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Abstract— The Pontryagin Maximum Principle is applied
to the switched system optimization problem resulting in a
generalization of a well known necessary condition for switching
time optimality. The switched system optimization may be for-
mulated as an infinite dimensional problem where the switching
control design variables, at any given time, are constrained to
the integers. This paper analyzes projection-based techniques
for handling the integer constraint. The necessary condition
derived in this paper uses the cost composed with the projection
of the design variables onto the feasible set. A specific form
of projection is considered and two candidate projections are
proposed—one projects the immediate value of the switching
control and neglects the state while the second is variable on
the projected state error.

I. INTRODUCTION

This paper is concerned with the problem of switched
system optimization, for which the design variables include
the mode sequence. The mode sequence may be represented
by a switching control signal that is constrained to the
integers. A common theme in switched system optimiza-
tion is to relax, or embed, the set of switching controls
and find the optimal of the relaxed cost, which results in
chattering solutions [1], [12], [16]. The resulting approach
is an infinite dimensional optimal controls problem with
inequality constraints. A method for solving the problem
is to discretize time and use SQP to optimize over basis
functions that approximate the state and control signals [16].
Furthermore, [12] discusses digital implementation of the
chattering solutions and considers a minimum dwell time
restriction on the transition times. These methods, however,
pursue infeasible solutions and attempt to back out feasible
suboptimal ones. They also do not make use of switching
time optimization, an efficient switched system optimization
tool for when the modes are fixed [4].

Another common theme is to alternate between optimizing
the switching times and updating the mode sequence [17].
Switching time optimization is well understood and efficient.
Adjoint calculations for both the gradient [4] as well as
the Hessian [3], [10] exist. Furthermore, when the modes
are linear time-varying, a single set of differential equations
independent of switching times and mode sequence may be
solved such that switching time optimization for each mode
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sequence does not require additional integration [2]. The
modal update is not as well understood, but mode injection
schemes have been shown to converge [4], [6].

We use a projection operator so that the design variables
are in an unconstrained space but the cost is still on the
set of switched system feasible trajectories. The projection
maps signals from the unconstrained space to the set of
feasible switched system trajectories, wherein each feasi-
ble switched system trajectory corresponds to a switching
schedule consisting of a mode sequence and set of switching
times. This paper serves as an introduction to projection-
based methods for switched system optimization. In future
works, we will propose projection-based algorithms based
on the two stage switching time optimization and mode
sequence update methodology of [17].

The switched system optimization problem is constrained
to the switched system dynamics, which includes a constraint
to the integers. We, instead, consider an unconstrained prob-
lem where the cost function is variable on the projection
of the design variables to the constrained set. Suppose J(·)
is the cost, (x, u) are feasible state and control variables,
(α, µ) are state and control variables in the unconstrained
space and P is a mapping from the unconstrained space,
R, to the set of feasible switched system trajectories, S .
Then, the standard constrained optimization problem and the
unconstrained problem are (respectively)

arg min
(x,u)∈S

J(x, u) and arg min
(α,µ)∈R

J(P(α, µ)).

It is important to note that what we refer to as the
unconstrained problem differs from, for example, finding
the solution to a problem with unconstrained cost—e.g.
min(α,µ)∈R J(α, µ)—and projecting the solution to the fea-
sible set. We are concerned with the problem that while the
design variables, (α, µ), are unconstrained, the cost is still
on the feasible set since P returns feasible state and control
trajectories. In fact, when P is a projection, the solution
to the constrained problem is equal to the projection of
the solution to the unconstrained problem—i.e. (x", u") =
P(α", µ"). The same rationale is used in [8], in which
a trajectory tracking projection operator is applied to the
problem of nonlinear optimal controls.

The unconstrained space under consideration is the space
of Lebesgue integrable functions from the interval [0, T ]
to Rn+N . As this space is open, if the optimal point,
ξ" := (x", u"), exists, then it must be the case that the
partial derivative of the Hamiltonian with respect to ξ is
zero—i.e. ∂

∂ξH(ξ") = 0. Due to the integer constraint,
however, an optimal point in the constrained set may be on



the boundary of the set, in which case, the partial derivative
of the Hamilton with the control need not be zero [13].

We use a simple projection operator along with the
condition ∂

∂ξH(ξ") = 0 to obtain a generalization of the
well-known necessary condition for optimality of switched
systems. Refer to [15], [14] for the necessary condition for
hybrid system optimization, in which the necessary condition
for switched systems enters as a transversality condition.
We provide the projection-based derivation of the switched
system necessary condition in order to demonstrate the
usefulness of the projection operator.

This paper is structured as follows: Section II presents
switched system representations which will be used through-
out the paper. Section III proposes candidate projection
operators from the unconstrained space to the set of feasible
switched system trajectories. The derivative of a specific
form of projection is also given. Section IV applies the
Pontryagin Maximum Principle along with what we refer
to as the max projection to give a necessary condition on
switched system optimization.

II. THE SWITCHED SYSTEM

A switched system’s evolution is given by its transitions
between modes of operation. The control is the timing of
the mode transitions and into which modes the system tran-
sitions. This section describes mathematical representations
of the relationship between the state and the control.

Suppose X and U are spaces of Lebesgue integrable
functions from the time interval [0, T ] to, respectively, Rn

and RN . We label the space R = X×U as the unconstrained
space.

Consider a switched system composed of the N distinct
equations of motion fi(x), i = 1, . . . , N , which are Cr, r >
0 on X . Now, define the function

F (x, u) =
N∑

i=1

fi(x)ui. (1)

Clearly, F (x, u) is Cr on X and C∞ on U .
In order for the pair (x, u) ∈ R to constitute a valid

switched system, both of the following must be true. First,
x and u must satisfy ẋ = F (x, u), i.e.

G(x, u, t) := x(t)− x(0)−
∫ t

0
F (x(τ), u(τ))dτ

equals zero for all t ∈ [0, T ]. The integral is understood to
be the Lebesgue integral. Second, u must be restricted as
follows. Define EN = {e1, e2, . . . , eN}, where ei has value
1 at its ith entry and 0 for every other entry. Define the set
of switching control inputs as

Ω = {u ∈ UN |∀t ∈ [0, T ], u(t) ∈ EN}

Now, the set of switched systems S ⊂ R is given as the set
of all (x, u) such that

(i) x ∈ X ,
(ii) u ∈ Ω ⊂ U ,
(iii) G(x, u, t) = 0 for all t ∈ [0, T ].

(2)

Often, it will be useful to represent an element of S using its
switching signal or switching schedule representations. For
u ∈ Ω, the equivalent switching signal is the σ(t) such that
u(t) = eσ(t). Clearly, the value of σ(t), t ∈ [0, T ] is an
integer from the set {1, 2, . . . , N}. The switching schedule
is the mode sequence and set of switching times, (Σ, T ,M),
defined as follows:

• M − 1 is the number of discontinuities of u,
• T = {T1, T2, . . . , TM−1} are the times, 0 < T1 ≤ T2 ≤

· · · ≤ TM−1 < T , for which u is discontinuous, and
• Σ = {σ1,σ2, . . . ,σM} is the sequence of modes such

that u(t) = eσi for t ∈ (Ti−1, Ti).

III. THE PROJECTION OPERATOR

We propose candidate projections from the unconstrained
space, R, to the set of feasible switched system trajectories,
S . We begin by investigating a general form of the projection
by noting the binary constraint in Eq.(2) on the switching
control limits the set of mappings the projection can take.

Consider the mapping Q : S → Ω where Q satisfies a
reproducing condition—i.e. ∀(x, u) ∈ S , u = Q(x, u). The
condition is so that the following can be a projection. Define
the map P : R → S

(x, u) = P(α, µ) :=

{
ẋ(t) = F (x(t), u(t)), x(0) = x0

u(t) = Q(α, µ; t).
(3)

Here, and throughout the paper, we use the notation Q(α, µ)
for a curve in Ω while Q(α, µ; t) := (Q(α, µ))(t) returns
the value of the curve at time t. In order for P(α, µ) to be
a projection—i.e. P ◦P(α, µ) = P(α, µ)—Q(α, µ) must be
reproducing and ẋ = F (x,Q(α, µ)) must have a solution
for each (α, µ) ∈ R. Examples of when ẋ = F (x,Q(α, µ))
does not have finite escape time are the following:

• When each mode fi(α), i = 1, . . . , N , is linear.
• When Q(α, µ) exponentially stabilizes the system. It is

shown in [9] that ẋ = F (x,Q(α, µ)) is exponentially
stable if each mode, fi(α) i = 1, . . . , N , is Lyapunov
stable and the switching control, Q(α, µ) satisfies an
average dwell time condition. Furthermore, the modes
could satisfy certain Lie algebraic structure [11].

In this paper, we will on occasion assume that the solution
to P exists over the full time interval by referring to the
following assumption.

Assumption 1: The mapping P defined by Q and the
differential equation in Eq.(3) exists for each (α, µ) ∈ R.

Suppose P exists and u = Q(α, µ) for some (α, µ) ∈ R.
For any index i = 1, . . . , N , the signal ui(·) is binary,
transitioning between the values 0 and 1. Therefore, we
represent Qi(α, µ) as the composition of the step function
with the function ai : R× [0, T ] → R which dictates when
the transitions occur. Consider Q = [Q1, . . . , QN ]T of the
following form

Qi(α, µ; t) = 1(ai(α, µ; t)) (4)



where 1(·) is the step function and the right side of Eq.(4)
is understood as

1(ai(α, µ; t)) =

{
1 ai(α, µ; t) ≥ 0
0 else.

The functions ai, i = 1, . . . , N must have specific prop-
erties so that Q is reproducing.

A. Properties of ai
In order for Q(α, µ) to be both reproducing and return an

element of Ω, the signal a = [a1, . . . , aN ]T must satisfy the
following:

1) At almost all t ∈ [0, T ], there is an i = 1, . . . , N such
that ai(α, µ; t) > 0, and for each j = 1, . . . , N , j *= i,
aj(α, µ; t) < 0.

2) If for some i = 1, . . . , N around time t ∈ [0, T ] it is
the case that:

ai(α, µ; t
−) > 0 and ai(α, µ; t

+) < 0,

then there is a single index j, j = 1, . . . , N , j *= i
such that

aj(α, µ; t
−) < 0 and aj(α, µ; t

+) > 0.

3) For almost all t ∈ [0, T ] and for all i = 1, . . . , N ,
sign(ai(α, µ; t)) = sign(ai(P(α, µ); t)).

The times for which property 2 occur are the switching times
and are the discontinuity points of Q(α, µ). These times are
also the times for which properties 1 and 3 do not hold.
Property 1 ensures Q(α, µ; t) is an element of EN for almost
all time, which is necessary for Q(α, µ) to be an element of
Ω. Property 2 dictates a mode transition at time t, where
i is the previous mode and j is the next mode. Property
3 is needed for P(α, µ) to be a projection. We refer to
the following assumption when a satisfies the above three
properties.

Assumption 2: The signal a(α, µ), which defines the map-
ping P , Eq.(3), by way of the defined Q, Eq.(4), satisfies the
above three properties

Under Assumptions 1 and 2, we see that the mapping P
is a projection.

Lemma 1: Assuming Assumptions 1 and 2, the mapping
P , defined through Eq.(3) by Q, which in turn is defined
through Eq.(4) by a, is a projection from R to S .

Proof: To prove P is a projection, we need to show
P ◦ P(α, µ) = P(α, µ) for each (α, µ) ∈ R. First note, by
Assumption 1, the solution to ẋ = F (x,Q(α, µ)) exists.

Second, according to property 1 of Assumption 2, for
almost all time, a(α, µ; t) is greater than zero for one
index and less than zero for all other indexes. From Eq.(4),
Qi(α, µ; t) = 1 if ai(α, µ; t) > 0 and Qi(α, µ; t) = 0 if
ai(α, µ; t) < 0. Thus, Q(α, µ; t) ∈ EN and Q(α, µ) ∈ Ω.

Third, due to property 3 of Assumption 2, Qi(α, µ; t) =
Qi(P(α, µ); t) and thus P(α, µ) = P(P(α, µ)).

Example-Max Projection: For N = 2, an example of a
signal, labeled amax, that satisfies Assumption 2 is

amax(α, µ; t) =

[
µ1(t)− µ2(t)
µ2(t)− µ1(t)

]
.

α

µ
x

−

K ΣΣ

u

e1 − e2
e2 − e1

1(·)
1(·)

a1

a2
ẋ = F (x, u)

Fig. 1. Block diagram of the N = 2 feedback projection. The dashed
block converts the continuous signal to a switching control signal—i.e. an
element of Ω.

We label the associated reproducing and projection mappings
using Qmax and Pmax.

Consider the properties of a for the signal defined by
amax. Property 1 is satisfied as long as µ1(t) *= µ2(t) for
any time interval.1 We consider the case when µ1(t) = µ2(t)
for a time interval as a degeneracy. As for property 2,
it is clearly satisfied for a1,max(α, µ) = −a2,max(α, µ).
Property 3 is also satisfied for if µ1(t) > µ2(t) (alt. <), then
Qmax(α, µ; t) = [1, 0]T ([0, 1]T ) and thus Q1,max(α, µ; t) >
Q2,max(α, µ; t) (<). If Assumption 1 holds, then, by Lemma
1, the mapping Pmax, given by the signal amax, is a
projection.

Example-Feedback Projection: The max projection ne-
glects the unconstrained state. This second example projects
to the set of feasible switched system trajectories according
to the error of the projected state with the unconstrained
state. The operator is designed from the nonlinear trajectory
tracking projection operator from [7], [8], which is a contin-
uous linear feedback controller with a feed forward term. We
alter the nonlinear projection operator by including a block
that takes as input the continuous control signal and outputs
the switching control signal. Refer to Fig.(1) for a block
diagram. Using the label, K to differentiate between different
projections given by different feedback gains, consider the
mapping PK given by

QK(α, µ; t)

=




1
[
(e1 − e2)T

(
µ(t) +K(t)(α(t)− x(t))

)]

1
[
(e2 − e1)T

(
µ(t) +K(t)(α(t)− x(t))

)]



 ,

where

ẋ(t) = F (x(t), QK(α, µ; t)), x(0) = x0.

Here, a1,K = (e1 − e2)T (µ(t) + K(t)(α(t) − x(t))) and
a2,K = −a1,K . As [8] suggests for the nonlinear trajectory
tracking projection operator, the gain, K(t) ∈ RN×n may be
calculated by solving a finite horizon linear regulator prob-
lem about (α, µ). Notice that the max projection is the feed-
back projection with gain K(t) = 0(t)—i.e. Qmax = Q0.
However, when K(t) is non-zero, the value of QK(α, µ; t)
depends on x(t), which is variable on all values of (α, µ)
prior to time t through solving ẋ(t) = F (x(t), QK(α, µ; t)).

1Suppose µ1(t) = µ2(t) over some time interval. Certainly, over this
time interval, 1(µ1(t) − µ2(t)) = 1(0(t)) for calculating Qmax(α, µ),
Eq.(4), has meaning. However, in a later section, we will calculate the
derivative of the general Q(α, µ) in a distributional sense when such a
calculation is valid. According to [5], for specific ai the derivative depends
on the Dirac delta function where δ(µ1(t) − µ2(t)) must have meaning.
However, δ(µ1(t)− µ2(t)) = δ(0(t)) does not have meaning.



The feedback projection commonly encounters Zeno be-
havior or chattering. To see this, set u(t) = µ(t) +
K(t)(α(t) − x(t)) and notice u̇(t) = µ̇(t) + K̇(t)(α(t) −
x(t))+K(t)(α̇(t)− ẋ(t)) where ẋ(t) = f1(x(t)) if u1(t)−
u2(t) > 0 and ẋ(t) = f2(x(t)) if u2(t)−u1(t) > 0. Now, in
order for a mode transition to occur at time t, u1(t) and u2(t)
are such that ‖u1(t)− u2(t)‖ < ε, for some ε, 1 >> ε > 0.
At this time, Zeno behavior is encountered when u̇1(t) −
u̇2(t)|ẋ(t)→f1(x(t)) < 0 and u̇2(t) − u̇1(t)|ẋ(t)→f2(x(t)) < 0.
Certainly, there are f1 and f2 for which Zeno behavior cannot
occur. Another possibility for dealing with Zeno behavior
is to include a hysteresis term so that PK only projects to
switched system trajectories with an average dwell time [9].
Such analysis is outside the scope of this paper, but this gives
an interpretation to average dwell time analysis that parallels
classical optimal control.

The mapping PK is not a projection unless the mapping
PK(α, µ) exists for all (α, µ) ∈ R—e.g. the solution does
not chatter. However, we can at least show that if (x, u) ∈ S ,
then PK(x, u) = (x, u).

Lemma 2: If (x, u) ∈ S , then PK(x, u) = (x, u).
Proof: Let (x, u) = PK(x, u)—i.e. ẋ = F (x, u) and

u = Qk(x, u). Note, since (x, u) ∈ S , x and u relate
according to ẋ = F (x, u). Recall F (·, ·) is at least C1 on X
and as such, x and x exist and are both uniquely determined
by u and u respectively. Notice, at any time t ∈ [0, T ], if
x(t) = x(t), then K(t)(x(t)− x(t)) = 0 and we see that

u(t) = Qk(x, u, t) =

[
1(u1(t)− u2(t))
1(u2(t)− u1(t))

]
= u(t). (5)

Initially, x(0) = x(0) = x0, so it is also the case that u(0) =
u(0). Thus, initially as we integrate forward, x(t) = x(t).
Due to uniqueness of the solution, in order for x *= x, there
must be some time t1 ∈ [0, T ] where x(t1) = x(t1) but
u(t1) *= u(t1). However, Eq.(5) keeps u(t) equal to u(t) as
long as x(t) = x(t), so t1 cannot occur. Therefore, (x, u) =
(x, u) and thus PK(x, u) = (x, u).

In future work, we will develop PK so that it does not
map to chattering solutions but retains Lemma 2.

B. Derivative of Q(·)
Set ξ = (α, µ) ∈ R. According to [5], the derivative

of Qi(ξ; t) = 1(ai(ξ; t)) with respect to ξ depends on
the Dirac delta function on the hypersurface ai(ξ; t) = 0.
However, in order to use the analysis given in [5], we
restrict the admissible definitions of the function ai. First,
we only consider ai that are dependent on the immediate
value of ξ at time t. For this reason, we write ai(ξ(t)) where
ai : Rn×RN → R so that it is understood that ai is a finite
dimensional function. Second, ai must be sufficiently smooth
such that on ai(ξ(t)) = 0, it is the case that Dai(ξ(t)) *= 0.
Now, δ(ai(ξ(t))) may be defined as in [5]:

〈δ(ai(ξ(t))),φ〉 :=
∫

ai(ξ(t))=0
φ(ξ(t))ω

where ω of degree n+N−1 is the differential form uniquely
determined by the hypersurface given by ai(ξ(t)) = 0.

Suppose the derivative of ai(ξ(t)) with respect to the j th

index of ξ(t) is non-zero—i.e. Djai(ξ(t)) *= 0. Then, the
differential form is (see [5])

ω = (−1)j−1 dξ1(t), . . . , dξj−1(t), dξj+1(t), . . . , dξn+N (t)

Djai(ξ(t))
.

Furthermore, according to [5], the derivative of Q is,

DQi(ξ(t)) = δ
(
ai(ξ(t))

)
Dai(ξ(t)) i = 1, . . . , N. (6)

Example-Max Projection: (cont) The derivative of Qmax

is
D1Qi,max(α(t), µ(t)) = 0, i = 1, 2

D2Q1,max(α(t), µ(t)) = δ
(
µ1(t)− µ2(t))

)
[1, −1]T and

D2Q2,max(α(t), µ(t)) = δ
(
µ2(t)− µ1(t))

)
[−1, 1]T

We see δ(µ1(t)− µ2(t)) is defined as

〈δ(µ1(t)− µ2(t)),φ(µ1(t), µ2(t))〉

=

∫ ∞

−∞
φ(µ2(t), µ2(t))dµ2(t)

and because the delta function is even, δ(µ2(t) − µ1(t)) =
δ(µ1(t)− µ2(t)).

As for the feedback projection, we currently do not have
the tools for analyzing its derivative.

IV. APPLYING THE PONTRYAGIN MAXIMUM PRINCIPLE
TO SWITCHED SYSTEM OPTIMIZATION USING THE

PROJECTION OPERATOR

The goal is to find the (α, µ) ∈ R which solves

min
(α,µ)∈R

J(ξ) =

∫ T

0
)(x(τ), Q(α, µ; τ)) dτ

constrained to

ẋ = F (x(t), Q(α, µ; t)), x(0) = x0. (7)

We require the running cost )(·, ·) to be continuously dif-
ferentiable with respect to both arguments. Further, assume
the projection given by Q(α, µ) satisfies Assumptions 1 and
2 and that they hold for each of the results discussed in
this section. We quickly discuss the Pontryagin Maximum
Principle [13] in general terms so that we can apply it to the
switched system optimization problem.

A. The Pontryagin Maximum Principle
Suppose the problem at hand is to find the u ∈ D ⊂

L2[0, T ] that minimizes the cost

J(x, u) =

∫ T

0
)(x(τ), u(τ)) dτ

where (x, u) is constrained to

ẋ = F (x, u), x(0) = x0

and F (x, u) and )(x, u) are continuously differentiable with
respect to x and continuous with respect to u. Pontryagin
says [13]:



Theorem 3: In order for the point u" ∈ D to be optimal,
there must exist a continuous ρ(t) = (ρ1(t), . . . , ρn(t))T *= 0
defined through the Hamiltonian,

H := H(ρ, x, u) = ρTF (x, u) + )(x, u)

as ρ̇ = −D2H(ρ, x, u)T such that

1) for all t ∈ [0, T ], H(ρ(t), x(t), u) of the variable u ∈
D attains its minimum at u = u"(t):

H(ρ(t), x(t), u"(t)) = inf
u∈D

H(ρ, x, u)

2) and H(ρ(T ), x(T ), u"(T )) = 0

Assuming u" is an interior point of D, then at u", it is
necessarily true that

D3H(ρ(t), x(t), u)|u→u!(t) = 0 (8)

With regard to switched systems, suppose D = Ω ⊂ U .
Clearly, for every point u ∈ Ω and for each ε > 0, the ball
at point u with radius ε, Bu(ε) ∈ U , is not fully contained
in Ω. Therefore, the interior of Ω is the null set and Eq.(8)
is not a necessary condition for optimality.

In the following subsection, we use the projection operator
from the space R to this set S with the understanding that the
point ξ" = (α", µ") ∈ R of the unconstrained problem—i.e.
the solution to minξ∈R J(P(ξ))—is in the interior of R and
thus Eq.(8) is a necessary condition for optimality.

B. Applying PMP to Switched Systems

For brevity, label ξ = (α, µ). Recall, the goal is to find
the ξ ∈ R which solves the optimization problem:




min
ξ∈R

J(ξ) =

∫ T

0
)
(
x(τ), Q(ξ(τ))

)
dτ

constrained to: ẋ = F (x(t), Q(ξ(t))), x(0) = x0.
(9)

Here, we restrict Qi(ξ; t) = 1(ai(ξ; t)) to the mappings with
functions ai(ξ; t) considered in Section III-B since under
those mappings, we can express the derivative of Q(ξ(t)).
The following is the necessary condition for optimality of
this optimization problem.

Lemma 4: In order for the point ξ" ∈ R with projected
schedule (Σ", T ",M") given by the mode sequence Σ" =
{σ"

1 , . . . ,σ
"
M!} and switching times T " = {T "

1 , . . . , T
"
M!−1}

so that

Q(ξ"(t)) = eσ!
i
, T "

i−1 < t < T "
i , i = 1, . . . ,M" (10)

to be the optimum of problem Eq.(9) there must exist a
continuous ρ(t) given by

ρ̇(t) = −Dfσ!
i
(x(t))T ρ(t)−D1)(x(t), Q(ξ"(t)))T ,

T "
i−1 < t < T "

i , ρ(T ) = 0,
(11)

such that for i = 1, . . . ,M" − 1,

0 =
(
ρT (Ti)fσ!

i
(x(T "

i )) +D2)
(
x(T "

i ), Q(ξ"(T "
i ))

)

σ!
i

)

·δ
(
aσ!

i
(ξ"(T "

i ))
)
Daσ!

i
(ξ"(T "

i ))

+
(
ρT (T "

i )fσ!
i+1

(x(T "
i )) +D2)

(
x(T "

i ), Q(ξ"(T "
i ))

)

σ!
i+1

)

·δ
(
aσ!

i+1
(ξ"(T "

i ))
)
Daσ!

i+1
(ξ"(T "

i )).

(12)

Proof: The proof follows from the Pontryagin maxi-
mum principle, Theorem 3. The Hamiltonian is H(ρ, x, ξ) =
ρTF (x,Q(ξ)) + )(x,Q(ξ)) where

ρ̇ = −D2H(ρ(t), x(t), ξ(t))T

= −D1F (x(t), Q(ξ(t)))T ρ(t)−D1)(x(t), Q(ξ(t)))T .
(13)

Since R is open and F (·, ·) and )(·, ·) are differentiable with
respect to the second argument, the optimal point ξ" must
satisfy Eq.(8):

0 = D3H(ρ(t), x(t), ξ(t))|ξ→ξ!(t)

= ρ(t)TD2F
(
x(t), Q(ξ(t))

)
◦DQ(ξ(t))

+D2)
(
x(t), Q(ξ(t))

)
◦DQ(ξ(t))

∣∣∣
ξ(t)→ξ!(t)

.

(14)

The partial derivative of F (·, ·) with respect to its second
argument is

B(x(t)) := D2F
(
x(t), Q(ξ(t))

)
= [f1(x(t)), . . . , fN (x(t))]

and is independent of Q(ξ). Given the derivative of Q from
Section III-B, Eq.(14) becomes:

0 =
(
ρT (t)B(x(t)) +D2)

(
x(t), Q(ξ(t))

))

·





δ
(
a1(ξ(t))

)
Da1(ξ(t))

...
δ
(
aN (ξ(t))

)
DaN (ξ(t))





∣∣∣∣∣∣∣∣∣
ξ→ξ!

.
(15)

The right side is clearly zero for all time t in which
each ai(ξ"(t)), i = 1, . . . , N is non-zero. The times when
ai(ξ"(t)) = 0 for some i = 1, . . . , N are switching
times. Let T " = {T "

1 , . . . , T
"
M!−1} be the set of times

for which an index of a(ξ"(t)) switches signs. These times
are also the discontinuity points of Q(ξ"(t)). Further, let
Σ" = {σ"

1 . . . ,σ
"
M!} be the sequence of indexes i for which

ai(ξ"(t)) > 0—i.e. for times t ∈ (T "
j−1, T

"
j ), aσ!

j
(ξ"(t)) >

0. Thus, at any switching time T "
i , i = 1, . . . ,M"−1, it is the

case that both aσ!
i
(ξ"(T "

i )) = 0 and aσ!
i+1

(ξ"(T "
i )) = 0. As

such, Eq.(15) is reduced to Eq.(12). Furthermore, the adjoint
equation, Eq.(13), may be given in its switching schedule
form as in (11) completing the proof.

In general, Eq.(12) cannot be simplified further because at
each of the switching times T "

i it is unclear how the hypersur-
faces given by aσ!

i
(ξ(T "

i )) = 0 and aσ!
i+1

(ξ(T "
i )) = 0 relate.

However, if the hypersurfaces were given by functions that
were so that aσ!

i
(ξ"(T "

i )) = −aσ!
i+1

(ξ"(T "
i )), Eq.(12) may

be simplified further. We make the following assumption:



Assumption 3: The projection P , defined through Eq.(3)
by Q, which in turn is defined through Eq.(4) by a is so that
for each ξ ∈ R,

aσi+1(ξ(Ti)) = −aσi(ξ(Ti))

where Ti and σi, i = 1, . . . ,M − 1 are the switching times
and modes of the schedule (Σ, T ,M) associated with Q(ξ).

With the addition of Assumption 3 to the projection, we find
that the result in Lemma 4 may be further simplified:

Corollary 5: Eq. (12) in Lemma 4 reduces to

0 = ρT (T "
i )
(
fσ!

i
(x(T "

i ))− fσ!
i+1

(x(T "
i )
)

+D2)
(
x(T "

i ), Q(ξ"(T "
i ))

)

σ!
i

−D2)
(
x(T "

i ), Q(ξ"(T "
i ))

)

σ!
i+1

(16)

if the projection additionally satisfies Assumption 3.
Proof: From Assumption 3,

aσ!
i+1

(ξ"(T "
i )) = −aσ!

i
(ξ"(T "

i )).

Since the delta function is even, we note that

δ(aσ!
i+1

(ξ"(T "
i ))) = δ(−aσ!

i
(ξ"(T "

i ))) = δ(aσ!
i
(ξ"(T "

i )))

for i = 1, . . . ,M" − 1. Furthermore,

Daσ!
i+1

(ξ"(T "
i )) = −Daσ!

i
(ξ"(T "

i )).

As such, Eq.(16) becomes

0 =
[(

ρT (T "
i )fσ!

i
(x(T "

i )) +D2)
(
x(T "

i ), Q(ξ"(T "
i ))

)

σ!
i

)

−
(
ρT (T "

i )fσ!
i+1

(x(T "
i )) +D2)

(
x(T "

i ), Q(ξ"(T "
i ))

)

σ!
i+1

)]

·δ
(
aσ!

i
(ξ"(T "

i ))
)
Daσ!

i
(ξ"(T "

i ))

In order for the right hand side to be zero, everything
multiplying the delta function must be zero.
Consider applying Corollary 5 when the projection is the
max projection.
Example-Max Projection: (cont) Since a1,max = −a2,max,
Assumption 3 holds for the max projection. Consider
the problem Eq.(9) where the projection is the max
projection—i.e. Q = Qmax. Suppose the running
cost, )(x(t), Q(ξ(t))) only depends on the state—i.e.
D2)(x(t), Q(ξ(t))) = 0(t), which is the case for switching
time optimization problems [3], [4], [10], [17]. Applying
Corollary 5 we find that the optimal point ξ" must associate
with an optimal schedule, (Σ", T ",M") so that

0 = ρT (T "
i )
(
fσ!

i
(x(T "

i ))− fσ!
i+1

(x(T "
i )
)
. (17)

and ρ is given by Eq.(11).
A couple of remarks: First, this condition on the opti-

mal schedule is equivalent to the hybrid system necessary
condition for optimality given in [14], [15] for the opti-
mization problem in this example. Second, the right side
of Eq.(17) is the gradient of the cost with respect to the
switching times—i.e. DJ(T )—as given from the switching

time optimization literature [3], [4], [10], [17]. Thus, any
switching time optimal schedule, (Σ", T ") is a local optimum
of the switched system optimization problem, Eq.(9) under
the max projection. More specifically, suppose a switching
time optimal schedule has associated control signal and state,
(x", u") ∈ S . Then, any point (α, µ) ∈ P−1(x", u") is a
local solution to Eq.(9).

V. CONCLUSION

This paper introduces projection-based methods for
switched system optimization where the mode sequence is a
variable. A general form of projection operator is considered,
as well as two candidate projections. One is dependent only
on the immediate value of the switching control. The other is
variable on the projected state error and can be modeled as a
feedback control loop. The primary result of the paper shows
using the Pontryagin maximum principle that the necessary
condition of optimality for the unconstrained problem is
equivalent to the necessary condition from switching time
optimization. Future work consists of projection-based nu-
merical algorithms for switched system optimization.
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