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Abstract— We present a method of resolving simultaneous
collisions between multiple rigid bodies based on the least action
principle. By using the generalized directional derivative of the
action, we use that the solution is related to the outcomes of
nearby trajectories that experience consecutive single impacts.
We present an algorithm based on this result, and prove its
effectiveness by applying it to several low dimensionality exam-
ples based on billiard ball interactions, including a simplified
version of Newton’s cradle.

I. INTRODUCTION

When trying to simulate dynamical systems that undergo
rigid body collisions, the problem of multiple simultaneous
impacts is bound to occur. Whether the system starts in
a relevant configuration—as is the case of a billiard ball
break—or whether the situation arises from allowing plastic
impacts—when bouncing a pen off a table, eventually both
ends will be in contact at the same time—the problem can
always be abstracted as a point in higher dimensional space
impacting a corner, generally a point of non-differentiability
on the contact manifold (while this might not be immediately
obvious, section II-C provides examples that illustrate this
fact, and fig. 4 in particular is meant to illustrate our claim).
This provides for non-uniqueness of the result in such an in-
teraction, especially when using set-valued force laws to look
for a solution [1]. The problem disappears if one is willing
to apply finite element methods that take into consideration
the deformability of the objects engaged in the impact [2].
However, this approach also introduces large amounts of
complexity to the problem, by including wave propagation
effects and substantially adding to the dimensionality of the
system. Other methods have been proposed, that still take
elasticity into account, without resorting to finite element
methods [3]. While lowering the complexity, such methods
are nevertheless dependent on a careful choice of parameters
to describe the bodies involved in the collision. Rephrasing
the impact as a linear complementarity problem (LCP) is the
best known method for solving contact problems to date [4],
[5], [6], [7]. LCP based methods have, however, several
major disadvantages, the main ones being the fact that they
are not based on an underlying physical principle and that the
solutions they provide are not unique. We believe the issue
is solvable without having to drop the rigidity assumption—
hence avoiding the needless complexity of finite element
methods where such an approach is not needed—and that
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a solution should ascribe to well established physical princi-
ples. Moreover, most of the methods currently used to model
impacts—and in particular LCP based formulations—use a
simultaneous approach, and solve for all potential impacts
during a time step at once, whether or not they would occur.
This gives great advantages in terms of speed and ease of
implementation, but leaves many open questions when it
comes to physical accuracy of the simulation. As we are
interested foremost in a physically meaningful solution to
the problem, we chose to go the alternative route, and use
a propagative approach for dealing with multiple impacts,
which raises more implementation issues, but allows more
freedom in dealing with the phenomenon [8].

In the light of the above discussion, we set out to develop
a method of dealing with such situations, that should give
physically meaningful—and as close to correct as the rigid
body assumption allows—results. Starting from a variational
principle, we show how one collision is resolved, and point
out the ambiguity that arises when two collisions occur at
once. However, small perturbations of the initial trajectory
of the system allows us to solve for the collisions ”one at
a time”. We notice that, under such perturbations of the
trajectory (and thus of the action integral), some systems
evolve in a unique manner after the collision, independent
of the direction of the perturbation. This is the case, for
example, in Newton’s cradle, and other similar mechanical
systems. Unfortunately, this uniqueness does not generalize,
as we will later discuss.

To help us deal with this new kind of non-uniqueness, we
refer to a problem originally posed (and partly solved) by
Truesdell [9]. In this problem a point hits a convex wedge
precisely in the corner, as sketched in fig.1.

Fig. 1. A point hits a corner. All velocities in the green cone are feasible, as
restricted by the way in which the surface interacts with the point. However,
arguments exist for choosing the outcome closest to the initial velocity.

The proposed solution is to choose to resolve the collision
against the edge such that the kinetic energy metric of the
change in velocity due to the impact is minimized. The



Fig. 2. Modified version of fig.1, in which the corner is concave as opposed
to convex. The previous feasible set of exit velocities is too inclusive in this
case and a new definition is needed in order to find a correct result.

problem is re-stated and formalized in [10]. The momentum
change is restricted to the normal cone to the surface at
the point of impact, as defined through non-smooth analysis
concepts (see [11]), and a set of feasible exit velocities is
created. The predicted velocity is then ”projected” by the
kinetic energy metric onto this set. This technique is highly
attractive, as it also stems from a variational principle and
provides an algorithmic way of choosing between multiple
valid results.

However, in most of the problems we encounter, as we
shall see, the point is hitting the inside corner of a concave
boundary, as in fig. 2. The normal cone in the two problems
is the same, and thus the interaction with the two surfaces is
expected to be similar. However, in this case, the condition
that the change of momentum lie in the normal cone is not
enough, and a naive application of the algorithmic method
will invariably result in an exit velocity that points straight
at the walls—while the same solution would have been
perfectly feasible in the case of the convex wedge. In order
to solve this issue, we take a step back and redefine what
the feasible exit velocity set is, by using the perturbation
method discussed earlier. To do this, we perturb the system
in all possible directions and construct the cone defined
by the results of these perturbations. This generalizes the
definition of the feasible set onto which we project the
predicted velocity, and makes it more restrictive. Notice that
the feasible set does not change at all when looking at
the system in fig.1. Also, in some systems, the feasible set
includes only one element. This is the case for Newton’s
cradle, and accounts for the uniqueness of the result in this
case.

It might not seem physically intuitive that a mechani-
cal system with clear initial conditions can have multiple,
equally acceptable outcomes. Clearly, real life does not suffer
from such non-uniqueness. However, it is important not to
lose track that we are dealing with a model, specifically a
model in which all bodies are perfectly rigid. With these
assumptions the problem of multiple instantaneous impacts
becomes, in a sense, ill-posed [12]. When discussing this
issue, Ivanov [13] comes to the conclusion that, even in
real life, the outcome of certain multiple impact scenarios
is highly dependent on perturbations, either in the system
parameters or in the initial conditions. For such cases, he
proposes a stochastic model, in which one of the possible
outcomes is chosen through a “coin toss.” This illustrates the

fact that there are two distinct steps that need to be addressed:
first finding the set of possible outcomes and then making a
decision based on this set.

The bulk of this paper deals with solving for the feasible
set from initial perturbations. Section II describes how to
solve for one impact, where the ambiguity comes in when
trying to solve for two simultaneous impacts, and briefly
discusses two low dimensional canonical examples and their
expected outcomes. Section III reformulates initial perturba-
tion directions as impact orderings. This allows us to find
the set of all possible outcomes by iteratively solving for
impacts with only one surface, until a valid exit velocity
is found. For the case of two impact boundaries proof is
presented that guarantees a valid solution after at most a
given number of iterations, which is inversely proportional
to the angle between the two surfaces. Finally, the algorithm
is applied to the two examples, showing how the uniqueness
of the results is related to the value of the mass matrix. The
conclusion summarizes our findings and opens the discussion
on the effectiveness of our method when dealing with plastic
and inelastic impacts

II. THE PROBLEM
A. A Single Impact

The equations governing a single collision at time tA are:
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where qA = q(tA) is the configuration at time of impact,
φA is the function describing the impact surface and λA

is a Lagrange multiplier. The variables are q̇(t+
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) and λA,
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will work under the assumption that we are dealing with a
simple mechanical system: potentials will not depend on the
the velocity, q̇. Under this assumptions, we can write the
Lagrangian as:

L(q, q̇) = 1
2 q̇

T
M(q)q̇−V (q),

where we can think of M as being a mass matrix or,
alternatively,

M(q) = ∂q̇q̇L(q, q̇).

It is true, in general, that M(q) will not depend on q̇ (hence
the notation) and that it is positive definite (xT

Mx > 0 for all
x). We also assume that coordinates were chosen to avoid
any degeneracy, and as such M(q) will be invertible. Under
these assumptions, (1) becomes
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where, for ease of notation, we replaced M(qA) = M and
φA(qA) = φA, as these are constants for any given impact
configuration. We can rewrite the first equation as

q̇A+ = q̇A− −λAM
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which, when plugged into the second equation, gives
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The solution λA = 0 is trivial and gives q̇A+ = q̇A− , which
implies no change occurred through the collision. We know
this to always be false, hence we will discard this solution.
We get, finally
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,

q̇A+ =
�

I−2
M
−1

Dφ T
A

DφA

DφAM−1Dφ T
A

�
q̇A− .

Considering the previous derivation, define a mapping Gu

thusly

Gu = I−2
M
−1

u
T

u

uM−1uT

for some covector u. Then, we can write the generalized
velocity of a system after a collision as a linear mapping of
the velocity before the collision

q̇A+ = GDφA
q̇A+ .

B. Two Simultaneous Impacts

Suppose now that the impact occurs across two surfaces
at the exact same time. Each of the surfaces can act in
its normal direction with arbitrary magnitude. As such, (1)
becomes
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which has the same number of equations as (1), but one extra
variable, λB. As a consequence, the system described by (2)
will have a continuum of solutions instead of the two we
found before. In most cases (see section II-C.2), one cannot
solve the problem by using conservation of momentum and
energy alone, to get a unique answer. However, we know
full well how this system behaves in real life. We expect
the rigid body approximation to behave, if not identical,
at least qualitatively close to the real system. There are
many methods through which the problem is solved to give
”real” results. However, most of them start by dropping
the rigid body assumption, and thus avoiding, rather than
solving the issue. The one method that gives correct results,
without dropping the rigid body assumptions, is looking at
slightly perturbed versions of the system, which corresponds
to introducing infinitesimal gaps between the balls. This
allows us to solve for collisions one at a time, by solving
(1) repeatedly, as needed, until the collisions are over. This
approach, while it gives a unique answer, has problems of its
own. The first question is that of termination, and whether
we can always find an answer. We show later that this is
indeed the case, and that a point bouncing inside a corner
will always come out eventually. More important yet is an
issue related to the order of impacts. The effect of the initial

perturbations is to give a clear order of the impacts. It
follows, then, that one can choose different perturbations to
result in a different order of impacts. The question arises
whether these different impact orders will ultimately give
the same answer or not. It turns out, as we will show, that
non-uniqueness does appear, although the maximum number
of distinct answers is not only finite, but predictable.

C. Example Systems

In this section we present two low dimensional example
systems, their purpose being to illustrate the issue of multiple
impacts as seen in configuration space, and to build intuition
about higher dimensional systems for which drawings cannot
be as readily produced.

1) Two biliard balls against a wall: The first system
we are going to discuss is comprised of two billiard balls
arranged in a line perpendicular to a wall (the edge of the
table). In order to simplify the problem, we restrict their
movement to the line connecting their centers and we ignore
any sort of dissipative phenomena, including friction. We
also assume the balls are not spinning, so we can safely
ignore issues related to the moment of inertia. The two
configuration variables are q = [x1,x2]T, as shown in fig.3.

Fig. 3. Two billiard balls sitting in a line, one of them against a wall. The
configuration variables are x1 and x2. The radius of the balls (not shown)
is r.

Figure 4 shows the configuration space of this system,
including the two boundaries (between the first ball and the
wall and between the two balls). If the system starts in the
green area and the balls are not allowed to overlap at any
time, it follows that it will lie in the green area for all time.

A straightforward way of describing the two surfaces of
impact is by defining proximity functions thusly

φu(q) = x1− r,

φv(q) = x2− x1−2r.

A configuration q is allowable (does not violate the con-
straints) if all proximity functions at that configuration are
positive. Also note that each of these functions defines a
surface at φ(q) = 0, and that ∇φ(q) is a vector normal to
the surface at the point q. In our example, the two surfaces
are lines, and the normals defining them are

∇φu(q) = [1,0]T

∇φv(q) = [−1,1]T.



Fig. 4. The configuration space of the system shown in fig. 3. The points
in the shaded area are feasible, while all others indicate that an overlap has
occurred. The boundary is differentiable everywhere except at the corner,
which is where we will focus our attention.

The configuration of the system can be described by a
point in the two dimensional space. A collision occurs when
the point ”impacts” one of the surfaces, described by either
φu(q) = 0 or by φv(q) = 0. The double collision occurs when
the point hits the corner, making both φu(q) = φv(q) = 0. In
general, an n-dimensional system can be described as a point
in the n-dimensional configuration space, while boundaries
will be (n− 1)-dimensional surfaces in the same space. A
multiple collision will occur when the point describing the
system hits a corner made by two, three or more surfaces.
However, in this present paper, we will focus our discussion
mainly on two surface corners, leaving the generalization to
three and more surfaces to future work.

2) Three ball Newton’s cradle: Figure 5 shows a second
example, of dimensionality three, but still with only two
boundary surfaces. One can think of it as the previous
example with the third ball replacing the wall. This example
also serves as a simplification of Newton’s cradle, which
gives us the benefit of knowing many real outcomes of the
collision.

Fig. 5. Three balls restricted to move on a line. The configuration space
is three dimensional, with x1, x2 and x3 as the configuration variables.

As before, we have

φu(q) = x2− x1−2r,

φv(q) = x3− x2−2r,

∇φu(q) = [−1,1,0]T,

∇φv(q) = [0,−1,1]T.

Notice that, in this case, the configuration space is three
dimensional and that the boundaries are planes separating
the space, just as before, in four parts.

III. THE SOLUTION
Previous works, like [10], made use of nonsmooth analysis

concepts and re-posed the problem of corner impacts as a
minimization problem over the feasible solutions. The term
feasible is meant to indicate that the change in energy is
zero, while the change of momentum lies in the normal cone
at the point of impact. The technique was used to solve
ambiguities in the case of a point hitting the corner of a
convex wedge. However, the problem is a little more complex
when dealing with concave corners, as is the case in both
of our examples. The reason for this is that, solutions that
are feasible in the sense just described, are not necessarily
valid as discussed in the previous section. In fact, if one
were to apply the algorithmic approach described in [10]
and project the predicted velocity onto the feasible set, one
would always get an invalid solution when dealing with a
concave boundary. A new definition of the feasible set is
in order. Such a definition would have to coincide with the
feasible set in the convex wedge case, but differ from it such
that it gives correct results in the case of concave corners.

A. A more general definition of the feasible set

In order to derive (1) for the simple impact scenario,
we used a variational principle, by which we extremize the
action

A(q(t)) =
�

L(q(t), ˙q(t))dt.

If the action is smooth with respect to q (as is the case for
one impact), then one can simply take the variation in the
action
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and require that it is zero. However, the above only works in
a smooth setting. A more general approach is to look at the
generalized directional derivative of the action, A

◦(q,δq)

A
◦(q,δq) = limsup

q̃→q

ε↓0

A(q̃+ εδ q̃)−A(q̃)
ε

, (3)

and require that this be zero. Here q is the trajectory in which
the simultaneous collisions occur—a point hits the corner—
while q̃ are trajectories close to it in which impacts occur
one at a time. Thus, in order to evaluate (3) we will have to
consider all close-by trajectories q̃ for which the limit exists
(i.e. the action is smooth).

We use this observation to define the feasible set of
solutions thusly: the convex hull of all possible solutions
under infinitesimal perturbations of the impact point that
result in a series of strictly single impacts, intersected with
the feasible set in the sense that the change in momentum is
restricted to the normal cone at the point of impact. As we



shall see in the next section, there is always a finite number
of solutions used in construction the first part of the set—in
the case of two boundaries there are no less than one and no
more than two.

With the above definition, the algorithm we are proposing
to solve the impact scenario can be summarized:

1) find the trivial solution, with λi = 0,∀i

2) find a minimal set of initial infinitesimal perturbations
that give unique solutions

3) solve for the exit velocity under each of these pertur-
bations

4) construct the feasible solution set through the convex
hull of all the solutions

5) project the trivial solution onto the set of feasible
solutions using the Riemannian metric

As we mentioned before, in the case of two boundaries,
there can be at most two distinct solutions, each corre-
sponding to a distinct initial perturbation. Basically, one
corresponds to the point hitting surface u first, while the other
corresponds to the point hitting surface v first. Moreover, in
special cases, the two solutions are identical and this solution
is the whole of the feasible set. For instance, in both our
examples, if the masses of the billiards are identical, there is
only one element in the feasible set, as we shall see shortly.

B. Finding the feasible solutions

The hardest part of the above algorithm is finding the
feasible solutions and making sure they are all the possible
ones. In order to do this, we consider the case of a system
with n boundaries defined by covectors ui, i = 1 · · ·n. Let
the initial velocity be υ0. Like the examples show, we can
think of the problem of simultaneous impact across all the
n boundaries as a point hitting a corner. We consider all
perturbation directions that avoid corner impacts. Thus, the
first collision occurs across one of n surfaces. This gives
us n branches of the algorithm. Each branch gives one
exit velocity, call this υ1 = Gu1υ0. We then check υ1 for
validity against all ui (by taking the Euclidian dot product
and checking its sign). Each surface for which υ1 is invalid
adds a branch, and since υ1 must be valid as far as the first
surface we chose is concerned, there are a maximum of n−1
branches at this point. Proceeding with the algorithm, we
solve for υ2 = Gu2υ1 and continue inductively, until we find a
υN that is valid with respect to all impact boundaries. At each
step we will be able to choose from at most n−1 surfaces,
which makes the maximum number of feasible solutions be
n(n−1)N−1. A proof that sets an upper bound for the number
of iterations N needed to get a valid solution in the case
of two boundaries follows in the next section. Before that,
however, we will apply this method to our examples, in an
effort to make it clearer.

1) Two balls of equal mass: The example system was
described in sec. II-C.1. Let the covectors corresponding
to the surface boundaries be u = [1,0] and v = [−1,1].
Assume, for now, that the two balls have identical mass. This
makes the mass matrix equal to identity. The corresponding

transformations are

Gu =
�
−1 0

0 1

�
, Gv =

�
0 1
1 0

�
.

We assume an initial velocity υ0 such that both uυ0 ≤ 0 and
vυ0 ≤ 0. Since both constraints are violated we have a choice
between applying Gu or applying Gv. Suppose we apply Gu,
and we get υ1 = Guυ0. Then we will have vυ1 ≤ 0, but uυ1 ≥
0. This leaves us no choice as to which transformation to
apply next (Gv), and so, we will find that after four iterations,
we get

υ4 = GvGuGvGuυ0 =
�
−1 0

0 −1

�
υ0 =−υ0,

which is clearly a valid solution (one can easily show that the
previous three outcomes are not valid). Notice that we only
chose which transformation to apply once—literally choos-
ing the first impact surface—and at all the other iterations we
had no reasonable choice to make. However, in order to find
all possible outcomes we need to cover all possible choices.
It turns out, however, that in this case we have

GvGuGvGu = GuGvGuGv =
�
−1 0

0 −1

�
,

which means that, for this system, all possible outcomes are
identical and exactly the opposite of the entering velocity.
For example, if the two balls are moving together towards the
wall, they will bounce together from the wall. If one is sitting
touching the wall and the other hits it, all the momentum will
go into the moving ball. These outcomes are exactly what
would occur if one were to add small gaps in between the
balls before solving the problem with standard techniques.

2) Netwon’s cradle with three balls: The only major
difference between this and the previously described system
is the dimensionality. We also know, for this example, the
expected behavior in several select cases. We will present the
results of our algorithm for these cases, rather than focus
on the details on how we obtained them, hoping that the
interested reader will be able to follow the step described in
the previous sections to reproduce our results.

First, let u = [−1,1,0] and v = [0,−1,1]. We assume the
masses are all equal, which gives

Gu =




0 1 0
1 0 0
0 0 1



 , Gv =




1 0 0
0 0 1
0 1 0



 .

It will take three iterations to solve this problem, and we will
have that

υ f = GuGvGuυ0 = GvGuGvυ0 =




0 0 1
0 1 0
1 0 0



υ0. (4)

Just as before, we get the same final result regardless of
the order in which we solve for the impacts. Let us apply
this result to a few initial velocities. For example, let us
take υ0 = [1,0,0]T, a case in which the first ball is moving
and the last two are stationary. The result we obtain, as by
means of (4), is υ f = [0,0,1]T, which corresponds to the first



two balls being stationary and the third moving away from
the two. Again, let us take υ0 = [1,1,0]T, in which the first
two balls are moving together and striking the third. The
result is, as expected, υ f = [0,1,1]T, in which the second
and third ball are moving away from the first ball, which
stays still after the impact. Both these examples represent
very good approximations of the real system, such that the
difference in behavior between the ideal and the real system
can only be observed with the use of high speed camera
systems, differences that can be easily attributed to elastic
effects neglected in the rigid body approximation we are
working under.

3) Two balls of slightly different mass: The previous two
examples showed cases in which the results are unique
regardless of the order in which impacts are considered.
However, imagine that in the first example system, one of
the balls is slightly bigger than the other, making the mass
matrix be different:

M =
�

1.1 0
0 1

�
.

We expect the results to be different, although not drastically
so. This is true in some sense, but not in others, as we shall
soon see. The new transformation matrices are

Gu =
�
−1 0

0 −1

�
, Gv =

�
0.0476 0.9524
1.0476 −0.0476

�
.

What this tells us is that the interaction between the ball
and the wall is going to be unchanged, but the interaction
between the two balls is going to be slightly different. The
choices are two, just as before, as we can only choose the
first surface of impact. We thus have two possible outcomes

υ4a = GvGuGvGu =
�
−0.9955 −0.0907

0.0998 −0.9955

�
υ0,

υ4b = GuGvGuGv =
�
−0.9955 0.0907
−0.0998 −0.9955

�
υ0.

It is clear that the two exit velocities are going to be close
to −υ0 but will not be identical to each other. As a result,
the set of feasible velocities will be

V = {υ ∈ T Q,υ = aυ4a +bυ4b,a,b ∈ R+}

Projecting υ0 onto this set with respect to the Riemannian
metric is the same as finding υ f ∈ V such that �υ f −υ0�M

is minimized. Invariably, in our example, this will be either
υ4a or υ4b (although this might not be the case in more
complicated systems).

C. Proof of termination

Here we show that, for two surfaces, solving successive
impacts is guaranteed to give a solution. While he have no
proof for a higher number of surfaces, we strongly believe
that this result generalizes and that such a proof is close
at hand. Also, notice that our arguments are only restricted
to two surfaces, but not to two dimensional configuration
spaces. Indeed, the following proof applies to systems of
any dimensionality, as long as the impact occurs only across
two surfaces.

The mapping Gu, as defined in II-A, has several properties
that will be useful later in this section. Firstly, one can easily
show that G

2
u = I. This simply means that resolving an impact

across a surface twice in a row gets one back to the original
velocity, as expected. Also, notice that G is not dependent
on the magnitude of u, only on its direction, as Gαu = Gu.

It is very easy to show that Gu, as defined above, preserves
the Riemannian metric on the tangent space. One can easily
check that

G
T
u MGu = M, (5)

which means that a Gu transformation will preserve the en-
ergy of the system. These mappings are also area preserving.
This can be shown by looking at the value of the determinant
of the matrix corresponding to Gu:

det(Gu) = det
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where we used the notation α =−(uM
−1

u
T)/2, the fact that
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�
A+ vw

T�
=

�
1+w

T
A
−1

v
�

det(A),

and several other well known determinant properties. Thus
we’ve shown that det(Gu) = −1, which makes it an area
preserving mapping from and onto a sphere associated with
the Riemannian metric. This also confirms our interpretation
of Gu as a reflection transformation, under the Riemannian
metric.

Keeping the previous facts in mind, we want to show that,
given any velocity q̇ = υ0 lying on a Riemannian sphere, and
two boundaries locally described by u and v, a finite number
of successive applications of Gu and Gv will transform υ0
into a valid velocity υ f , so that

u
T ·υ f ≥ 0, (6a)

v
T ·υ f ≥ 0, (6b)

where the dot represent the Euclidian dot product. The
interpretation of 6 is that the velocity is pointing away from
both the boundaries described by u and v, and thus the system
is moving out of the corner. For ease, let the set of velocities
that lie on the Riemannian sphere and that satisfy (6) be
called S0:

S0 =
�

υ f ∈ T Q,�υ f �M = �υ0�M,uT ·υ f ≥ 0,vT ·υ f ≥ 0
�

.

To show this, we make use of the fact that reflections are
invertible and that their inverse is the reflection itself. Thus,
if υ0 can be obtained from υ f through a series of transforms,
then υ f can be obtained from υ0 through the same series of
transforms applied in the opposite order. Thus, if we can
show that through of successive transformations on S0 we
can cover the whole sphere, then we will have also shown



that any point on the sphere can be transformed to some
point in S0. In order to do this, we will use an argument

Fig. 6. Sketch of an area S on the Riemannian metric sphere (shaded
area) and several subsets of it, as used in the proof in this section. Here S
is depicted after a reflection across v, hence S

+
v = S

−
v , but S

+
u ≥ S

−
u . S0 is

the dark shaded area between the planes defined by u and v.

based on area. The notation S will stand for ”the area of the
set S.” Furthermore, let Stotal be the set of all velocities on
the sphere, and let S⊂ Stotal be a susbset of the sphere. We
can always partition S into two subsets, S+

u andS−u , such that

S+
u = {υ ∈ S,uT ·υ ≥ 0},

S−u = {υ ∈ S,uT ·υ ≤ 0}.
Now, assume that υ ∈ Stotal and u

T ·υ = α . Applying Gu to
υ and calculating the Euclidian cross product we get

u
T · (Guυ) = u

T ·υ−2 uM
−1

u
T

u

uM−1uT υ =−α.

Unexpectedly, the transform reflects points across the bound-
ary. Now, let S be a connected subset of Stotal . We apply the
Gu transformation to S and join the resulting set with S, we
get

Su = S∪ (GuS),
Su = 2max{S

+
u ,S−u }.

Moreover, Su becomes symmetric about u, such that if υ ∈ Su

then Guυ ∈ Su as well, and subsequent applications of Gu

will not change this set. In order to cover the whole sphere,
we start with S0 and apply Gu and Gv sequentially, joining
the resulting sets into a ”reachable” set. Let us assume
we have done this several times, and that Gv was the last
transformation we applied. The reachable set at this point is,
as we have just shown, symmetric with respect to v. This
also means that S

+
v = S

−
v = Sv = 1

2 S. However, we can also
write S in terms of its u-defined subsets, S = S

+
u + S

−
u . If

either of the two parts is larger than half the sphere, then
applying Gu will end up covering the whole sphere. If not,
we have

S
+
u = Sv +S0,

S
−
u = Sv−S0,

where, without loss of generality, we assumed S
+
u ≥ S

−
u .

Figure 6 should help with seeing these relations.
Applying Gu, as before, we get that the new S is such that

Snew = 2max{S
+
u ,S−u } = 2Sv +2S0 = S +2S0,

which shows an increase of the reachable area by 2S0 on
every iteration. This, of course, does not apply to the last
iteration which adds just enough area to finish covering the
sphere, and to the first iteration: no iteration can add more
than the area it starts with, and since the first iterations starts
with S0 it can only add S0; after this, the reachable area is
at least as big as 2S0. This implies that it will take at most

N =
�

Stotal

2S0

�

iterations to guarantee that the sphere is covered.
Going back to our original argument that transformations

move points both ways, it will also take at most N iterations
to transform any initial velocity υ0 into a velocity υ f that
point outside of the corner. In other words, a point moving
into a corner will bounce out after at most N interactions
with the walls.

IV. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

We have presented a method of solving multiple simul-
taneous impacts, through investigating nearby trajectories
that undergo successive single impacts with the surfaces in
question. For some well known mechanical systems based on
billiard ball interactions, we showed that our method gives a
unique solution which coincides with the expected result in a
hardware implementation of such systems. We also showed
that uniqueness is not to be expected always, and we pre-
sented an argument to choose between the possible outcomes,
an argument we based on applying non-smooth analysis
concepts to a variational principle. We further showed that
our algorithm is guaranteed to give a result when there are
only two boundaries, and we found an upper bound for the
number of steps required to get such a result.

B. Future Works

Clearly, a general termination proof is needed in order to
show that our algorithm will still finish in more complicated
scenarios. Also, an extension of this theory to inelastic
and perfectly plastic impacts is needed in order to fully
implement our methods toward simulating useful scenarios.
In fact, the main problem we are trying to solve occurs very
rarely when perfectly plastic impacts are not considered,
but highly prevalent when one does allow them (see the
example of a pen bouncing on a table in the introduction). If
we consider perfectly plastic impacts, the problem becomes
trivial. This is because the outcome of a plastic impact is
characterized by a velocity tangent to every contact manifold
and conservation of momentum in that direction. Clearly, this
implies that the exit velocity will be along the intersection of
the contact manifolds. For example, in the case of Newton’s
cradle, the consequence of a plastic impact will be all three



balls in contact with each other, moving in the same direction
with the same velocity. The most useful and realistic scenario
is when the energy lost in an impact follows a coefficient
of restitution, unless it is under a certain threshold — in
which case the impact is modeled as perfectly plastic. Clearly
our termination result does not apply in this case, and a
more through analysis would be required. However, we
argue that the only way in which applying our algorithm
to such a system would result in non-termination is if the
system evolved in such a way that each successive collision
happened at a smaller incident angle than the previous one
— otherwise the coefficient of restitution would guarantee
that the system eventually lost enough energy to go below
the plastic threshold, and the solution would be trivial. We
also believe that such a decrease in the angle of incidence
would imply a finite number of surface reflections before
a feasible exit velocity is found. Both of these assertions
require rigorous mathematical proofs, which should be the
topic of future works.
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