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ABSTRACT
First- and second-order solution methods for the multi-target
data association problem with an unknown number of tar-
gets are presented. It is shown that by considering a single
continuous measurement signal with impulsive switching be-
tween measuring the position of different objects, the data
association problem can be recast as a continuous optimiza-
tion over the impulse times and magnitudes. First- and
second-order adjoint formulations are derived which reduce
the calculation of the either the first- or second-order deriva-
tive of the cost function to a single integration (over any
number of impulse times and magnitudes). These adjoint
formulations as well as a method for estimating the total
number of impulses which occur are the main contributions
of this work.

Categories and Subject Descriptors
J [Computer Applications]: Miscellaneous; J.2 [Physical
Sciences and Engineering]: Mathematics & Statistical
Engineering

General Terms
Measurements & Verification

Keywords
Data Association, Optimization, & Filtering Theory

1. INTRODUCTION
Multi-target data association is a common interest across

several different fields [2, 4, 10, 11, 16, 19, 26, 27, 29]. The
systems of interest contain multiple targets from which mea-
surements may originate. There is uncertainty in the posi-
tions of the targets due to an imperfect system model as
well as noise contained in the measurements. The goal of
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Figure 1: Trajectories of two dynamically identical
objects with different initial conditions, represented
by the dotted and dashed lines. The solid black line
represents the portions of the two trajectories mea-
sured over the time horizon t = [0, 3]. The change
between measuring different trajectories is an im-
pulse in the measurement signal. In this example,
the magnitudes of the impulses are δ1 and δ2.

the data association problem is to assign the measurements
to the correct target.

This paper presents a new method for nonlinear data as-
sociation referred to as impulsive data association (IDA).
Figure 1 shows a simple example. In Figure 1, the dot-
ted line represents the trajectory of a pre-specified object
of interest (object 1) and the dashed line some other object
nearby (object 2). There is a single sensor which produces a
single measurement signal that is assumed to be continuous.
The solid black line in Figure 1 represents the portions of
the two trajectories that the sensor measures over t = [0, 3].
The transitions between measuring objects 1 and 2 are im-
pulses, which in this example have magnitudes δ1 and δ2.
Assuming the object of interest is originally being measured
and that the times at which impulses occur in the “measure-
ment trajectory” are known, it is possible to determine the
the origin of individual measurements.

The main contribution of this work is the derivation of the
first- and second-order adjoint formulations for the deriva-
tive of a cost with respect to impulse times, magnitudes,
and the second-order coupling between the impulse times
and magnitudes. An interesting and computationally useful



result, presented in Section 3, is that the same adjoint oper-
ators which appear in the first- and second-order derivatives
of the cost with respect to the impulse times also appear
unmodified in the derivatives with respect to the impulse
magnitudes. This result is computationally useful due to
the fact that quadratic convergence with respect to the im-
pulse times and magnitudes is achieved by calculating two
integrals, regardless of the number of total impulses.

There are several techniques in the literature that address
the multi-target data association problem with an unknown
number of objects. The most popular approaches are re-
ferred to as maximum a posterior (MAP) techniques [3].
MAP techniques analytically define the posterior distribu-
tion and test various elements from the set of possible solu-
tions, i.e., partitions of the discrete measurements, to deter-
mine which one maximizes the posterior . Pre-existing MAP
techniques have been shown to perform well in many realistic
situations. The main issue facing current MAP techniques
is the way in which the solution space is searched. The main
theoretical contribution of this work is a method that takes
advantage of the maximum principle to search the space of
all possible partitions of measurements for an optimum with
convergence in quadratic time.

Multiple-hypothesis tracking (MHT) [6, 8, 28] is an exam-
ple of a MAP technique. The power of MHT is that, given
enough time, it will always find the correct answer. The
issue with MHT is that it exhaustively tests every element
of the solution space at each time step to determine the
MAP solution. As the number of measurements increases
the MHT algorithm experiences exponential growth in terms
of running time. Heuristic methods for dealing with this ex-
ponential growth in complexity have been proposed [10, 11,
20, 28], but at the expense of optimality.

More recently, Markov Chain Monte Carlo data associa-
tion (MCMCDA) techniques have been developed [5, 18, 22,
24, 25]. MCMCDA differs from MHT due to the fact that
MCMCDA uses MCMC techniques to search the space of
possible solutions for areas with nontrivial probability with
respect to the posterior distribution. Although this is a more
computationally efficient method than MHT, it still experi-
ences run time problems as the number of measurements
gets large.

The rest of this paper is organized as follows. The problem
is formally defined in Section 2. After defining the problem,
the first and second-order derivatives of the cost function
(defined in Section 2) with respect to the impulse times and
magnitudes are derived (as well as the cross terms for the
second derivatives). Finally, a simulated implementation of
the IDA algorithm is provided and results analyzed. In Sec-
tion 5 conclusions and future directions of this work are pro-
vided.

2. PROBLEM DEFINITION
In general, impulsive data association is applied to non-

linear systems with dynamics of the form

ẋj = f(xj(t), t), xj(0) = xj0,

z(t) = h(xj(t), t) + ν(t), where j ∈ {1, . . . , N} (1)

where N is the total number of objects in the system, each
with identical dynamics f(·), and z(t) is the measurement
signal which contains the noise term ν(·). In the work pre-
sented in this paper we do not assume that N is known.

An assumption that we are making is that we have a way
of addressing the uncertainty in the system model, such as
the Kalman-Bucy Filter [1]. In Section 3 we do not explicitly
talk about the trajectory x(t) being the result of a filtered
signal, but in practice this is the case. The derivatives of
the trajectory that are defined in Section 3 depend only on
evaluating the value of the trajectory at certain points. The
trajectory x(t) can thus be a filtered signal without loss of
generality.

We define a cost function of the form

J(·) =

Z tf

t0

`(x(s), s)ds (2)

where, for example `(x(s), s) = (xd(s)−x(s))T (xd(s)−x(s)),
xd(·) is the reference trajectory (which is the measurement
signal in this work), and x(·) is the model of the trajectory.
Assume that `(·) is C2, f(·) is C2, and xd(·) is C1.

3. THE DERIVATIVES OF J(·)
In this section, we analytically derive the first and second

derivatives of the cost function (2) with respect to an arbi-
trary number of impulse times and magnitudes. The second-
order cross terms between the impulse times and magnitudes
are also derived. An interesting result is that the same ad-
joint operators that appear in the first- and second-order
derivatives of the cost with respect to the impulse times ap-
pear in a similar way when taking derivatives with respect
to an arbitrary impulse amplitude.

3.1 First derivatives of J(·)
In finding the first derivative of J(·) it is helpful to first

derive the derivatives of the trajectory x(·). Note that in
Lemmas 1 and 2, the first derivative of the trajectory with
respect to the impulse times and magnitudes have the exact
same linear form, differing only in initial conditions. Lemma
1 gives the derivative of x(·) with respect to an arbitrary
impulse magnitude.

Lemma 1 The first derivative of the trajectory with respect
to the impulse magnitudes δi is

Dδix(t) ◦ ∂δi =


0, t < τi

Φ(t, τi) ◦∆i, t ≥ τi
(3)

∆i = Dδix(τi) ◦ ∂δi

where Φ(t, τi) is the state transition [9] matrix for the system

q̇ = A(t)q

and A(t) = D1f(x(t), t) (where D1f means the derivative of
f with respect to the first argument).

Proof: Using the fundamental theorem of calculus, the tra-
jectory x(t) can be written as

x(0) = x0, x(t) = x(τi) +

Z t

τi

f(x(s), s)ds, (4)

where τi can be any time such that τi < t. Taking the



derivative of (4) with respect to δi

Dδix(·) ◦ ∂δi =

Dδix(τi) ◦ ∂δi +

Z t

τi

D1f(x(s), s) ◦Dδix(s) ◦ ∂δids (5)

The fundamental theorem of calculus can be used to rewrite
(5) in differential form

∂

∂t
Dδix(t) ◦ ∂δi = D1f(x(t), t) ◦Dδix(t) ◦ ∂δi.

with initial condition,

Dδix(τi) ◦ ∂δi

This is a linear differential equation and can thus be repre-
sented as a state transition matrix operating on an initial
condition as follows:

Dδix(t) ◦ ∂δi = Φ(t, τi) ◦Dδix(τi) ◦ ∂δi.

This result proves the Lemma for t ≥ τi. For t < τi, observe
that (4), does not depend on δi until time τi. �

The next lemma states the first derivative of the trajectory
with respect to an arbitrary impulse time τi. Again due
to the application of the chain rule, the derivative of the
trajectory appears in the derivative of the cost with respect
to the impulse times.

Lemma 2 The first derivative of the trajectory with respect
to the impulse times τi is

Dτix(t) ◦ ∂τi =


0, t < τi

Φ(t, τi) ◦Xi, t ≥ τi
(6)

Xi = (f(x(τ−i ), τ−i )− f(x(τ+
i ), τ+

i ))∂τi

where Φ(t, τi) is the same state transition matrix from Lemma
1, τ−i refers to the time right before the i-th impulse, and
τ+
i the time right after.

Proof: Taking the derivative of (4) with respect to τi

Dτix(t) ◦ ∂τi = Dτix(τ−i ) ◦ ∂τi − f(x(τ+
i ), τ+

i )

+

Z t

τ+
i

D1f(x(s), s)Dτix(s) ◦ ∂τids

= f(x(τ−i ), τ−i )− f(x(τ+
i ), τ+

i )

+

Z t

τ+
i

D1f(x(s), s)Dτix(s) ◦ ∂τids. (7)

The first term in (7) is the result of taking the derivative
of the initial condition in (4) with respect to its argument.
The second term in (7) is the result of applying the Leibniz
rule. The fundamental theorem of calculus can be used to
rewrite (7) in differential form

Dτix(τi) ◦ ∂τi = f(x(τ−i ), τ−i )− f(x(τ+
i ), τ+

i )

∂

∂t
Dτix(t) ◦ ∂τi = D1f(x(t), t) ◦Dτix(t) ◦ ∂τi.

This is a linear differential equation and can thus be repre-
sented as a state transition matrix operating on an initial
condition

Dτix(t) = Φ(t, τi) ◦Dτix(τi) ◦ ∂τi.

This result is one part of the Lemma. To obtain the second
part of the Lemma, go back to Equation (4) and take the
derivative of x(t) with respect to an arbitrary τk such that
τk < τi. The initial condition x(τ−i ) is constant and thus
does not depend on τk. For the integral term, x(t) does
not depend on τk anywhere in the interval [τ+

i , t]. Thus
Dτkx(t) ◦ ∂τk = 0 when t < τi. �

Having derived the first derivatives of the trajectory it is
now straightforward to derive the first derivatives of the cost
J(·).

Theorem 1 The derivative of the cost function J(·) with
respect to the impulse magnitudes δi is:

DδiJ(·) ◦ ∂δi = ψ(tf , τi) ◦∆i. (8)

The linear operator ψ(tf , τi) : Rn → R is found by integrat-
ing

ψ(t, t) ◦ U = 0

∂

∂τ
ψ(t, τ) ◦ U =

−D1`(x(τ), τ) ◦ U − ψ(t, τ) ◦D1f(x(τ), τ) ◦ U

backward along τ from tf to τi.

Proof: Take derivative of (2) with respect to δi

DδiJ(·) ◦ ∂δi =

Z tf

τi

D1`(x(s), s)Dδix(s) ◦ ∂δids, (10)

and substitute in (3) to obtain

DδiJ(·) ◦ ∂δi =

Z tf

τi

D1`(x(s), s) ◦ Φ(s, τi)ds ◦∆i (11)

where ∆i has been taken out of the integral because it does
not depend on s. Defining

ψ(t, τ) ◦ U =

„Z t

τ

D1`(x(s), s) ◦ Φ(s, τ)ds

«
◦ U, (12)

(11) can be rewritten as

DδiJ(·) ◦ ∂δi = ψ(tf , τi) ◦∆i

which is the first part of Theorem 1. To obtain the second
part of Theorem 1, take the derivative of (12) with respect
to τ [12].

∂

∂τ
ψ(t, τ) ◦ U =

−D1`(x(τ), τ) ◦ U

−
Z t

τ

D1`(x(s), s) ◦ Φ(s, τ) ◦A(τ)Uds (13a)

= −D1`(x(τ), τ) ◦ U

−
„Z t

τ

D1`(x(s), s) ◦ Φ(s, τ)ds

«
◦A(τ) ◦ U (13b)

= −D1`(x(τ), τ) ◦ U − ψ(t, τ) ◦D1f(x(τ), τ) ◦ U
(13c)

Equation (13c) along with evaluating ψ in (12) at τ = t
yields the final two parts of Theorem 1. �

The next theorem states the first derivative of the cost
with respect to an arbitrary impulse time. The derivation of



Theorem 2 is similar to the derivation of Theorem 1, except
that it relies on the application of Leibniz’s rule.

Theorem 2 The derivative of the cost function J(·) with
respect to each of the impulse times τi is

DτiJ(·) ◦ ∂τi = Ψ(tf , τi) (14)

where Ψ(tf , τi) : Rn → R,

Ψ(tf , τi) = ψ(tf , τi) ◦Xi + `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i ).

Proof: Take the derivative of the cost function as it is
written in Equation (2) with respect to τi. The derivative is
the sum of three parts, the derivative of the integrand itself
along with two terms that come from applying Leibniz’s rule.
Recall that in Equation (6), Dtix(t) = 0 up until t = τi.
Therefore the derivative of the integrand only needs to be
integrated from τi up to tf . Thus,

DτiJ(·) ◦ ∂τi =

Z tf

τi

D1`(x(s), s) ◦Dτix(s) ◦ ∂τids

+ `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i ). (15)

Substituting in (6) and observing that Xi is independent of
s, we can write

DτiJ(·) ◦ ∂τi = ψ(t, τi) ◦Xi + `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i )

where ψ(·) is found by integrating (13c) backwards in time.
�

Note that the adjoint operator ψ(·) appears in both (8)
and (14), and thus the calculation of the first derivatives of
J(·) with respect to each impulse time as well as impulse
magnitude requires only a single integration. This result is
independent of the total number of impulses.

3.2 Second Derivatives of J(·)
In deriving the second derivatives of the cost J(·), we will

proceed in a similar manner to the derivations of the first
derivatives, i.e., we will first derive the second derivatives of
the trajectory.

The following two lemmas are provided in order to define
the initial conditions which appear in the second derivatives
of the trajectory and thus in the second derivatives of the
cost due to the chain rule.

Lemma 3 For i ≥ j and t ≥ τi, the derivative ofDδix(t)◦∂δi
with respect to δj satisfies the differential equation (with
initial condition ∆i,j)

d

dt
DδjDδix(t) ◦ (∂δj , ∂δi) =

D1f(x(t), t) ◦DδjDδix(t) ◦ (∂δj , ∂δi)

+D2
1f(x(t), t) ◦ (Dδjx(t) ◦ ∂δj , Dδix(t) ◦ ∂δi) (16a)

∆i,j = DδjDδix(τi) ◦ (∂δj , ∂δi) (16b)

Proof: Differentiate (5) and apply the fundamental theo-
rem of calculus. This is straightforward so it is not included
here. �

The next lemma provides an initial condition that appears
in the second derivatives of the cross terms between the im-
pulse times and magnitudes.

Lemma 4 For i ≥ j and t ≥ τi, the derivative ofDτix(t)◦∂τi
with respect to δj satisfies the differential equation (with
initial condition ∆Xi,j)

d

dt
DδjDτix(t) ◦ (∂δj , ∂τi) =

D1f(x(t), t) ◦DδjDτix(t) ◦ (∂δj , ∂τi)

+D2
1f(x(t), t) ◦ (Dδjx(t) ◦ ∂δj , Dτix(t) ◦ ∂τi) (17a)

∆Xi,j = DδjDτix(τi) ◦ (∂δj , ∂τi) =

D1f(x(τ−i ), τ−i ) ◦Dδjx(τ−i ) ◦ ∂δj
−D1f(x(τ+

i ), τ+
i ) ◦Dδjx(τ+

i ) ◦ ∂δj (17b)

Proof: As before, differentiate Dτix(t) ◦ ∂τi and apply the
fundamental theorem of calculus. �

The following lemma provides the second derivative of the
trajectory with respect to two impulse times.

Lemma 5 For i ≥ j and t ≥ τi, the second derivative of
x(t) satisfies the differential equation (with initial condition
Xi,j)

d

dt
DτjDτix(t) ◦ (∂τj , ∂τi) =

D1f(x(t), t) ◦DτjDτix(t) ◦ (∂τj , ∂τi)

+D2
1f(x(t), t) ◦ (Dτjx(t) ◦ ∂τj , Dτix(t) ◦ ∂τi) (18a)

Xi,j = DτjDτix(τi) ◦ (∂τj , ∂τi) =8>>>>>>>><>>>>>>>>:

D1f(x(τ+
i ), τ+

i ) ◦ f(x(τ+
i ), τ+

i )∂τj∂τi
+D1f(x(τ−i ), τ−i ) ◦ f(x(τ−i ), τ−i )∂τj∂τi
−2D1f(x(τ+

i ), τ+
i ) ◦ f(x(τ−i ), τ−i )∂τj∂τi

+D2f(x(τ−i ), τ−i ) ◦ ∂τj∂τi
−D2f(x(τ+

i ), τ+
i ) ◦ ∂τj∂τi, i = j

(D1f(x(τ−i ), τ−i )
−D1f(x(τ+

i ), τ+
i )) ◦ Φ(τi, τj) ◦Xj∂τi, i > j.

(18b)

Proof: Differentiate (7) and apply the fundamental theo-
rem of calculus. �

Looking at Lemmas 3, 4, and 5, observe that the ODE’s
for the second derivatives of the trajectory are not linear as
in the first derivatives, they are affine. From the form of
the solution to a linear affine system, the next few lemmas
complete our derivations of the second-order derivatives of
the trajectories with respect to the impulse times and mag-
nitudes.

Lemma 6 The second derivative DδjDδix(t) ◦ (∂δj , ∂δi) is

DδjDδix(t) ◦ (∂δj , ∂δi) =

Φ(t, τi) ◦∆i,j + φ(t, τi)(Φ(τi, τj) ◦∆j ,∆i) (19)



where Φ(t, τ) is the state transition matrix from Lemma 1
and the bilinear operator φ(t, τ) : Rn × Rn → Rn is defined
as

φ(t, τ) ◦ (U, V ) =Z t

τ

Φ(t, s) ◦D2
1f(x(s), s) ◦ (Φ(s, τ) ◦ U,Φ(s, τ) ◦ V )ds

(20)

with ∆i,j as the initial condition from (16b).

Proof: Notice that (16a) is in the affine form ẋ = A(t)x+
B(t). Recalling that the solution to an affine system is

x(t) = Φ(t, t0) ◦ x0 +
R t
τ

Φ(t, s) ◦B(s)ds [9], as well as using
(3) and (16b), we find that

DδjDδix(t) ◦ (∂δj , ∂δi)

= Φ(t, τi) ◦∆i,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Dδjx(s) ◦ ∂δj , Dδix(s) ◦ ∂δi)ds

= Φ(t, τi) ◦∆i,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Φ(s, τj) ◦∆j ,Φ(s, τi) ◦∆i)ds

= Φ(t, τi) ◦∆i,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦∆j ,Φ(s, τi) ◦∆i)ds

= Φ(t, τi) ◦∆i,j + φ(t, τi) ◦ (Φ(τi, τj) ◦∆j ,∆i)

where ∆i and ∆j have been pulled out of the integral be-
cause they do not depend on s. �

By direct inspection of (20) we can write

φ(t, t) ◦ (U, V ) = 0

∂

∂τ
φ(t, τ) ◦ (U, V ) = −Φ(t, τ) ◦D2

1f(x(τ), τ) ◦ (U, V )

− φ(t, τ) ◦ (D1f(x(τ), τ) ◦ U, V )

− φ(t, τ) ◦ (U,D1f(x(τ), τ) ◦ V ).
(21)

In a similar way to the calculation of ψ(·), φ(·) can be found
by integrating (21) backwards in time.

The next lemma derives the second derivative of the tra-
jectory for the cross terms between impulse times and mag-
nitudes.

Lemma 7 The second derivative DδjDτix(t) ◦ (∂δj , ∂τi) is

DδjDτix(t) ◦ (∂δj , ∂τi) =

Φ(t, τi) ◦∆Xi,j + φ(t, τi)(Φ(τi, τj) ◦∆j , Xi) (22)

Proof: Using (17a) and (17b) and plugging in (3) and (6)

DδjDτix(t) ◦ (∂δj , ∂τi)

= Φ(t, τi) ◦∆Xi,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Dδjx(s) ◦ ∂δj , Dτix(s) ◦ ∂τi)ds

= Φ(t, τi) ◦∆Xi,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Φ(s, τj) ◦∆j ,Φ(s, τi) ◦Xi)ds

= Φ(t, τi) ◦∆Xi,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦∆j ,Φ(s, τi) ◦Xi)ds

= Φ(t, τi) ◦∆Xi,j + φ(t, τi) ◦ (Φ(τi, τj) ◦∆j , Xi)

where ∆i and ∆j have been taken out of the integral because
they do not depend on s. �

The following lemma provides the second-order derivative
of the trajectory with respect to the impulse times τi and
τj .

Lemma 8 The second derivative DτjDτix(t) ◦ (∂τj , ∂τi) is

DτjDτix(t) ◦ (∂τj , ∂τi) = Φ(t, τi) ◦Xi,j

+ φ(t, τi)(Φ(τi, τj) ◦Xj , Xi) (23)

where Φ(t, τ) is the state transition matrix from Lemma 1
and Xi,j is the intial condition from (18b).

Proof: Using (18a) and (18b)

DτjDτix(t) ◦ (∂τj , ∂τi)

= Φ(t, τi) ◦Xi,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Dτjx(s) ◦ ∂τj , Dτix(s) ◦ ∂τi)ds

= Φ(t, τi) ◦Xi,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Φ(s, τj) ◦Xj ,Φ(s, τi) ◦Xi)ds

= Φ(t, τi) ◦Xi,j +

Z t

τi

Φ(t, s) ◦D2
1f(x(s), s)

◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦Xj ,Φ(s, τi) ◦Xi)ds

= Φ(t, τi) ◦Xi,j + φ(t, τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

where Xi and Xj have been pulled out of the integral be-
cause they do not depend on s. �

Having derived the second derivatives of the trajectory
with respect to the impulse times, magnitudes, and cross
terms between the impulse times and magnitudes, it is now
possible to derive the second derivatives of the cost.

Theorem 3 The second derivative of the cost function J(·)
with respect to the impulse magnitude δj where τi ≥ τj is

DδjDδiJ(·) ◦ (∂δj , ∂δi) =

ψ(tf , τi) ◦∆i,j + Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j ,∆i)

where Ω(t, τ)◦ (U, V ) : Rn×Rn → R is the bilinear operator



found by integrating

Ω(t, t) ◦ (U, V ) = 0n×n (24a)

∂

∂τ
Ω(t, τ) ◦ (U, V ) = −D2

1`(x(τ), τ) ◦ (U, V )

− ψ(t, τ) ◦D2
1f(x(τ), τ) ◦ (U, V )

− Ω(t, τ) ◦ (D1f(x(τ), τ) ◦ U, V )

− Ω(t, τ) ◦ (U,D1f(x(τ), τ) ◦ V ) (24b)

backwards over τ from tf to τi.

Proof: Take the derivative of (10) with respect to δj and
plug in (19)

DδjDδiJ(·) ◦ (∂δj , ∂δi) =Z tf

τi

D1`(x(s), s) ◦DδjDδix(s) ◦ (∂δj , ∂δi)

+D2
1`(x(s), s) ◦ (Dδjx(s) ◦ ∂δj , Dδix(s) ◦ ∂δi)ds

=

Z tf

τi

D1`(x(s), s) ◦ Φ(s, τi) ◦∆i,j

+D1`(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦∆j ,∆i)

+D2
1`(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦∆j ,Φ(s, τi) ◦∆j)

= ψ(tf , τi) ◦∆i,j + Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j ,∆i)

where Ω(t, τ) is defined as

Ω(t, τ) ◦ (U, V ) =

Z t

τ

D1`(x(s), s) ◦ Φ(s, τ) ◦ (U, V )

+D2
1`(x(s), s) ◦ (Φ(s, τ) ◦ U,Φ(s, τ) ◦ V )ds. (25)

This provides the first part of the proof. To obtain the
second parts, take the derivative of (25) with respect to
τ (this calculation is straight forward and is thus omitted
here). �

The following theorem provides the second-order cross
derivatives of the cost with respect to the impulse magni-
tude δj and impulse time τi.

Theorem 4 The second order cross derivative of the cost
function J(·) with respect to the impulse time τi and mag-
nitude δj where τi ≥ τj is

DδjDτiJ(·) ◦ (∂δj , ∂τi) =

D1`(x(τ−i ), τ−i ) ◦Dδjx(τ−i ) ◦ ∂δj
−D1`(x(τ+

i ), τ+
i ) ◦Dδjx(τ+

i ) ◦ ∂δj
+ ψ(tf , τi) ◦∆Xi,j + Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j , Xi)

Proof: Take the derivative DτiJ(·) ◦ ∂τi with respect to δj
and plug in (22)

DδjDτiJ(·) ◦ (∂δj , ∂τi) =

D1`(x(τ−i , τ
−
i )) ◦Dδjx(τ−i ) ◦ ∂δj

−D1`(x(τ+
i , τ

+
i )) ◦Dδjx(τ+

i ) ◦ ∂δj

+

Z tf

τi

D1`(x(s), s) ◦DδjDτix(s) ◦ (∂δj , ∂τi)

+D2
1`(x(s), s) ◦ (Dδjx(s) ◦ ∂δj , Dδix(s) ◦ ∂δi)ds

= D1`(x(τ−i , τ
−
i )) ◦Dδjx(τ−i ) ◦ ∂δj

−D1`(x(τ+
i , τ

+
i )) ◦Dδjx(τ+

i ) ◦ ∂δj

+

Z tf

τi

D1`(x(s), s) ◦ Φ(s, τi) ◦∆Xi,j

+D1`(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦∆j , Xi)

+D2
1`(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦∆j ,Φ(s, τi) ◦Xi)

= D1`(x(τ−i , τ
−
i )) ◦Dδjx(τ−i ) ◦ ∂δj

−D1`(x(τ+
i , τ

+
i )) ◦Dδjx(τ+

i ) ◦ ∂δj
+ ψ(tf , τi) ◦∆Xi,j + Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j , Xi)�

The following theorem provides the second-order deriva-
tives of the cost with respect to the impulse times τi and
τj .

Theorem 5 The second derivative of the cost function J(·)
with respect to the impulse times τj and τi where τi ≥ τj is

DτjDτiJ(·) ◦ (∂τj , ∂τi) =

D1`(x(τ−i ), τ−i ) ◦ (Dτjxd(τ
−
i ) ◦ ∂τi

∂τj
−Dτjx(τ−i ) ◦ ∂τj)

−D1`(x(τ+
i ), τ+

i ) ◦ (Dτjxd(τ
+
i ) ◦ ∂τi

∂τj
−Dτjx(τ+

i ) ◦ ∂τj)

−D1`(x(τi), τi) ◦Xi∂τiδ
j
i + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

Proof: Take the derivative of (15) with respect to τj and
plugging in (23)

DτjDτiJ(·) ◦ (∂τj , ∂τi) =

∂

∂τj

„Z tf

τ+
i

D1`(x(s), s) ◦Dτix(s) ◦ ∂τids

+ `(x(τ−i ), τ−i )− `(x(τ+
i ), τ+

i )

«
= D1`(x(τ−i ), τ−i ) ◦

`
Dτjxd(τ

−
i ) ◦ ∂τi

∂τj

−Dτjx(τ−i ) ◦ ∂τj
´
−D1`(x(τ+

i ), τ+
i )

◦
`
Dτjxd(τ

+
i ) ◦ ∂τi

∂τj
−Dτjx(τ+

i ) ◦ ∂τj
´

−D1`(x(τ+
i ), τ+

i ) ◦Dτix(τ+
i ) ◦ ∂τi

∂τi
∂τj

+

Z tf

τ+
i

(D1`(x(s), s) ◦DτjDτix(s) ◦ (∂τj , ∂τi)

+D2
1(x(s), s) ◦ (Dτjx(s) ◦ ∂τj , Dτix(s) ◦ ∂τi))ds

= D1`(x(τ−i ), τ−i ) ◦
`
Dτjxd(τ

−
i ) ◦ ∂τi

∂τj

−Dτjx(τ−i ) ◦ ∂τj
´
−D1`(x(τ+

i ), τ+
i )

◦
`
Dτjxd(τ

+
i ) ◦ ∂τi

∂τj
−Dτjx(τ+

i ) ◦ ∂τj
´



−D1`(x(τ+
i ), τ+

i ) ◦Dτix(τ+
i ) ◦ ∂τi

∂τi
∂τj

+

Z tf

τ+
i

(D1`(x(s), s) ◦ Φ(s, τi) ◦Xi,j

+D1`(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦Xj , Xi))ds

+

Z tf

τ+
i

D2
1`(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj)

◦Xj ,Φ(s, τi) ◦Xi)ds

= D1`(x(τ−i ), τ−i ) ◦ (Dτjxd(τ
−
i ) ◦ ∂τjδij

−Dτjx(τ−i ) ◦ ∂τj)−D1`(x(τ+
i ), τ+

i )

◦ (Dτjxd(τ
+
i ) ◦ ∂τjδij −Dτjx(τ+

i ) ◦ ∂τj)

−D1`(x(τ+
i ), τ+

i ) ◦Xi∂τjδ
j
i + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

where δij is the Kronecker delta and

∂τi
∂τj

=


∂τj i = j
0 i 6= j.

(26)

The first two terms in (26) are the derivatives of the two
Leibniz terms in (15), `(x(τ−i ), τ−i ) and `(x(τ+

i ), τ+
i ). It is

important to note that the derivative of the reference xd(·)
appears in the second derivative of J(·) with respect to the
impulse times τi and τj for impulsive systems.

To explain the appearance of the derivative of the refer-
ence in the second derivatives, return to the Leibniz terms in
(15) (recalling that `(x(t), t) = (xd(t)−x(t))T (xd(t)−x(t))).
The Leibniz terms in the first derivatives of J(·) (with re-
spect to the impulse time τi) are evaluated at τ−i and τ+

i ,
respectively, and thus both the reference and the trajectory
depend explicitly on τi. Thus, when taking the derivatives
of these Leibniz terms with respect to τi a second time, the
derivatives of both the reference and model must be present.
Taking the derivatives of the reference is a nontrivial oper-
ation. It turns out that evaluating the derivatives of the
model that result from the Leibniz terms is also nontrivial.
When i 6= j the evaluation of the Dτjx(τi) ◦ ∂τj is straight
forward and can be calculated using (6). When i = j care
must be taken due to the fact that the derivative is now be-
ing taken with respect to the argument of x(·). In this case
(i = j), Dτjx(τi) ◦ ∂τj = f(x(τi), τi). �

4. IMPLEMENTATION

4.1 Trajectory Optimization
It was mentioned earlier that in order to properly imple-

ment the impulse optimization, we first need a way in which
to estimate the total number of impulses that occur. Non-
linear trajectory optimization is the method proposed as a
pre-step used to estimate the number of impulses that occur.

The exact form of the nonlinear trajectory optimization
problem being solved is

ẋ = U(t)f(x, t) = F (x, U) (27)

where U(t) is a diagonal matrix function unless otherwise
noted and f(x, t) are the same dynamics from Equation (1).
Note that for the system in (27) the trajectory optimization
will always be nonlinear, even when the dynamics f(·) are
linear.

In order to perform the trajectory optimization, we define
a cost function S(·) separate from the cost J(·) in Equation
(2) such that

S(η) =

Z T

0

`(s, x(s), U(s))ds+m(x(T )) (28)

where η ∈ T , and T is the trajectory manifold associated
with the dynamics defined in (1). The problem can thus be
stated as the constrained optimization

min
η∈T

S(η). (29)

Through the use of the projection operator ([7, 13, 14, 15],
the constrained optimization in (29) can be rewritten as the
unconstrained optimization

min
ξ∈L

S(P (ξ))

where ξ is an element of the infinite dimensional function
space L. This optimization problem is solved using a first-
order descent method with a line search. Most of the tech-
nical details of the trajectory optimization will be left to
several references ([7, 13, 14, 15]) and are thus not provided
here.

In standard implementations of trajectory optimization
the goal is to find an optimal trajectory with respect to a
cost of the form (28). For the purposes of estimating the
total number of impulses as well as approximating the times
at which the impulses occur, the goal of the trajectory opti-
mization is slightly modified. Using trajectory optimization
as a pre-step to impulse optimization, the goal is to find devi-
ations in the control U(·). It is explained further below, but
we wish the nominal value of U(·) to be equal to the iden-
tity. That is, we want—when possible—to have ẋ = f(x, t).
The goal of the trajectory optimization is to find deviations
away from 1(t).

To explain why we would like to constrain U = I, consider
the 1-D system containing two separate bodies each with dy-
namics ẋ = x, but with different initial conditions. This sit-
uation is shown in Figure 1, where a single sensor measures
the position of one object over the intervals t = (0, 1) and
t = (2, 3), and a second object over the interval t = (1, 2).
Note that this example is deterministic and intentionally
oversimplified for the purposes of clarity.

Figure 2 shows results of applying trajectory optimization
to this 1-D system. In Figure 2(a) the solid line represents
the desired signal, the dotted line the initial guess in the tra-
jectory optimization, and the dashed line the current guess
in the optimization after several iterations.

Figure 2(b) shows the control signal associated with the
same step in the trajectory optimization that produced the
dashed line in Figure 2(a). Through inspection of Figure 2
we can see that when the reference signal (solid line) is very
close to the current trajectory in the optimization procedure
(dashed line), the control signal value is close to one. When
the difference between the current trajectory and the refer-
ence trajectory changes suddenly, the difference is reflected
in the control signal as spikes that generate the delta func-
tion in the state (as can be seen in Figure 2(b)). The spikes
in Figure 2(b) are the deviations from 1(t) in the control
that are desired. In this example, we would use threshold-
ing [21, 23] to determine that there are two impulse times
that we need to optimize over and our initial guess for the
impulse optimization would be (τ1, τ2) ≈ (1, 2).
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Figure 2: (a) Measurement signal (solid line), ini-
tial guess (dotted line) for trajectory optimization,
and result (dashed line) of applying trajectory opti-
mization to the system with dynamics ẋ = ux. (b)
Control signal obtained as a result of applying tra-
jectory optimization in (a).

4.2 Descent Methods
Having found the derivatives in Section 3 and a method

for estimating the total number of impulses in Section 4.1,
it is possible to implement both first- and second-order opti-
mizations on (2), such as steepest descent with a line search
and Newton’s method [17]. Note that in the example in
Section 4.3, a combination of a quasi-Newton’s method and
standard Newton’s method are used to produce the con-
vergence results shown in Figure 4. The quasi-Newton’s
method checks the eigenvalues of the Hessian and replaces
any negative eigenvalues with 1, thus performing steepest
descent in that subspace.

4.3 Example
The example selected to demonstrate the IDA algorithm

has dynamics

ẋ = v(t) cos(θ(t))

ẏ = v(t) sin(θ(t))

θ̇ = ω(t).

where v(t) and ω(t) are some inputs. Two objects are present
in the system. Figure 3 shows an example of the two ob-
jects’ trajectories for v(t) = 1 and ω(t) = 1. In Figure 3(a),
the dotted line represents the trajectory of a pre-specified
object of interest, the dashed line represents the trajectory
of the second nearby object, and the solid line represents the
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2.0

y

(b) 5 10 15 20
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1.000
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Figure 3: (a) Measurements for the two-plane ex-
ample (solid line). The dotted line represents the
trajectory of the object of interest and the dashed
line the trajectory of some plane nearby. (b) Result
of applying the trajectory optimization of Section
4.1 to the two-plane system when six total impulses
occur. The six spikes correspond to the six impulses.

continuous measurement signal, found by interpolating the
set of discrete noisy measurements.

It was mentioned earlier that in order to determine the
times at which impulses occur in the measurement trajec-
tory, the total number of impulses must first be estimated.
Figure 3(b) shows the results of applying the trajectory opti-
mization algorithm of Section 4.1 to the two airplane system
over three periods of the circular trajectories shown in Fig-
ure 3(a). Note that there are six distinct peaks in the control
signal shown in Figure 3(b) that correspond to the six im-
pulses that occur in the measurement trajectory. Note also
that we are showing a single component of the matrix U(·)
in Figure 3(b) due to the fact that for this example

U(t) =

0@ u1 0 0
0 u2 0
0 0 u3

1A , (30)



where u1 = u3 = 1 because the impulse always occurs in the
y−direction.
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Figure 4: Second-order convergence results of ap-
plying impulse optimization over impulse times and
magnitudes to the two plane, six impulse system.

Figure 4 presents the second-order convergence that re-
sults from optimizing (2) over six impulse times as well as
magnitudes. Figure 4 shows that we do in fact achieve
quadratic convergence and that we reach a solution, with
magnitude of the gradient less than 10−14 on a log based 10
scale, within about 8 iterations.

5. CONCLUSIONS AND FUTURE WORK
This paper presented a new method for solving the multi-

target data association problem for systems with an un-
known number of targets, called impulsive data association.
The algorithm is“impulsive” in that the sensor switching be-
tween measuring the trajectories of different targets is mod-
eled as an impulse in a continuous measurement signal.

The main contribution of the work presented in this paper
is the derivation of first- and second-order adjoint equations
for the first- and second-order derivatives of the cost function
(2) with respect to impulse times and magnitudes. An inter-
esting result that arises in deriving the derivatives of the cost
is that the same adjoint operator appears in the derivatives
with respect the both the impulse times and magnitudes.
This result means that it is possible to compute the entire
second derivative of the cost with respect to an unknown
number of impulse times and magnitudes by integrating two
separate equations. This helps minimize the computational
complexity.

In Section 2, we mentioned the fact that we were ignor-
ing the presence of process noise in the work presented in
this paper. In an actual implementation of IDA the uncer-
tainty in the initial distribution as well as the uncertainty
associated with the process noise needs to be explicitly ad-
dressed. One particular choice of methods to address these
two sources of additional uncertainty in the IDA framework
is the Kalman-Bucy filter. The resulting method would si-
multaneously run the filter and IDA (with a moving window
in time), where x(·) becomes the estimate calculated by the
filter. The implementation of an example that includes this
combination of methods is a current direction of future work.

Another direction of future work is addressing the pos-
sibility of impulsively switching between the trajectories of
two objects that are not the object of interest. In this paper
we have made the assumption that the only impulses that
occur are those between the object of interest and another

object nearby. A method similar to gating [3] is currently
being developed to handle this possibility.
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