step of h=0.05. Numerical

SQP converges at 58 iterations, and projection with Newton converges
at only 5. Gradient descent exhibits linear convergence, numerical SQP
superlinear convergence, and projection with Newton’s method quadratic
convergence.

the current formulation is local, assumes full actuation and
compares to SQP with numerical derivatives. Further work
will focus on using implicit differentiation to differentiate
the projection associated with constrained endpoints, which
will allow for the more accurate simulation of an ending
condition. Furthermore, all the systems discussed here have
been fully actuated, whereas one of the advantages of DMOC
is its ability to stably handle underactuated systems, so a next
step will be adjusting the projection to be able to work with
these types of systems. Because DMOC also is capable of
simulating collisions and impacts within a trajectory, another
goal would be to adjust this algorithm to allow it to handle
systems with these characteristics. Lastly, to fully gauge
the advantages of this method, we would need to input
derivatives into SQP rather than calculating numerically
calculating them. It is likely that initially using SQP to allow
for a large basin of attraction and then projection when near
the optimum could considerably improve convergence time
while retaining a large basin of attraction, making a much
more effective constrained optimization algorithm.

REFERENCES

[1] J. Marsden and M. West, “Discrete mechanics and variational integra-
tors,” Acta Numerica, vol. 10, pp. 357–514, 2003.

[2] S. Ober-Bloebaum, O. Junge, and J. Marsden, “Discrete Mechanics and
Optimal Control: an Analysis,” Arxiv preprint arXiv:0810.1386, 2008.

[3] O. Junge, J. Marsden, and S. Ober-Blőbaum, “Discrete mechanics and
optimal control,” in Proceedings of the 16th IFAC World Congress,
Prague, Czech Republic, 2005.

[4] S. Leyendecker, S. Ober-Blőbaum, J. Marsden, and M. Ortiz, “Discrete
mechanics and optimal control for constrained multibody dynamics,”
in Proceedings of the 6th International Conference on Multibody
Systems, Nonlinear Dynamics, and Control, ASME International Design
Engineering Technical Conferences, Las Vegas, Nevada, 2007, pp. 4–7.

[5] D. Pekarek, A. Ames, and J. Marsden, “Discrete mechanics and optimal
control applied to the compass gait biped,” in IEEE Conference on
Decision and Control and European Control Conference, New Orleans,
LA, USA, 2007.

[6] D. Pekarek and J. Marsden, “Variational Collision Integrators and
Optimal Control,” in Proceedings of the 18th International Symposium
on Mathematical Theory of Networks and Systems, Blacksburg, VA,
2008.

