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Abstract— This paper presents a new method that addresses
measurement origin uncertainty. Measurement origin uncer-
tainty occurs when the object a measurement originated from is
not clear. The systems considered contain multiple bodies which
are dynamically indistinguishable other than initial conditions.
Each measurement originates from one of the bodies in the
system. In the past, recursive data association methods have
been used to address problems of this nature. A new technique
is presented which treats the measurement association problem
as a batch post-processing problem. Reformulating the problem
as such, it is possible to transform the data association problem
into a trajectory optimization problem. From this point of view
it is then possible to solve the measurement association problem
using first- and second-order optimization algorithms that rely
on having first- and second-order derivatives for cost functions
that depend on impulsive trajectories.

I. INTRODUCTION

The problem addressed in this paper is that of asso-
ciating measurements with the objects from which each
measurement originated. The systems considered contain
multiple objects from which each measurement could have
originated. The dynamics for each of the objects from which
a measurement is potentially received are indistinguishable
other than initial conditions.

A variety of data association algorithms have been de-
veloped in the past to address problems of this nature. A
majority of these techniques have focused on recursive for-
mulations similar to a Kalman filter [6]. The key difference
between the work presented in this paper and most other
pre-existing data association methods [2] is that we treat the
associations as a batch process. By assuming measurements
are continuous (which is accomplished by interpolating the
discrete set of measurements), it is possible to perform a
“impulse optimization” that singles out the times at which
incorrect measurements are received. By optimizing over the
continuous measurements it is possible to incorporate every
measurement in the same optimization procedure. Hence our
algorithm is more analogous to Kalman smoothing than it is
to Kalman filtering.

It is possible to treat the continuous measurements as a
flow of a dynamical system with impulsive changes in the
state. In past data association techniques, impulses have been
addressed in terms of impulse response [3] and in terms
of inteference [8]. We do not directly deal with filtering
response and treat the impulses as inherent system character-
istics upon which the data association is actually based (i.e.,
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we do not treat the impulses as noise). Figure 1 illustrates
this idea for a deterministic system. There are two objects
with linear dynamics moving in close proximity to each other
(in 1-D with unstable dynamics for purpose of illustration).
The object that we are attempting to track, object 1, has a
trajectory represented by the dotted line. A nearby object,
object 2, with the same linear dynamics as object 1 but
different initial condition has a trajectory represented by the
dashed line. The solid line represents the measurements as
seen by the sensor. Note that in this example we are assuming
that the measurements are deterministic. In general this is
not the case. The measurements are originally coming from
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Fig. 1: Example of an impulsive flow generated by a com-
bination of flows from two separate objects. The dotted line
represents the flow of one object and the dashed line the flow
of a second object. The solid line represents the impulsive
measurement flow.

object 1, when at time t = 1 the measurements received
originate from object 2. At time t = 2 there is another
“switch” between trajectories and the measurements again
originate from object 1. Although the measurements are
actually coming from a combination of the two trajectories,
we are able to treat the measurement trajectory (solid line)
as a single trajectory with impulses. The impulses are a
mechanism for switching between the trajectories of objects
1 and 2.

Treating measurements as an impulsive trajectory, it is
possible to reformulate the measurement association problem
as an optimization procedure. The optimization procedure
considers the entire measurement trajectory at one time and
optimizes with respect to the times at which impulses occur.
By determining the impulse times, it is possible to back out
the times at which measurements are received from the object
of interest (object 1 in Figure 1).



The organization of this paper is as follows. The problem
is first formally defined in Section II. Adjoint equations
for solving the first and second derivatives with respect to
impulse times when there are N total impulses are then
presented. The adjoint formulations are followed by a short
discussion of optimization techniques. Simulated results and
comparisons of the impulse optimization method are then
presented. Finally, conclusions are made and future direc-
tions discussed.

II. PROBLEM DEFINITION

The systems considered in this work are in general non-
linear and have dynamics of the form

ẋi = fi(xi(t), t), xi(0) = xi0, i = 1, 2, . . . ,M, (1)

where M is the total number of objects in the system. The
given information is a stream of measurements that serves as
a reference trajectory xd(t), which can be either deterministic
or non-deterministic. For the purposes of optimizing, it will
be necessary to treat the system as if there were only a single
object with nonlinear dynamics that contain impulses

ẋ = fi(x(t), t), x(0) = x0.

Recall that in the example from Section I we started by
measuring the object of interest, at t = 1 measurements
originating from object 2 started to be received, then at t = 2
measurements originating from object 1 were again received.
The flow describing this behavior has the form

x(t) = ϕ3
t−τ2(ϕ2

τ2−τ1(ϕ1
τ1(x0) + δ1)− δ2), (2)

where δ1 and δ2 are the magnitudes of the impulses. Note
that δ1 and δ2 are simply the magnitudes of the impulses
required to switch between the two trajectories of objects 1
and 2. The times at which the impulses occur are τ1 and τ2.

The measurement association problem can be abstracted
to finding impulse times that minimize a total cost function:

J(τ1, τ2, . . . , τN ) =
∫ tf

0

`(x(s), s)ds, (3)

where N is the total number of switching times. The func-
tion `(·, ·) is arbitrary; one possible choice is `(x(t), t) =
(xd(t) − x(t))T (xd(t) − x(t)). Optimization of J(·) is
accomplished through standard numerical techniques using
a combination of gradient descent and Newton’s method.

III. DERIVATIVES OF J(·)
In this section we derive both the first and second deriva-

tives of the cost with respect to multiple impulse times using
adjoint formulations. It will be shown that by calculating
adjoint equations it is possible to significantly reduce the
computational complexity associated with finding the deriva-
tives. In particular, it will be shown that by using the adjoint
formulation, only a single integration is needed to calculate
either the first or second derivatives at every impulse time.

While deriving the adjoint equation for the first derivative
the following result will be useful. This result is analogous
to the result that holds for impulse optimization. The proof

for impulse optimization is nearly identical to the proof in
[4] and [7] and is thus left out here.

Lemma 1: The first derivative of the trajectory with re-
spect to the impulses times τi is

Dτix(t) ◦ ∂τi =
{

0 t < τi
Φ(t, τi) ◦Xi t ≥ τi

(4)

Xi = (fi−1(x(τi), τi)− fi(x(τi), τi))∂τi

where, in the general case

ẋ = fi(x, t) τi ≤ t < τi+1 (5)

and Φ(t, τi) is the state transition matrix for the system

ż = [D1fi(x(t), t)]z = A(t)z(t).

Note that this is a general case. The systems of concern
for this work deal with only a single set of dynamics, i.e.,
fi(x, t) = f(x, t). Note also that we are able to quote this
result which comes from optimizing over switching times for
dynamics as opposed to impulse times because the impulses
show up linearly in the flow. Thus, the only contribution from
the impulses comes from evaluating the dynamics.

Lemma 2: The derivative of the cost function J(·) with
respect to each of the impulse times τi is

Dτi
J(·) ◦ ∂τi = Ψ(tf , τi) (6)

where Ψ(tf , τi) : Rn → R,

Ψ(tf , τi) = ψ(tf , τi) ◦Xi + `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i ),
(7)

and ψ(tf , τi) : Rn → R is found by integrating

ψ(t, t) ◦ U = 0 (8a)
∂

∂τ
ψ(t, τ) ◦ U =

−D1`(x(τ),τ) ◦ U − ψ(t, τ) ◦D1f(x(τ), τ) ◦ U (8b)

backward along τ from tf to τi.
Proof: Take the derivative of (3) with respect to τi.

The derivative is the sum of three parts, the derivative of
the integrand itself along with two terms that come from
applying Leibniz’s rule. Recall that in Equation (4), Dτi

x(t)◦
δτi = 0 up until t = τi. The result of this fact is that the
derivative of the integrand only needs to be integrated from
τi up to tf . Thus,

Dτi
J(·) ◦ ∂τi =∫ tf

τi

D1`(x(s), s) ◦Dτi
x(s) ◦ ∂τids

+ `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i ). (9)

Substituting in (4) and noting that Xi is independent of s,
we can define the linear operator ψ(t, τ) such that

DτiJ(·)◦∂τi = ψ(t, τi)◦Xi+`(x(τ−i ), τ−i )−`(x(τ+
i ), τ+

i )
(10)



where

ψ(t, τ) ◦ U =
(∫ t

τ

D1`(x(s), s) ◦ Φ(s, τ)ds
)
◦ U. (11)

Equation (10) gives the first part of Lemma 2. This result
provides a method for calculating the first derivative of
the cost function J(·) with respect to each of the impulse
times τ1, τ2, . . . , τN , but each of these derivatives requires
recalculating the value of ψ(t, τ), i.e., computing the integral
in (9). In previous work [5] it has been noted that taking the
derivative of (11) with respect to τ yields the equation:

∂

∂τ
ψ(t, τ) ◦ U = −D1`(x(τ), τ) ◦ U

−
∫ t

τ

D1`(x(s), s) ◦ Φ(s, τ) ◦A(τ)Uds (12a)

= −D1`(x(τ), τ) ◦ U

−
(∫ t

τ

D1`(x(s), s) ◦ Φ(s, τ)ds
)
◦A(τ) ◦ U (12b)

= −D1`(x(τ), τ) ◦ U − ψ(t, τ) ◦D1f(x(τ), τ) ◦ U
(12c)

Equation (12c) along with evaluating ψ in (11) at τ = t yield
the final two parts of the Lemma.

The adjoint equation, (8b), and its terminal condition, (8a),
are helpful for several reasons. The first is that the adjoint
equation does not include any flow notation. The second
and most important is that a terminal condition exists and
the adjoint equation can be integrated backward along τ . In
particular, ψ can be integrated backward from tf to τ1. Thus,
in a single integration it is possible to calculate the value of
Ψ at each τi.

To find the second derivative of the cost function (3),
we will proceed in nearly the same way as in finding the
first derivative. In particular, the second derivative of the
trajectory (5) will be calculated first directly. This calculation
will be used to show that the second derivative of the
trajectory can be expressed as an affine linear system (note
that the first derivative of the trajectory could be expressed
as a purely linear system). The second derivative of the
trajectory will then be substituted into the second derivative
of the cost to yield a general equation for the derivative.
Then, similar to the first derivative, an adjoint equation will
be found such that when integrated backward along τ reduces
the calculation of the second derivative of the cost with
respect to each impulse time down to a single integration.

The following result, which has been derived previously
[4], [7], will be used to express the second derivative of the
trajectory. We assume i > j without loss of generality.

Proposition 3:

d

dt
DτjDτix(t) ◦ (∂τj , ∂τi) =

D1f(x(t), t) ◦Dτj
Dτi

x(t) ◦ (∂τj , ∂τi)

+D2
1f(x(t), t) ◦ (Dτj

x(t) ◦ ∂τj , Dτi
x(t) ◦ ∂τi) (13a)

Dτj
Dτi

x(τi) ◦ (∂τj , ∂τi) =

D1fi(x(τi), τi) ◦ fi(x(τi), τi)∂τj∂τi
+D1fi−1(x(τi), τi) ◦ fi−1(x(τi), τi)∂τj∂τi
−2D1fi(x(τi), τi) ◦ fi−1(x(τi), τi)∂τj∂τi
+D2fi−1(x(τi), τi) ◦ ∂τj∂τi

−D2fi(x(τi), τi) ◦ ∂τj∂τi, i = j
(D1fi−1(x(τi), τi)∂τj
−D1fi(x(τi), τi)) ◦ Φ(τi, τj) ◦Xj∂τi i > j

(13b)

Note that the proof of this result is again analogous to
the proof for impulse optimization. Combining the result in
Proposition 3 with the fundamental theorem of calculus leads
to the following.

Lemma 4: The second derivative Dτj
Dτi

x(t) ◦ (∂τj , ∂τi)
is

Dτj
Dτi

x(t) ◦ (∂τj , ∂τi) =

Φ(t, τi) ◦Xi,j + φ(t, τi)(Φ(τi, τj) ◦Xj , Xi) (14)

where Φ(t, τ) is the state transition matrix from Lemma 1
and the bilinear operator φ(t, τ) : Rn×Rn → Rn is defined
as

φ(t, τ) ◦ (U, V ) =∫ t

τ

Φ(t, s) ◦D2
1f(x(s), s) ◦ (Φ(s, τ) ◦ U,Φ(s, τ) ◦ V )ds

(15)

and Xi,j is the intial condition from (13b). This result has
also previously been derived [4], [7].

The results from Proposition 3 and Lemma 4 are both used
in the proof of the following theorem which calculates the
second derivative of the cost. In the proof of the theorem,
the second derivative of the cost is first derived explicitly. An
adjoint equation is then found which eliminates the need to
explicitly calculate φ(t, τ). This is very similar to the adjoint
equation for the first derivative which eliminates the need to
explicitly calculate Φ(t, τ).

Theorem 5: The second derivative of the cost function
J(·) with respect to the switching times τj where τi ≥ τj is

Dτj
Dτi

J(·) ◦ (∂τj , ∂τi) =

D1`(x(τ−i ), τ−i ) ◦ (Dτjxd(τ
−
i ) ◦ ∂τjδji − f(x(τ−i ), τ−i ))

−D1`(x(τ+
i ), τ+

i ) ◦ (Dτj
xd(τ+

i ) ◦ ∂τjδji − f(x(τ+
i ), τ+

i ))

−D1`(x(τi), τi) ◦Xi∂τjδ
j
i + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

where δji is the Kronecker delta and Ω(t, τ) ◦ (U, V ) : Rn×
Rn → R is the bilinear operator found by integrating

Ω(t, t) ◦ (U, V ) = 0n×n (16a)
∂

∂τ
Ω(t, τ) ◦ (U, V ) = −D2

1`(x(τ), τ) ◦ (U, V )

− ψ(t, τ) ◦D2
1f(x(τ), τ) ◦ (U, V )−

Ω(t, τ) ◦ (D1f(x(τ), τ) ◦ U, V )
− Ω(t, τ) ◦ (U,D1f(x(τ), τ) ◦ V ) (16b)



backwards over τ from tf to τi.
Proof: Take the derivative of (9) with respect to τj :

Dτj
Dτi

J(·) ◦ (∂τj , ∂τi) =

∂

∂τj
(
∫ tf

τ+
i

D1`(x(s), s) ◦Dτi
x(s) ◦ ∂τids

+ `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i ))

= D1`(x(τ−i ), τ−i ) ◦ (Dτjxd(τ
−
i ) ◦ ∂τi

∂τj

−Dτjx(τ−i ) ◦ ∂τj)−D1`(x(τ+
i ), τ+

i )

◦ (Dτj
xd(τ+

i ) ◦ ∂τi
∂τj
−Dτj

x(τ+
i ) ◦ ∂τj)

−D1`(x(τ+
i ), τ+

i ) ◦Dτix(τ+
i ) ◦ ∂τi

∂τi
∂τj

+
∫ tf

τ+
i

(D1`(x(s), s) ◦DτjDτix(s) ◦ (∂τj , ∂τi)

+D2
1(x(s), s) ◦ (Dτj

x(s) ◦ ∂τj , Dτi
x(s) ◦ ∂τi))ds

= D1`(x(τ−i ), τ−i ) ◦ (Dτjxd(τ
−
i ) ◦ ∂τi

∂τj

−Dτjx(τ−i ) ◦ ∂τj)−D1`(x(τ+
i ), τ+

i )

◦ (Dτj
xd(τ+

i ) ◦ ∂τi
∂τj
−Dτj

x(τ+
i ) ◦ ∂τj)

−D1`(x(τ+
i ), τ+

i ) ◦Dτix(τ+
i ) ◦ ∂τi

∂τi
∂τj

+
∫ tf

τ+
i

(D1`(x(s), s) ◦ Φ(s, τi) ◦Xi,j

+D1`(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦Xj , Xi))ds

+
∫ tf

τ+
i

D2
1`(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj)

◦Xj ,Φ(s, τi) ◦Xi)ds

= D1`(x(τ−i ), τ−i ) ◦ (Dτjxd(τ
−
i ) ◦ ∂τjδij

− f(x(τ−i ), τ−i ))−D1`(x(τ+
i ), τ+

i )

◦ (Dτj
xd(τ+

i ) ◦ ∂τjδij − f(x(τ+
i ), τ+

i ))

−D1`(x(τ+
i ), τ+

i ) ◦Xi∂τjδ
j
i + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi). (17)

Ω(t, τ) is defined as

Ω(t, τ) ◦ (U, V ) =∫ t

τ

D1`(x(s), s) ◦ φ(s, τ) ◦ (U, V )

+D2
1`(x(s), s) ◦ (Φ(s, τ) ◦ U,Φ(s, τ) ◦ V )ds. (18)

The calculation in (17) provides a method for calculating
the second derivative of the cost function J(·) using forward
integration. Similar to the first derivative of the cost, this
method produces the correct calculation but is computation-
ally costly due to the fact that a separate forward integration
is required for each derivative.

The computational burden of calculating the second
derivative of the cost function using forward integration can

be avoided by finding an adjoint equation for the bilinear
operator Ω(t, τ). This is accomplished by taking the deriva-
tive of (18) with respect to τ , as in (16b). Equation (16b)
can then be integrated backwards from tf to τ1 using the
initial/terminal condition (16a). The value of Ω(·, ·) and thus
each component of the second derivative of the cost with
respect to each impulse time can be calculated in a single
backward integration.

Note that it is somewhat helpful to write (16b) in matrix
form to facilitate making numerical calculations

∂

∂τ
[Ω(t, τ)] =

− [D2
1`(x(τ), τ)]− [ψ(t, τ) ◦D2

1f(x(τ), τ)]

− [D1f(x(τ), τ)]T [Ω(t, τ)]− [Ω(t, τ)][D1f(x(τ), τ)].

Note also that the impulses do not show up directly in the
calculation of either ψ(t, τ) or Ω(t, τ). This is again due to
the fact that the impulses enter the flow linearly. Thus the
only contribution due to the impulses comes from evaluating
the derivatives `(x(t), t) and f(x(t), t) along x(t).

IV. OPTIMIZATION ALGORITHMS

The derivatives calculated in Section III are for use in
optimizing (3). First and second-order iterative methods [9]
are relied on to accomplish the optimization. Both the first
and second-order methods have iterates that take the form

xk+1 = xk + αkzk, (19)

where xk is the position of the current step, xk+1 the position
of the next step, zk contains the descent information, and αk
is a step size parameter. The parameter zk has the general
form z = −[H]−1[Dτi

J(·)]T where H is a positive definite
matrix. In first-order methods, H = I , where I is the
identity matrix. This choice of H results in a steepest descent
algorithm. Choosing H = Dτj

Dτi
J(·) results in Newton’s

method which is a second-order optimization algorithm.
In many of the systems of interest for this problem

DτjDτiJ(·) will not be positive definite. In this case it is
necessary to implement a quasi-Newton’s method. There are
a variety of choices of quasi-Newton’s methods, the one
chosen in this work is as follows [9], [10]: the Hessian is
decomposed into matrices containing the eigenvectors and a
matrix containing the eigenvalues. The eigenvalues that are
either close to zero or negative are replaced with a value
of unity. The Hessian is then recomposed using the original
eigenvectors with the modified matrix of “eigenvalues.” Note
that by replacing an eigenvalue of the original Hessian with
a unity value, we are essentially performing steepest descent
in the associated direction.

It was mentioned above that αk in (19) is a step size
parameter. The value of αk is chosen using the Armijo Line
Search algorithm [1]. This algorithm uses a line search tech-
nique to ensure a sufficient decrease. The sufficient decrease
condition guarantees that the optimization will eventually
converge (assuming no issue with numerical precision).



V. EXAMPLE

In this section we consider several different examples that
all deal with the same system. The example system chosen
has one-dimensional dynamics

ẋ(t) = sin(x(t))
y(t) = h(x(t)) (20)

where y(t) are the measurements. In the first example the
function h(·) in (20) is deterministic. In the second two
examples the function h(·) contains a noise term sampled
from the normal distribution N(0, σ2). Note that it is possible
to apply the impulse optimization results to either determin-
istic or non-deterministic systems due to the fact that the
analytical results derived in this paper depend only on the
local convexity of the cost function.

The overall system contains two dynamically identical
objects except for initial conditions. Measurements initially
originate from the object of interest, object 1. At time t = 1
measurements begin to originate from object 2. Measure-
ments originate from object 2 up until t = 2, at which point
they again originate from object 1. A cost function of the
form (3) is defined where `(x(t), t) = (xd(t) − x(t))2 and
xd(t) represents the measurements y(t).

Figure 2 shows a convergence plot for a second-order
method for a single-impulse deterministic system. The ver-
tical axis in Figure 2 is the cost on a logarithmic scale. The
horizontal axis is iteration number. Figure 2 shows quadratic

Fig. 2: Quadratic convergence using a second-order method
for a single-impulse deterministic system.

convergence for this case where the measurements were
assumed to be deterministic.

A natural extension of the deterministic case above is to
systems that contain noise. Figure 3 shows a plot of the types
of signals being considered (note that the deterministic flow
is also plotted). Figure 4 shows three different cost functions
associated with varying degrees of noise (the dashed line
contains the most noise and the solid line the least). Note
that the general trend for these costs functions is the more
noise in the measurement signal the higher the cost values.

Figure 5 shows three convergence plots that correspond
to the three cost functions in Figure 4, all three starting
at τ2 = 1.2. The scaling on the vertical axes of Figures 4
and 5 have the same linear scaling, not logarithmic scaling.
The horizontal axis in Figure 5 is iteration number. Note
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Fig. 3: Deterministic and stochastic flows for a nonlinear
system with two impulses.

Fig. 4: One dimensional cross-sections of several cost func-
tions for a stochastic linear system with two impulses and
varying degrees of noise, where τ1 = 1. The dashed line
represents the case with the highest amount of noise and the
solid line the least.

Fig. 5: Convergence plots for the three cost functions shown
in Figure 4 using a seond-order method.

that although the final cost values are different, based on
the amount of noise present, the value of τ2 at which the
minimum is attained as well as the number of steps (with the
same initial guess) it takes to get there remains unchanged by
varying the amount of noise present. Note also that although
the convergence plots in Figure 5 were not plotted on a
logarithmic scale, quadratic convergence is achieved in these
cases as well.

Figure 6 shows a convergence plot for the optimization
over both of the impulses in the system discussed above (the
true minimum is at (τ1, τ2) = (1, 2)). The reference signal



for this example is the noisy signal in Figure 3. The starting
point for this optimization was (τ1, τ2) = (0.7, 2.4). This plot
shows that when optimizing over both impulses, quadratic
convergence is achieved when using a second order method.

Fig. 6: Convergence plot for second-order optimization over
two impulses where the reference signal is the noisy signal
in Figure 3.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a new method for measurement asso-
ciation in systems with measurement origin uncertainty. The
method considers impulsive flows as a model for continuous
measurements. The measurement associations are analogous
to optimizing a cost function with respect to the times at
which impulse times occur. By determining the impulse
times it is possible to determine the time periods over which
incorrect measurements are being received.

The optimization of the cost function is accomplished
using both first- and second-order optimization algorithms.
These optimization algorithms relies on analytical first-
and second-order derivatives. Results for calculating these
derivatives have been provided using both flow and adjoint
formulations.

Simulated results of applying impulse optimization to a
nonlinear system have been provided in Section V. Several
different cases with varying degrees of noise have presented.

It has been shown explicitly that in the case of deterministic
measurements quadratic convergence is achieved. It has also
been shown that when the measurement signal incorporated
noise, the location and ability to reach the minimum of the
noisy cost functions does not change by varying the noise
within a reasonable amount.

Several different future directions of this work are cur-
rently being considered. The first is to incorporate the im-
pulse magnitude into the optimization procedure. In the work
presented in this paper the impulse magnitude has thus far
been treated as a constant (the exact amount needed to switch
between the trajectories of various objects). By incorporating
the impulse magnitudes, fewer assumptions need to be made
and a wider variety of systems can be considered. A second
direction of future works is to find an analytical bound on the
amount of noise that can be present such that convergence
of the optimization is still achieved and to create the same
relationship between the stochastic analysis and optimization
that the Kalman-Bucy filter creates for smooth systems.
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