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Abstract—This paper provides an overview of recent
progress on discrete variational integration for constrained me-
chanical systems experiencing elastic, plastic, and simultaneous
impacts. We discuss several methods and their characteristics
in terms of convergence and what the conserved quantities are.

[. INTRODUCTION

This brief paper introduces some recent results regarding
analyzing the nonsmooth behavior of impacting systems
using discrete variational mechanics. We provide an overview
of recent work that utilizes the mechanical variational prin-
ciple at the time of impact to generate numerical predictions
for an impacting system. In contrast to complementarity
formulations of contact, where Newton’s equations are gen-
eralized to include impulses and then the complementarity
conditions help one solve for discrete time (possibly impul-
sive) forces that satisfy the inequality constraints, variational
analysis generalizes stationarity of the action principle to
the nonsmooth case. (Solutions, though obtained from the
variational formulation, will satisfy the complementarity
conditions.) These variational algorithms are well-posed for
constrained, forced systems and can be used for elastic
as well as plastic impacts. We end with a discussion of
computational scalability and software implementation.

II. VARIATIONAL INTEGRATION FOR SMOOTH SYSTEMS

The use of variational methods for mechanics goes back to
Lagrange, and involves the introduction of the Lagrangian L,
typically the kinetic energy K F minus the potential energy
V (all expressed in terms of generalized coordinates gq).
Along with constraints ¢(q) = 0 and external forces F, the
application of variational analysis to the action integral (the
integral of the Lagrangian over the time interval) yields the
Euler-Lagrange equations

%D2L(q, d)— DiL(q,d) = F + ADé(q)
#(q) =0

where the second equation is typically differentiated twice
and the system of equations is solved to get rid of the
dependence on the Lagrange multiplier A. This ordinary
differential equation is then discretized and solved using
standard methods, such as Runge-Kutta schemes of various
orders (possibly with adaptive time-stepping).
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Discrete mechanics approaches, on the other hand, dis-
cretize the Lagrangian directly to give the discrete La-
grangian Lg. Applying variational analysis to a discrete
action sum (that approximates the action integral) yields the
discrete Euler-Lagrange equations

Dy Lg(qi—1,qi) + D1La(qi, qiv1) = AD¢(q) + Fy
#(qiv1) = 0.

Note that this is now a discrete time rootsolving problem for
Gi+1, given ¢; and g;—1. This discrete-time representation
has the advantage of preserving the discrete momentum, the
symplectic form, and has guarantees on energy behavior.
Moreover, there exists a modified system (where the Hamilto-
nian is no longer the original Hamiltonian, but a perturbation
of it) that this discrete-time representation exactly solves.

The goal of the work described below is to bring the
same structure-preserving characteristics present in smooth
discrete mechanics to the analysis and computation of non-
smooth impact equations. With each approach we start with
elastic impacts and then treat plastic impacts. The next few
sections describe several approaches as well as their positive
and negative attributes.

III. THREE ALGORITHMS FOR NONSMOOTH CONTACT

This section describes three different ways of comput-
ing an impact. We classify the methods by the discrete
quantification of energy that is conserved when simulating
elastic collisions. The three approaches are a) conserving the
continuous time energy, b) conserving a discrete-time energy,
and c) conserving the energy of the modified Hamiltonian.
These approaches are each reasonable, but they have different
characteristics in terms of what they conserve and their
computational costs, as listed in Table I.

Continuous Time Energy Conservation (CTEC)

The CTEC method (the basic idea of which can be found
in many works including [2], [6]) is defined by enforcing
conservation of the continuous time definition of energy at
the discrete time node that marks the impact. This idea is
linked to hybrid systems simulation methods in that the
simulation task is divided into sequences of continuous
simulation and discrete instances of event resolution (marked
by guard detection, and state reset). The CTEC method has
the lowest computational and implementation cost, given that
evaluating the CTEC impact map is explicit for any system
with a quadratic kinetic energy'. In fact, the CTEC impact

lfinding an impact time is an implicit calculation, but this is true for all
three methods



Method CTEC DTEC MHC
Symplectic No Yes Sometimes
Conservation of Momentum Yes Yes Yes
Scalar Conserved Quantity CE DE MH
Implementation Easy Hard Harder
Impact map Explicit | Implicit Implicit
Computational cost Low Medium | Medium-High
Dense impact behavior Good Bad Good
L? Error Highest Med Lowest
Structured L2 Convergence Yes No Yes
TABLE I

TABLE OF CHARACTERISTICS OF THREE APPROACHES TO RESOLVING
IMPACTS IN DISCRETE TIME. (CE=CONTINUOUS ENERGY,
DE=DISCRETE ENERGY, MH=MODIFIED HAMILTONIAN)

map is so cheap to implement it is often used to provide
initial guesses to the implicit routines of the other impact
simulation methods. Also, the CTEC impact map has the
most straightforward extension to the multiple impact case.

In terms of disadvantages, the CTEC method conserves a
local definition of energy and thus is susceptible to drift in
energy in the overall simulation due to the impacts (this can
be seen in systems as simple as the double pendulum, the
energy behavior of which can be seen in Fig.1). CTEC has
no overall notion of symplecticity for nonsmooth trajectories
(although the smooth integration flow and impact map each
have an associated symplectic form—but they are not the
same). Lastly, in one specific simulation of the double
pendulum the CTEC method performed the worst of all three
methods in terms of the L? norm of the error in the discrete
trajectory relative to a benchmark simulation [4]. (This third
place finish was uniform across a range of timesteps, but
may have been somehow related to the initial condition used
in the simulation.)

Discrete Time Energy Conservation (DTEC)

The DTEC method [3] conserves a variational discrete
time definition of energy through impacts. As the method
stems from a discrete time Hamilton’s principle, it conserves
one uniform symplectic form along the entire nonsmooth
trajectory. For all but the simplest cases this method is
implicit and thus requires the second most computational
effort (more than CTEC, but less than MHC, discussed
next). In terms of disadvantages, DTEC (similar to CTEC)
conserves a local definition of energy and thus is susceptible
to overall drift in energy due to impacts (again seen in the
double pendulum energy in Fig.1). Furthermore, it has been
analytically demonstrated that accuracy of the DTEC impact
law can vary wildly (e.g. the method can fail completely)
with increasing time steps or density of impacts. In the simu-
lation of the double pendulum the CTEC method performed
the second best of the three methods in terms of the L>
norm of the error in the discrete trajectory relative to a
benchmark simulation [4]. However, DTEC was the only one
of the three methods that did not display structured quadratic
convergence in the L? norm under varying timesteps. This
lack of structure makes the method ill-suited for automated
time step selection schemes.

Modified Hamiltonian Conservation (MHC)

The MHC method [4] conserves a modified Hamiltonian
(MH) through impacts. The definition of this MH stems
from the existing backwards error analysis associated with
variational integration of smooth dynamics. By formulating
the MHC impact law to respect the backwards error analysis,
it is guaranteed that the output of an MHC simulation
approximates, and sometimes exactly provides, a discrete
sampling of the exact solution of a ‘nearby’ nonsmooth
Hamiltonian system, leading to excellent energy behavior
(seen in Fig.1). Though it is not necessarily required, MHC
can be modified to eliminate the use of local information in
its impact map. As such, this method does not experience
the energy drift seen (on occasion) with the other two
methods. In the simulation of the double pendulum the MHC
method provided the lowest L? norm of the error in the
discrete trajectory relative to a benchmark simulation and
quadratic convergence under varying timesteps [4]. In terms
of disadvantages, MHC requires the most computational and
implementation effort.

Discussion of three methods
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Fig. 1. Comparison of CTEC, DTEC, and MH techniques using a double
pendulum impacting a vertical surface as a benchmark.

Figure 1 shows the three methods as applied to a double
pendulum striking a wall. The MH methods shows the best
behavior while the CTEC method performs relatively badly.
The key thing is that these three methods, each equally
reasonable, lead to three very different algorithms, with
different complexity, accuracy, and convergence properties.
It seems clear that is one wants the “best” representation of
the dynamics, MHC performs the best, as seen in Fig.1. If,
however, one wants an adequate representation of the impact
dynamics at low computational cost, CTEC appears the best
choice. For our work, we assume that physical accuracy is
the most important characteristic, so the added cost of MHC
is acceptable.

We next discuss the basic approach we have taken in
applying discrete variational analysis to the cases of simul-
taneous impact and plastic impact.



Plastic Impacts

In order to treat plastic impacts, variations are evaluated
such that they are constrained to be tangent to the impact
surface at the time of impact. This leads to a physical
model that is not meaningful for the continuous time system
where the constraint forces must be impulses, but for the
discrete variational system those forces approximate the
Zeno behavior over a small time step. An important thing
to note is that detecting a plastic impact is only possible
when using the CTEC and the MHC methods, since the
DTEC method becomes unreliable when more than one
impact occurs per time step and therefore cannot predict
Zeno behavior. Lastly, the variational methods we discuss
here are guaranteed to solve the associated complementarity
problem, but they narrow down the set of solutions more
than the complementarity problem does.

Simultaneous Impacts
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Fig. 2. Simultaneous impacts have nonunique outcomes in general, but in
the case of some systems such as Newton’s cradle (where impacts occur
when ¢1 = ¢2 = 0) variational analysis predicts unique outcomes.

Simultaneous impacts occur when two or more contacts
are present at the same time. Evaluating such impacts with
an elastic method is difficult since conservation laws do not
(and cannot) give a unique answer is most cases. The only
certain way to consistently obtain a unique solution in such
cases is to assume a plastic impact model ahead of time. This
creates difficulties in modeling systems like Newton’s cradle,
where perfectly elastic impacts have characteristics of plastic
impacts (e.g., once contact is made, it is maintained for a
finite interval). Instead, we use a sequential impact method
which guarantees a finite number of solutions and, in some
cases, unique solutions [5]. While we have only implemented
this method using CTEC it could easily be extended to the
MHC impact method.

IV. SCALABILITY

What if one wants to compute the impact laws discussed
above for a complex system such as the hand model shown
in Fig.3?7 We have implemented the discrete variational
equations in the introduction for smooth, forced, constrained
systems in open source software t rep? The algebraic quan-
tities required for computing simulations and optimal control
laws—primarily multiple orders of derivatives of the discrete

2 Available at http://trep.sourceforge.net.

Fig. 3. It is not self-evident that the techniques discussed thus far apply
to a more complex system like the many degree-of-freedom hand shown
above. The trep software package provides the needed data to resolve the
variational equations to second-order.

Lagrangian L, with respect to configurations—are the same
for smooth systems as they are for impacting systems.
Moreover, trep calculates these derivatives exactly, for
arbitrary interconnected mechanical systems. Hence, our next
task is to implement one of the impact strategies mentioned
above and apply it to example simulation and optimal control
problems such as the hand as it makes and breaks contact.

V. CONCLUSIONS AND FUTURE WORK

The choice of impact representation largely depends on
how much computation one is willing to use to get a good
representation of the impact. Using the modified Hamilto-
nian, the MH method seems to be the best method overall,
but the calculation is also the most expensive. Therefore our
trep software will likely use the MH method for repre-
senting elastic, plastic, and simultaneous impact. Moreover,
within trep one can already compute nonlinear optimal
control policies for the constrained hand pictured in Fig.3
and other similarly complex systems. We will use the tools
we discuss here to implement algorithms that enable one
to both simulate and control a complex system with impact
dynamics.
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