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Second-Order Switching Time Optimization for
Non-linear Time-varying Dynamic Systems
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Abstract

This paper gives a method for calculating the first and second derivatives of a cost function with
respect to switching times for systems with piecewise second-differentiable dynamics. Differential equa-
tions governing the linear and bilinear operators required for calculating the derivatives are presented.
Example optimizations of linear and non-linear systems are presented as evidence for the value of
second-order optimization methods. One example converges in 33 iterations using second-order methods

whereas the first-order algorithm requires over 30,000 iterations.

Index Terms

optimization, switched systems

I. INTRODUCTION

Switched dynamic systems discontinuously switch from one dynamic function to the next
in a known sequence as certain switching times are reached. Each dynamic function (i.e. * =
f(z,u,t)) itself is continuous and differentiable. Switching time optimization is the problem of
determining a set of switching times that minimize a cost function.

In this paper the switching times are parameterized as a half space of partially ordered
times (i.e., the switching times between two pre-specified modes satisfy an order, so the set

of parameterized switching times does not form a vector space). Optimizations are implemented
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with standard iterative, numerical algorithms [21], [22] (e.g. the Steepest descent algorithm
and Newton’s method) that use the local vector space structure. The focus of research has been
algorithms to calculate the derivatives of a cost function with respect to the switching times [12],
[29], [30], [13], [3], [1], [10], [4], [11], [17], [31]. In [27], the authors convert the switching
time problem to a switching time duration problem, thereby converting the optimal control
problem to a discrete time optimal control problem that can be solved using constrained alge-
braic optimization techniques. In general, these works have focused specifically on constrained
variational methods by calculating first derivatives [13], [4], [11], [12], [17] using Lagrange
multiplier methods, though some have also discussed (but not computed) the second derivative
[10], [27], [31]. One exception to this is [7] where the second derivative is found in the case
of the underlying space being the space of generalized functions (e.g., differential measures)
that generate the switching signals. Another exception is in [16], where the authors discretize in
time first to form a nonlinear programming problem, and then optimize the resulting algebraic
problem using second-order methods. The downside of such an approach is that time step must
be chosen ahead of time rather than allowing one to use adaptive meshes during integration. So,
although second-order sensitivity analysis has been studied before, a derivation of its switching
time formulation in continuous time has been missing. Lastly, adjoint formulations of parametric
sensitivities have been studied in [25] and used in software [28], [18]. The formulas that one
obtains for parametric sensitivities are not the same as the ones one obtains for switching times,
but they use the same derivative information thereby making software that is appropriate for
computing parametric sensitivities (such as CVODES [28], [18]) appropriate for computing
derivatives with respect to switching times.

Lastly, it should be mentioned that switching time optimization techniques typically assume
that mode order is known, whereas [3], [1], [17], [7], [15] focus on optimizing over mode order
as well. Optimizing over mode order has been approached using constrained optimization [3],
[1], using the idea of mode “insertions” [12], [15], and using the nonsmooth projection of a
smooth optimal control problem [7]. All of these methods focus on generating the number and
choice of modes rather than on the efficiency of the calculation. For the present work, we assume
that some such technique has already been employed to coarsely estimate the number of modes
and that one desires to efficiently find the optimal times that the modes should transition.

This paper—subsets of which can be found in [19], [20]—uses a different approach to
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find the same first-order result as [13] that involves fewer steps and relies on fundamental
principles in calculus instead of constrained Lagrange multiplier techniques (similar to the
previously-mentioned work in [27]). More importantly, the derivation generalizes to find the
second derivative of the cost function using an equally simple single integration strategy—a
strategy that is much simpler than that found in the generalized function setting in [7]. Given that
the difference between linear and quadratic convergence rates are often significant in real-time
application [10], [6], [7], having an efficient way of computing adjoint equations for second-
order approximations is useful for online optimization. We provide two examples that compare
both methods, and a third example that is intractable using first-order techniques.

Section II establishes the precise problem definition. Section III derives the first derivatives
of the trajectory and cost function, replicating the result in the prior works cited above using a
simpler proof technique. Elements of that proof are used to find the second derivatives of the
trajectory and cost in Section IV. Problems that involve terminal costs are discussed in Section V.
The resulting optimization is presented in Section VI where optimization is implemented with
iterative, numerical algorithms [21], [22] using general purpose software such as MATLAB or
Mathematica or using software specifically designed for optimal control (such as CVODES [28],
[18]). Section VII applies the techniques to three examples that compare first and second-order

methods.

II. PROBLEM DEFINITION

Consider an n-dimensional non-linear system governed by a sequence of N dynamic models:
&= fi(z,t) 7 <t <7, (D

with 7 = t; and 7y, = ¢; defining the time horizon and with initial condition z(ty) = .
Each fi(x,t) is at least C? in 2 and C! in t. We seek the N — 1 switching times! 7, ... 7y that

optimize a total cost:

t
T(ra, 7+ 1) = / " 0@(), 1) dt 2
t

0

where {(z,t) is an arbitrary C? (in ) incremental cost function that is integrable in ¢. For example

we might choose £(z,t) = (x — 24(t))? (z — 24(t)) to find the switching times that result in

"Having 72 be the first switching time is awkward, but otherwise the first trajectory will be o (t), which is inconsistent with

the conventional notion that x( is a constant initial condition.
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the best possible tracking of the desired trajectory x4. Terminal cost can also be included, as
discussed in Section V. Optimization is approached using iterative numeric algorithms [21], [22]

as described in Section VI.

A. Notation

The most important notational point is that we abbreviate a trajectory as x(t) when strictly
it should be x(xg, 71,72 Tn,t). For any time-dependent function y(t), we refer to a segment
yr(t) to be y(t)Vt € |7y, Tk+1]. Note that by continuity yx(7x+1) = Yr+1(7k+1). For an operator
M applied to U we write M oU. For finite dimensional linear operators, we use square brackets
[M] to indicate matrix representations (e.g. M o U = [M|U and M o (U, V) = UT[M]V).

We use D f(x) notation for derivatives. The slot derivative D, f (arg,, args, ...)o(dargy) repre-
sents the derivative of f(-) with respect to the n-th argument. Similarly, D, f(arg,,args,...)o

(Ovar) is the derivative of f(-) with respect to the variable var.

ITI. FIRST DERIVATIVE OF J(-)

By chain rule, the first derivative of the cost function J in (2) involves the derivative D, z(t)o
OT; of the trajectory x(t) with respect to each switching time 7; Vi =2--- N.

Lemma 3.1:

0 t<T;
D, x(t)o0r; =

d(t, 7)o X! t>m 3)

X' = (fira(z(n), ) = file(r), ™)) Om
where ®(¢,7) is the state transition matrix [8] for the system & = [D; f(z(t),t)]z.
The proof of this is a direct application of chain rule to the integral representation of x(t) (and
can be found in [19]). Lemma (3) allows us to compute the derivative of the cost with respect
to switching time 7; using chain rule.

Lemma 3.2: The derivative of the cost in Eq. (2) with respect to each switching time 7; is
D, J(-)00r; = (ts, i) 0o X' 4)
where ¢(t;,7) : R* — R is found by integrating
U(ty ty)oU =0 (5a)

%@b(tf’ T) olU = —le(llf(T),T) olU — ¢(t’ 7_) © le({E(T), T) olU (Sb)
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backwards along 7 from ¢; to ;.
Proof: Take the derivative of Eq. (2) with respect to 7;. The resulting integrand from ¢, to
7; is zero because D, x(t) = 0 for ¢t < 7;, leaving

ty ty ‘
D, J(:)o01; = / D1l(x(s),8) o Dy.x(s) o d;ds = / Dil(x(s),s) o ®(s,7;) dsoX". (6)

4

v~

P(tsss)
Differentiating (¢, 7) with respect to 7 and integrating backwards from ¢, to 75 will find all
the values of ¢(t,7;) in a single integration. To see this, evaluate (¢, ;) with 7 = ¢ to find

the initial condition (5a) for the integration and differentiate (¢, 7;) with respect to 7:
t
%w(tfm) oU = —Dl(x(1), 7)o ®(1,7) 0 U — / Dyl(x(s),s) o ®(s, 7)o Dyf(x(r),7) o Uds
= —Dil(z(r), 7)o U = 4(t,7) o D1 f(a(7), 7)o U )

where the first term comes from the Leibniz integral rule and we have used state transition
matrix identities [8]. This proves the final statement of the Lemma. |
This result has previously been reported by [13], [31], where it was derived using constrained
variational methods that rely upon Lagrange multipliers (that can have problems with abnormal
extrema [14]). Here we have only used chain rule. Importantly, this approach extends to the

second derivative.

IV. SECOND DERIVATIVE OF J(-)

The second derivative of the cost is found using the same strategy from Sec. III. We find a
differential equation describing the second derivative and then show that the solutions can be
expressed with a state transition matrix and a bilinear operator.

The second derivative of z(t) is symmetric (i.e, mixed partials commute), so we assume i > j
for the remainder of the paper without loss of generality. This is only for brevity; the same
strategy found below will find the full second derivative without assuming symmetry a priori.

Proposition 4.1: With ¢ > j (and t > 7;), the second derivative of the trajectory satisfies a

differential equation (8a) with initial condition (8b).
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%DTJ. D, x(t) o (075,07;) = Dy f(2(t),t) o Dy, Dy,x(t) o (075, 07;)
+ D2f(x(t),t) o (Dr,x(t) 0 015, Dra(t) 0 O7) (8a)
[ Difila(m),m) o fila(r), 7)dr0m
+ D1 fioi(z(73),7) © fici(x(7i), 73)07;07;
D, D.x(7;) o (07,07;) = — 2D fi(x(m), ) o fio1(x(m), 7:)07;07;
+ Dsz;l(LC(TZ‘), Ti) (¢] 873(973 — Dgfi(l'(Ti), Ti) o (97387'7;
\ (D1ficr(2(r), 1) — Dy fi(a(7), 7)) 0 ®(73,75) 0 X901 0>
(8b)

The proof of this result is again based directly on chain rule and can be found in [19]. Unlike
the first derivative, the ODE for the second derivative (8a) is not linear, but it is affine. We can
use the linear model to express the second derivative in terms of a state transition matrix and a
new bilinear operator, ¢(t,7) that is analogous to ®(¢,7) in Lemma 3.1.

Lemma 4.2: The second derivative D, D x(t) o (97;,07;) is
DTjDTix<t> © (aTjﬂ aTz) = (D(t, Ti) © XlJ + ¢<t77—z> © (q)(Ti7 T]) © XJ7 XZ) (9)

where ®(t,7) is the state transition matrix in Lemma 3.1 and ¢(¢,7) : R” x R” — R” is the

bilinear operator that satisfies

o(t, 1) o (U, V) =0 (10a)

Lo(t, 7)o (U V) =—=0(t, 7)o D} f(x(r),7) 0 (U, V)— (10b)
o(t,7)o(Dif(z(r),7) 0 U, V) — ¢(t,7) o (U, D1 f(x(7),7) 0 V).

and X%/ is the initial condition from (8b).
(The proof of this result is not critical to the presentation here, so the reader may find it in
[20].) Equations (10) facilitate generalization of Sec. III to the second derivative of the cost.

Theorem 4.3: The second derivative of .J(-) with respect to switching times 7; and 7; > 7; is
DTjDTiJ('> o (87']-, 87’1) = —Dlg(l’(ﬁ), Ti) o X187]5f+ (11)

W(tp,ms) o X+ Qty, 7)o (B(r,75) 0 X7, X7
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where 53 is the Kronecker delta and Q(t,7) o (U,V) : R x R" — R is the bilinear operator
found by integrating
Q(t,t) o (U, V) = Onxn (12a)
2Q(t, 7)o (U, V) ==Dil(zx(r),7) o (U V) —(t,7) o D; f(z(7),7) o (U,V)—
Q(t,7) o (D1 f(x(r),7) o U, V) = Q(t, 7)o (U D1 f(x(r), 7)o V) (12b)

backwards over 7 from ¢; to 7;.

Proof: Take the derivative of (6) with respect to 7;:
Ly
D,,D..J() o (07;,0m) = 2 ( / Dil(x(s), ) 0 Dry(s) o O, ds)

= —Dyl(x(r;),7;) o Dyx(r;) o 87’187'] / Dy l( o ®(s,7;) 0 X ds

+ /.f D1l(x(s),s) o ¢(s, ;)0 (CI)(TZ',TJ-) o Xj,Xi)

+ D%ﬁ(x(s), s) o (<I>(3, 7;) o ®(7;, ;) 0 X7, ®(s,73) 0 Xi) ds

= —Dil(x(r;),7;) o Dyx(1;) o 87107']-5;- +(ty, )0 X4 4 Qty, 7)o (P(1y,75) 0 X7, XY
where (¢, 7) is defined as

Q(t, T)o(U, V):/tDlé(x(s), s)o (s, 7)o (U, V) + D*(x(s),s) o (®(s,7) o U, &(s,7) 0 V)ds.
' (13)

Equations (13) and (10) provide a way to calculate D, D, J(-) by forward integration. In
doing so, we must integrate (13) to find Q(¢;, ;) for each 7;. By integrating backwards along T,
we reduce this to a single integration. The initial condition for the backwards integration is seen
to be zero directly from the definition of (¢, 7), given in (12a) of the Lemma. Equation (12b) of
the Lemma is found by differentiating (13) with respect to 7 and applying identities for ®(¢, 7)
[8] and the identities for (¢, 7) found in (10). n
Theorem 4.3 is the natural extension of Lemma 3.2 to the second derivative. It has the property
that ¢(¢,7), the second-order analog to the state transition matrix, is no longer required and
provides an algorithm for calculating every second derivative from a single integration. It is

useful to write (12b) in matrix form to see how it is calculated as a matrix-valued ordinary
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differential equation:

5[t 7)] = —[Dil(x(7),7)] = [ (¢, 7) o DI f(a(7), 7)]
— [D1f (2(r), D)1t 7)] = [, DD f (2(7), 7).
While Theorem 4.3 avoids ¢(¢, 7), it does rely on ®(¢, 7). The state transition matrix for the

first derivative has re-appeared in the initial condition for the second derivative (8b) and the

second derivative of the cost in Eq. (11).

V. INCLUDING A TERMINAL COST

The integral cost function in (2) is often augmented with a terminal cost m/(x, t), here assumed

to be C? in x:

J(-) = /tf 0(z(t),t) dt + m(z(ty), ty). (14)

to

For example, if we care more about the final state of the system than how it gets there, the
terminal cost can be weighted heavily compared to the incremental cost.
Lemma 5.1: Lemma 3.2 and Theorem 4.3 hold for the additional terminal cost in (14) if the

initial conditions for (5a) and (12a) are changed to
Y(t,t)oU = Dim(z(t),t)oU  Q(t,t) o (U, V) = Dim(x(t),t) o (U, V)

Proof: The proof proceeds by taking the derivatives of (14) and following the proofs for the
first and second derivatives of the original cost (Lemma 3.2 and Theorem 4.3). In the derivations,

W(t, 7) becomes
Bt 7) 0 U = Dimla(t), £) 0 B(t,7) 0 U + /Tt Dyt(a(s), 5) o (s, 7) o U ds
and (1, ) becomes
Q(t, 7)o (U, V) = Dym(z(t),t) o ¢(t, 7) o (U, V) + Dim(z(t),t) o (®(t,7) o U, ®(t, 7)o V)
/ Dyl 0 (s, 7)o (U, V) + D20(a(s), 5) o (®(5,7) o U, d(s,7) o V) ds.

The new operators have different initial conditions, but we find their differential equations along

7 are unchanged. The rest of the proof proceeds exactly as the case without terminal cost. M
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VI. OPTIMIZATION ALGORITHM

We optimize Eq. (2) with iterative approaches [22] that rely on first and second derivatives.

In each iteration, we choose a descent direction z = —[H|7'[D,J(-)]"

where H is a positive
semidefinite matrix. Choosing [/ = I gives the steepest descent algorithm—yielding a first-order
optimization that has linear convergence. Choosing H = D, D, J(-) results in Newton’s method,
a second-order optimization with local quadratic convergence. When the Hessian is not positive
definite, there are several common approaches. The simplest is to revert to the steepest descent
direction. Another [22], [24] is to decompose the Hessian into its eigenvalues A and corresponding
eigenvectors P. Negative or near-zero eigenvalues are replaced with 1 and the modified Hessian is
reconstructed as H = PAP~!. This method—which we will reference as a quasi-Newton method—
essentially uses Newton’s Method in each eigenvector direction with a positive eigenvalue and
steepest descent in directions with negative eigenvalues. In general, one should use trust region
methods [24] to perform the optimizations with superlinear convergence, but we use the algorithm
just outlined partially because it highlights the transition from linear convergence to quadratic
convergence. Both algorithms benefit from the Armijo Line Search [2] algorithm. This algorithm
reduces the magnitude of the step size until there is a sufficient decrease. Satisfying the sufficient
decrease condition guarantees that the optimization will eventually converge.

We must also keep the switching times ordered properly (i.e. 7,11 > tx). In this work, after
calculating the descent direction z, we find the largest ¢ € (0, 1] such that = + ez is ordered
properly. (Note that we choose € # 0 because z is a descent direction, so there exists an ¢, small
enough such that J(z + €z) < J(x) for all € < ¢.)

It is worth mentioning that the computational complexity of this algorithm is constant with
respect to the number of switching times, but goes up with the number states /N. Computation of
the gradient requires solving N differential equations, while computation of the Hessian requires
solving %N (N +1) differential equations (because of the symmetry of the Hessian). As the next
section illustrates, this increase in complexity is often offset by substantial improvements in

convergence.

VII. EXAMPLES

We present three examples that show the value of a second-order algorithm in switching time

optimization. The first example is the same linear time-invariant (LTI) optimization described in
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[13]. The second is an optimization of a non-linear system. The third uses Lie brackets [23] to

design a sequence of inputs and optimizes the switching times to move to a final configuration.

A. Optimizing an LTI System

This example compares the optimization of a linear time-invariant system using first-order

and second-order algorithms. This example problem comes from [13], where it was optimized

with a first-order algorithm. The cost function is ¢(z,t) = %xTa: and the system is

Al.l? 0<t<m
-1 0 1 1 A T <t <y

12 I =2 Aix 3<t<my

AQSE T4§t<1,
\

with initial condition zy = [1,0]%. For the optimization, we choose the Armijo parameters to
be a = 0.2 and $ = 0.7. The initial switching times are 7, = 0.3, 73 = 0.5, and 7, = 0.7. The
terminating condition is | D, J(7y, 73, 74)| < 107*. The second-order optimization takes 10 initial
first-order steps.

The first-order optimization converged to 7o = 0.518, 73 = 0.688, and 74, = 0.791 in 302 steps.
The second-order optimization converge to the same switching times in 18 steps. Logarithmic
plots of the norm of the cost derivative are shown in Fig. 1. Even for this LTI system, the

second-order descent reduces the number of iterations by an order of magnitude.

B. Kinematic Car

Our second example compares first and second-order optimizations for a non-linear system.

We consider the kinematic car with the equations of motion:
i =[X,Y,0,0|" = foar(z,u) = [uy cos(8), uy sin(0), uy tan(¢), us]” . (15)

The kinematic car can be modeled as a switched system when the control inputs are piecewise-
constant: f;(z) = fear(, (w1, uz);). For this example, we consider a parallel parking maneuver

made up of 7 sequential inputs:

{(u1, u2) o, = [(0.3,0), (0, —2.8), (—0.2,0), (0, 2.9), (—0.09, 0), (0, —1.8), (0.09, 0)].

March 11, 2011 DRAFT



JOHNSON AND MURPHEY: SECOND-ORDER SWITCHING ..., SUBMITTED TO [EEE TRANSACTIONS ON AUTOMATIC CONTROL. 11

= =
S S
=] 2
o0 o0
< ES)
Iterations Iterations
(a) First-Order Optimization (b) Second-Order Optimization

Fig. 1: Logarithmic plots of the norm of the cost derivative over each iteration of the optimization,
with both plots having maximum log magnitudes of 10° and minimum log magnitudes of 10~%.
The first-order plot (of 302 iterations) shows the expected linear shape, while the second-order

plot (of 18 iterations) shows the characteristic quadratically decreasing shape.

For the optimization, we consider the magnitude and sequence of the inputs to be known but
the switching times are unknown. The incremental cost function is ¢(x,t) = (v—x4)? (x—14) and
zero terminal cost. The optimization parameters are o = 0.6, 5 = 0.0001, and the termination
condition is | D, J| < 107%. The initial switching times were equal intervals from 0 to 7 seconds
(i.e., 7, = 7 — 1). Both optimizations converged to the correct switching times that generated
the reference trajectory z4: (71 ---7n41) = (0, 1, 1.5, 2.5, 3.5, 4.414, 5.248, 7). The first-order
optimization took over 30,000 steps to converge. The second-order optimization, which initially
took 10 first-order steps, converges in 24 iterations. Fig. 2 shows the trajectories for each iteration
of the optimization.

It is likely that 30,000 iterations is impractical for applications, particularly real-time ones [10].
The second-order optimization reduces this by three orders of magnitude. The next example will

use the same system for a more ambitious application of switching time optimization.

C. Kinematic Car: Lie Bracket Trajectory

Lie brackets [5], [9], [26] are infinitesimal operations that take advantage of two vector field

not commuting to locally produce motion in a direction outside the linear span of the vector
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Fig. 2: Trajectories for the kinematic car at each iteration of the optimization. The solid line is

the kinematic car and the dashed line is the desired trajectory.

fields. The above parallel parking maneuver is a common example of Lie bracket motion. The
Lie bracket is formally based on infinitesimal motion, but it can be used to determine a sequence
of inputs for motion planning.

Suppose we seek a trajectory from ¢ = (0,0,0,0) to ¢ = (0,—1,0,0). The Lie bracket to

produce sideways motion for the kinematic car (15) is the nested bracket

[afm [afm 8fm” = (0,-1,0,0) (16)

Ouy ' | Ouz ' Ou

which corresponds to infinitesimal movements with the following sequence of inputs:

{(ulau2)}?:0 = [(170)7 (07 1)? (170)’ (07 _1)a (_170)7 (_170)7 (170)7 (07 1)7 (_170)? (07 _1>]'

We set up an optimization using the above inputs®> and add a final “constant” function (i.e.
u = [0, 0]) to give the optimization flexibility in the duration of the maneuver. Since any trajectory
is acceptable, we choose a zero incremental cost and non-zero terminal cost: ¢(z,t) = 0 and
m(z,t) = ||lz—(0,—1,0,0)||%. The optimization was run with = 0.001, 8 = 0.6, | D, J| < 107
and initial condition® (7, ---7n41) = (0, 2, 2.5, 3, 3.5, 5.5, 6, 6.5, 7, 12.5).

Note that three consecutive movements [1, 0], [1,0], and [—1,0] were collapsed into a single movement.

3The Lie bracket also suggests the initial (relative) timing: the two fields in each bracket should be about the same length. For

example, consider the Lie bracket [f, [g, h]]. If we move along f for € seconds, the [g, h] movement should also be € seconds.
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7

Fig. 3: The trajectory at the Ist, S5th, 10th, 15th, 20th, and 22nd (final) iteration. The dot shows

the desired final position.

The optimization took 10 steepest descent steps followed by 12 quasi-Newton steps for a
total of 22 iterations. The steepest descent optimization did not converge after 30,000 iterations.
Figure 3 shows the final trajectory with several intermediate trajectories. The final switching
times were (71 ---7y41) = (0, 1.33, 2.01, 2.58, 3.34, 5.45, 6.97, 7.06, 8.50, 12.5).

To generalize to arbitrary end points in a neighborhood of the initial condition, one need only
change the terminal condition of the optimization (and potentially compute the infinitesimal
approximation of an end point using the Lie bracket, typically using the Campbell-Baker-
Hausdorff expansion [26]. If the distance to be traversed is larger than what a single motion
can provide, then computing multiple Lie bracket motions—and therefore optimizing over more

switching times—may be desirable.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented derivations for the first and second derivatives of the cost function with
respect to switching times. Both derivatives have efficient operator-based representations that do
not rely on constrained optimization techniques. The derivation is direct, uses basic calculus tools,
and generalizes to second derivatives. Examples demonstrate the expected quadratic convergence.
Future work includes considering combined trajectory and switching time optimization where a

set of switching times and time-varying inputs minimize a cost function.
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