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Abstract

This paper describes a recent, innovative educational approach taken at the Uni-

versity of Colorado for teaching a senior-level undergraduate controls course. By using

software written in a graphical programming language (in this case LabVIEWTM) to

control the hardware, the students were able to do all the programming themselves.

The advantages of this approach over “canned” lab approaches are many. The students

feel more responsible for the final product and they are able to apply control techniques

learned in class in a more fundamentally creative way. We present evidence from the

class taught in Autumn term, 2005 and 2006, that suggests that students will often use

tools from beyond the scope of the class to solve problems in creative and occasionally

unexpected ways.
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1 Introduction

This paper describes an innovative approach to teaching a controls laboratory aimed at

upper division undergraduate students. We use a less structured approach to the laboratory

than is typically used. In particular, the students are in charge of all programming, the labs

are more open-ended than typical controls labs, and the students work in rotating groups

(which forces them to incorporate “legacy” code from previous groups). This course structure

gives the students a sense of the difficulties and ambiguities often associated with solving

real problems. The basic thesis of this paper is that if one uses a graphical programming

environment, a course can be designed to give students much more control by allowing them

to do all the programming and giving them more open-ended assignments. The consequence

of this is a deeper understanding of the application of controls to real problems, which we

illustrate using in-class assessment and through the students’ ability to generalize what they

have learned in class.

Traditional control courses often involve pre-written, or “canned,” software (often written

in an intermediate-level programming language like C or C++). Moreover, partially because

of the constraints imposed by the pre-written software, labs are highly regimented. This

choice is made largely because it is not feasible for the students to write all the code–there

simply is not enough time during a one-term course for students to cover as much material as

we would like as well as do all the programming themselves in an intermediate-level language.

By using a graphical programming environment, however, it is possible to create a course

where students do nearly all of the programming themselves. This prepares them well for

jobs where they will be expected to know how to integrate software and hardware, and it

additionally helps them learn controls concepts more deeply by allowing them more flexibility

in exploring control designs. Moreover, this course structure has other advantages as well.

In particular, it is possible to give students more open-ended labs (that do not include step-

by-step instructions), which is typically more engaging for the students. This also leaves

more room for creative application of concepts the students are learning.
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The decision to let students write all of the code was inspired by noticing that graphical

programming environments (such as LabVIEW, Matlab/SimulinkTM, and others) are faster

environments for programming. We used LabVIEW for all laboratory development and

students used LabVIEW for analysis, simulation, and experimental implementation. (For a

useful, if not comprehensive, introduction to LabVIEW, see [2].)

Over the course of the term, the students learned to write all of their own code, both

for simulation and for hardware experiments. They quite literally started with blank code,

or would incorporate student-created code from previous labs. They used LabVIEW in a

manner similar to that reported in [1]. However, instead of the instructor and teaching

assistant writing the code for the students, the students were given very short tutorials on

graphical programming and wrote the code themselves.

Assessment of the course is addressed using two modalities–student questionairres and

generalization. These two assessment modalities are both appropriate (and common) for

small classroom sizes, but are nevertheless not statistically significant. The use of general-

ization as a measure of assessment can be particularly useful when looking at small numbers

of students, and has already been used by the first author in [8]. Moreover, as a consequence

of the present work, we have obtained funding from the National Science Foundation for for-

mal assessment of this laboratory teaching strategy using an Expert/Novice criterion that is

appropriate for small class sizes [9]. This is the main focus of our future work.

This paper is organized as follows. Section 2 discusses the hardware setup, the lab organi-

zation, the tasks the students were expected to complete, and the general level of background

students had coming into the course. Section 3 has evidence that this structuring of the class

led to more internalization of controls techniques as well as more creative approaches to open-

ended problems. It additionally describes student reactions to the course, including course

evaluation results. Section 4 discusses the necessary trade-offs made when teaching a course

using the described approach. Section 5 discusses the various advantages and disadvantages

to the instructor using this method. We end with conclusions in Section 6.
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2 Lab Organization

The Electrical and Computer Engineering Department at the University of Colorado offers

two senior elective control courses: Control Systems Analysis (ECEN 4138) and Control

Systems Laboratory (ECEN 4638). Both courses typically have 20-30 students. This last

autumn was the first time in the last several years the laboratory was offered using hardware,

made possible through funds provided by the university and National Instruments. Typically

students take both courses concurrently, although they may take the lab if they have taken

the lecture course previously.

The goal of the class was two-fold. First and foremost, the class aimed to reinforce

the students’ understanding of introductory controls concepts–Modeling, PID, Root Locus,

Bode, Nyquist, and state-space techniques. A secondary goal of the class was to reinforce

the fact that the models we write down do not actually reflect the true dynamics of a system;

they only approximate them. We wanted to see students discover control designs that work

in principle but fail in practice. The more students are in charge of discoveries of this sort,

the more we expect they will retain key concepts past the class.

All the students worked in randomly selected, rotating groups of three people each. These

groups changed five times over the course of the term. This structure forced the students

to combine and use legacy code from each member’s previous group. One of the byproducts

of this was that by the end of term, all the students had very good, stable code for running

experiments. Moreover, they typically understood the code and could replicate it as needed.

The course included the following topics.

1. Modeling

2. System Identification

3. PID tuning

4. Lead/Lag Controllers
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5. Root Locus Analysis

6. Bode/Nyquist Analysis

Moreover, the students did a final project.

2.1 Student Background Prior To This Laboratory

Students were predominantly seniors with a standard electrical engineering background. All

but one student was taking the lecture course (ECEN 4138) concurrently (the one student

had taken it a year previously). Most had never seen any more controls than a PID controller.

Almost none of the students had any graphical programming experience, but several had

seen Matlab/Simulink and LabVIEW in demonstrations in other classes. Hence, students

view these languages more as interfaces than computer languages. Because of this, the

students had somewhat of a predisposition against using the software, but this was overcome

by pointing out that it would be nearly impossible to have them write all the code in C or

C++.

2.2 Hardware

The experimental set-up used in the laboratory was comprised of a torsional disk system from

Education Control Products, seen in Figure 1. These experiments are relatively robust, which

was particularly important given the level of control we gave the students. The software

used was LabVIEW 7.1 (as it has been used in other classrooms, see [1]), the Simulation

Module 1.0 [6] and Control Design Toolkit 2.0 [5] that both run as part of LabVIEW. Our

input/output capabilities were all provided by a National Instruments FPGA (NI FPGA

7831R) [4, 7]. The students modeled the system, performed system identification, applied

the basic techniques of PID tuning, Lead/Lag, Root Locus, Bode, and Nyquist analysis. The

course ended with a final project and competition.
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Figure 1: The ECP Model 205a Torsional Plant (photograph taken from the manufacturer’s
website http://www.ecpsystems.com)

This system has a 2 N ·m DC motor at the bottom that drives the first disk. Two more

disks are connected via a torsional spring that allow for torsional displacement between disks

with an associated torsional spring constant. Thus, the dynamics of this system are sixth-

order, making this a nontrivial control system. Moreover, weights (also seen in Fig. 1) are

included that allow the user to change the inertia of each disk. This system is basically

linear, making it a good choice for a linear controls laboratory. The biggest downside to

this experiment is that it is neutrally stable, unlike other classic control systems such as an

inverted pendulum. (For a description of using these plants with LabVIEW, see [3].)

2.3 Programming From the Ground Up

As previously mentioned, the students wrote all of the code for the course. Hence, for

simulation and analysis, the students wrote their own simulation code from scratch and

integrated analysis tools (such as root locus, bode, and Nyquist plots) into their simulation.

With the exception of some basic hardware safety (such as turning the system off if the

torsion between two disks became too high), the students also wrote all of the experimental
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Figure 1: The template you will be using

3 Things You May Want To Know

All of the FPGA code for this lab and subsequent labs will be written for you and loaded
onto the boards in advance. This has been done primarily because it can take up to an hour
to download code to the device. This also means that you should under no circumstances
alter the code on the FPGA that is being referenced in your vi’s.

Template vi’s, in normal LabVIEW for windows, have been created for your use in this
lab. They can be found at

C:\Program files\National Instruments\Code_for_L3

on the four machines in the lab that are attached to the ECP units. You should use
”Clamped Plant.vi” for all tasks that do not involve the hardware gain. When you open
this vi you may be prompted to find ”reading encoders.vi.” It should by default be in the
window that pops up, in which case select this vi and click ok. If not, the vi can be found at

C:\Program files\National Instruments\FPGA_code.

Encoder 0 is at the bottom of the ECP unit. The only thing that you need to do to this
code is convert encoder position to radians and look at the output. To convert to radians
you must use the fact that there are 16,000 pulses/revolution of the disk.

Since the data acquisition and analogue out(which will be how you send an input to the
motor in ”Hardware Gain on Torque”) are within a Simulation Loop, you can use the same
vi’s that you have been using to do your Simulations, i.e. step input, simulation time graph,
etc.

ECEN 4638–T.D. Murphey
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Lab #3

Figure 2: One of the templates the students used for communicating with the hardware.
It provided the signals going to the DC motor and coming from the encoders, as well as a
halt feature to gracefully reset the FPGA if needed. This was all the students were provided
with–everything else needed for the laboratory they created themselves.

software. The communication and hardware safety was given to them in the form of a

template, an example of which is seen in Fig.2.

Labs were generally open-ended. They focused on problem solving rather than following

instructions. In particular, all labs were divided into high-level tasks (known in the education

community as “authentic” tasks), most of which were not mathematically defined for the

student, described next.

2.4 Examples of Assigned Tasks

In designing the tasks for this lab, we were trying to avoid the more traditional approach

of giving students a long series of steps to follow. Instead, we tried to give them tasks that

were more similar to verbal tasks they might be asked to accomplish in a job, but that

nevertheless required the technical detail and insight generally learned in the lecture course.

Examples of assigned tasks included the following:

1. Model the ECP system as a single-input-single-output system first using the bottom

disk as an output and then using the top disk as an output. Simulate this using

both the symbolic transfer function and symbolic state-space model representations
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in LabVIEW. (Note to reader: The sample code given to students regarding how to

create state space models in LabVIEW consisted of what is contained in Fig.3–more

than enough to solve the problem, but in no way a “canned” solution for them to use.)

2. Design a controller that is stable for all possible locations of two weights on disk 3. Is

it possible to do this and guarantee a rise time of 0.5 second?

3. Run the experiment and your simulation simultaneously. What are the differences? If

there are differences, where are they coming from and can you fix them?

4. Consider the system with the bottom disk as an output and with the top disk as an

output. Which is “more” stable using a PID or Lead/Lag controller? Why? You may

approach this problem in whatever way you find most convenient–just detail it in your

writeup.

5. Plot the root locus for the parameter you think introduces the largest amount of

uncertainty. You may wish to “lump” some uncertainties together. Does a parameter

variation necessarily give a valid root locus?1

6. We know that using a PID controller with the top disk as the output requires a very

low gain on the controller. Design a higher performance controller that allows you to

push the overall system gain up higher while not destabilizing.

The labs generally became shorter and shorter as the term progressed and the students

required less and less guidance in the labs. This, it seems, is a good indication that the

students were becoming more competent. By the time the end of term drew near, and it

was time to do the final project, it was possible to give the final project using the following

four bullets:

1. make the bottom disk go from 0 to π and stabilize back to 0 as quickly as possible,

1The answer to this is “no” because the root locus may have higher order dependencies, depending on
how the parameter enters the transfer function.
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9. A completed loop would look something like what is found in Fig.2 (with a proportional
controller).

10. Symbolic State-Space Systems are roughly the same procedure.

11. More details can be found in the Control Design Toolkit Manual, which is available
online from National Instruments at ni.com. A Google search should find it for you
reasonably quickly.

Figure 2: A LabView program with a symbolic transfer function RL
Ls+R , where R = 10 and

L = 2.

3.2 Creating Sub-Systems in your Simulation

You will find that your code gets quite complicated as you get more functionality. If you
want to replace part of your code with a subsystem block, just select the parts you want in
the subsystem and go to Edit and select Create Simulation Subsystem. This will create a
block that has the same inputs and outputs and the region you selected. You can then view
the contents of the block by right clicking on it and selecting Open Subsystem.

ECEN 4638–T.D. Murphey
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Figure 3: Sample code given to the students to help them in creating state space models in
LabVIEW.

2. accomplish the same task for the top disk,

3. do so without breaking the ECP unit,

4. and do so knowing that the instructor will move the weights up to three centimeters

away from their nominal position on the ECP machine.2

3 Classroom Assessment

There were several different elements of this endeavor that we consider substantial successes.

These include the increasing quality of computer code the students were writing, the im-

proved understanding of block diagram representations (that was a clear consequence of hav-

ing to create block diagrams repeatedly while programming in the graphical environment),

and the creativity shown in the final projects. By the end of the term, the students were

treating control problems as actual problems to be solved, and were using an appropriate

balance of physical intuition and analysis skills from the control analysis lecture course.

Often, because of the lack of structure in the teaching of this laboratory, students would

come up with controller designs that worked in principle but not in practice. This, too, is a

2Hence, introducing uncertainty into the system.
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valuable aspect of the open-ended nature of the way the laboratory was designed.

3.1 Final Project–Generalization of Concepts

This section describes anecdotal evidence, based on this one class, that the “programming

from the ground up” teaching philosophy does indeed have positive consequences. As noted

above, the final project was very simple. Students were to make the bottom disk go from 0

to π and stabilize back to 0 (within 2 degrees or 0.035 radians) as quickly as possible and

then were to do a separate design with the same goal for the top disk. The students then

competed on the final day of class for who had the best performance for the bottom disk

and who had the best performance for the top disk. In addition, the students knew that on

the day of the competition the instructor would move the weights to introduce some plant

uncertainty (although not of a particularly malicious type).

Using the bottom disk as the output, of course, did not present much difficulty. All

the students knew that they should go with some version of a PID or Lead/Lag controller.

However, using the top disk as the output generated surprisingly creative approaches. This

is because the top disk is the “noncollocated” problem (where the actuation is not located at

the same place as the sensing), which is substantially more challenging than the collocated

problem. Moreover, we believe that some of the approaches students used would have been

impossible to expect in a class that gave the students “canned” software for control design.

A few notable designs (using the top disk as the output) by students:

1. The noncollocated problem has a transfer function with six poles and no zeros. One

student tried a controller that had five poles and no zeros. This controller worked in

simulation (with terrific performance and stability) but did not work on the experiment.

He discovered that the controller was requiring 104 N · m while the DC motor we had

could only provide 2 N ·m. Fortunately, he introduced a saturation into his simulation

after this.
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2. Some groups decided that despite the fact that we had not covered state-space control in

the laboratory, they would use a state-space design for the final project. They learned

LabVIEW’s tools for doing so and used both an LQR and pole placement technique

for their designs.

3. Another group also chose to use a state-space design. However, they noticed that in fact

the ECP unit has all three outputs available. This, they reasoned (correctly), implied

that they could get a much better estimate of the system using all three outputs rather

than getting an estimate only using one output and using a sixth order estimator.

Their performance ended up being nearly twice as fast as any other group. This is

an excellent example of the groups choosing a perfectly valid control strategy that

creatively applies what they have learned in class and in lab, but nevertheless goes

beyond the scope of what they have explicitly learned. Moreover, this strategy would

have impossible to implement, much less conceive of, in a more structured lab where

all the code was provided a priori.

4. The second best performance came from a group that realized that the top disk was

passively stable with respect to the bottom disk. Hence, they chose to use a PID

controller on the bottom disk and allowed the natural dynamics of the system to

stabilize the top disk. Hence, they were using a form of passivity control (certainly

without ever even having heard the phrase). There is no question that this solution

was somewhat outside the intended approach, but this does not mean that it does not

reflect real insight and learning on the part of the students.

3.2 Student Reactions

Students were asked to fill out a traditional survey, where they ranked items related to

how much they perceived they had learned, as well as other aspects of the class. Some of

these questions and student responses, are in Table 1. Basically students almost uniformly
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Question
Strongly
Dis-
agree

Disagree Neutral Agree
Strongly
Agree

1
I gained valuable hardware expe-
rience in this class 0 0 1 10 7

2
The labs were appropriately
open-ended 0 2 5 8 3

3
I would recommend this class to
someone looking for a laboratory
class next year

0 0 0 7 11

Table 1: Table of student responses. Students were asked how much they perceived they
had learned and asked how much they agreed with some statements about the effectiveness
of the course. Notably, even though some of the students did not like the open-ended nature
of the laboratories, they nevertheless uniformly recommended the course to other students.

believed they had learned more in this class than they had in an “average” course, and

moreover uniformly recommended the course for others.

The students reacted positively to nearly all portions of the course. Our university ad-

ministers mandatory course evaluations at the end of every course, with the most important

metrics being “Course Rating” and “Instructor Rating.” In the Autumn of 2005, the stu-

dents gave the course an average overall rating of 3.3 out of 4.0 and an instructor rating of

3.6 out of 4.0. After the second time that the course was taught in the Autumn of 2006, the

students gave the course an average overall rating of 5.2 out of 6.0 and an instructor rating

of 5.9 out of 6.0. (Our university changed its administration of the rating system between

the two years.)

These course ratings can also be examined in comparison to the averages for the College

of Engineering (COE) in the University of Colorado at Boulder. The course ratings were in

the 79th percentile for the department and college, while the instructor ratings were in the

92nd percentile for both the department and college. Thus, the course was uniformly above

average in its ratings both years. Although this does not indicate how much the students

actually learned, it does indicate that the programming from the ground up approach did

12



not alienate the students.

Students specifically mentioned the fact that programming was a valuable experience

(partially because many of them were asked in job interviews whether they were familiar

with graphical programming techniques). Moreover, the majority of students felt that they

had learned control techniques that they would feel comfortable applying in realistic settings.

(One student (out of 22) complained that the labs were not “industrial” enough.) Roughly

two-thirds of the students mentioned that the open-ended labs were more interesting and

fun than previous lab courses they had taken.

The only part of the course that the students did not like was the rotating, assigned

groups. This is because of the fact that they had to incorporate legacy code into their

projects at the beginning of each new rotation. Although they viewed this negatively, the

authors feel that the uniform improvement in the quality of code over the course of the term

is an indication that this was a useful part of the course. Therefore, despite the fact that

students disliked the practice, we will continue to have rotating, assigned groups in future

versions of the course.

Lastly, as part of our future work in this course, we have obtained funding from the

National Science Foundation for formal assessment of this course and the pedagogical style

taken here.

4 What is lost in this approach

As with all choices in teaching, some things were lost because of having the students write

their own code in the graphical environment. One of the most significant of these losses is

that the students never had to concern themselves with digital control–LabVIEW took care

of all the translation of continuous time design into digital control on the FPGA.

Moreover, the students did not learn anything about the embedded systems (in particular,

the FPGA) they were using. This is because LabVIEW automatically compiled all the code
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they were writing to the FPGA. Whether or not this is actually a negative or a positive

aspect of the class is up for debate, particularly since the course is not aimed at embedded

systems. Such a course would, in all likelihood, not allow students to actually implement

much more than a PID controller by the end of a one term course.

Another downside is the fact that there was only one experiment. The motivation for

this was that the students had to derive all the equations of motion themselves, and this

was reasonably time-consuming. Moreover, obtaining and maintaining additional hardware

units creates added expense. However, there were several times during the course when

the laboratory was substantially ahead of the lecture course. Therefore, what is needed are

substantially simpler (e.g., lower-order) systems that are reasonably easy to model but that

have different properties from the ECP unit. In particular, we would like to use a plant that

is unstable, such as an inverted pendulum.

5 Pros/Cons of Teaching This Way

This method of teaching is easier for the instructor prior to a course beginning and harder

once the course has started. The instructor must be competent at programming in the chosen

graphical programming language. This is because the students are actually learning not just

how to program in the graphical environment, but they are simultaneously improving their

more generic programming skills. Another advantage to having students do the majority of

the programming is that software upgrades are much easier to integrate into the classroom

because there is little to no legacy code from previous versions of the course.

Another aspect of a course like this is that students get to see the instructor solving

problems in class. Although in principle this can undermine the instructor’s authority, the

first author’s experience teaching this class is that the students generally appreciated the

spontaneous nature of the interaction, even when it occasionally produced enigmatic results

that were not immediately resolvable.
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6 Conclusion

This paper describes an approach to teaching a hardware-based controls laboratory that

allows students to be in charge of all the programming required for the course. This was made

possible through the choice of a graphical programming environment, specifically LabVIEW

7.1, though any graphical programming language would accomplish the same goal. We

found that students were more involved in the course and offered more intrinsically creative

solutions to problems than they would in a course where the software is pre-written for

them. Additionally, the laboratory used open-ended labs, which was facilitated by the fact

that the students wrote the software themselves. We are going to revise the course again to

involve more experiments, to cover state-space methods, and to make the assignments more

open-ended. Moreover, we are going to engage in more formal assessment of the course,

partially supported by the U.S. National Science Foundation. This formal assessment will

use the correllation of concept maps between the students and control systems experts.
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