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Abstract— This paper presents a projection-based variational
formulation of nonsmooth mechanics. In contrast to existing
approaches, nonsmooth behavior is captured through the use of
a projection mapping on the configuration space. After clearly
defining a projected Hamilton’s principle, our main focus is on
the existence of admissible projection mappings and variational
solutions. This lays the foundation necessary for a variety
of useful future developments, which includes optimization
techniques, stochastic nonsmooth mechanical system models,
and integrator symplecticity proofs.

I. INTRODUCTION

There are many mechanical systems that provide utility
through interaction with their environment and other sys-
tems. In doing so, these systems necessarily exhibit be-
haviors involving collisions and contact between surfaces.
The dynamics describing these behaviors will include body
velocities, accelerations, and forces that may be nonsmooth
or even discontinuous. In the task of modeling these systems,
the dominant approach is the generalization of Newton’s
law to include measure-valued forces using the theory of
measure differential inclusions [2]. An alternative to this
approach is the extension of variational principles from
smooth classical mechanics to include nonsmooth trajectories
[19], [11]. Variational formulations give insight into the
nonsmooth mechanics and associated conservation laws, but
typically involve difficulties when proving the existence and
uniqueness of solutions.

In this work, we present a projection-based variational
formulation of nonsmooth mechanics, which we refer to
as the Projected Hamilton’s Principle (PHP). Rather than
working with a path space of nonsmooth trajectories, the
PHP includes singularities through the use of a nonsmooth
projection mapping. Our approach is motivated by the bene-
fits obtained when using projection mappings in variational
formulations of optimal control [9], [3]. This paper will
demonstrate some benefits already discovered for the PHP.
For one, the approach is analogous to the classical treatment
of autonomous smooth systems [13]. Specifically, energy
conservation arises as a redundant consequence of the PHP
and the Hamilton’s principle for smooth systems, whereas
it is a necessary stationarity condition in the variational
principles of [19], [11]. Also, by examining the PHP in
discrete time, we have been able to show the variational
nature of an existing simulation technique.
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Beyond these advantages, we anticipate further demonstra-
ble benefits to arise in future applications of the PHP. The
usage of smooth variations will simplify the formulation of
nonsmooth optimal controls, as it has for switching system
optimal controls in [3], and stochastic nonsmooth dynamics,
as it has for stochastic dynamics on Lie groups in [4].
Also, the link between discrete variational principles and
discrete time symplecticity is well known [14], [8], and thus
developing the PHP in discrete time may aid in proving
various impact integration methods are symplectic.

To lay the foundation for future developments of the PHP,
the main focus of this work is on the existence of its sta-
tionary solutions. The existence and uniqueness of solutions
for nonsmooth mechanical systems are complex issues, with
many of the results requiring the use of measure differential
inclusions [12], [18]. The issue is further complicated in
our approach, as we must address the existence of both
admissible projection mappings and admissible solutions.
By restricting to a relevant, structured class of mechanical
systems, we are able to analytically derive an admissible
projection mapping and link the PHP to existing results.

The structure of this paper is as follows. In Section II, we
will review the existing nonsmooth variational principles of
[11], [6], and in contrast present the PHP. In Section III, we
restrict ourselves to a specific class of Lagrangian systems
and explicitly define, local around the impact configuration, a
candidate projection mapping for the PHP. In Section IV, we
analytically validate that our candidate projection maps to the
feasible space, and comment on the existence of variational
solutions. In Section V, we discuss the discretization of the
PHP and its relation to existing simulation techniques.

II. VARIATIONAL PRINCIPLES FOR NONSMOOTH
MECHANICS

In this section, we discuss nonsmooth Lagrangian me-
chanics for a system undergoing elastic impacts due to the
presence of a unilateral constraint. Initially, we review the
variational approach seen in [11], [6], which utilizes the
notion of a nonsmooth path space. Having provided this
context, we present the approach according to the PHP. We
utilize a smooth path space, relying on a projection mapping
to account for nonsmooth behaviors.

A. Hamilton’s Principle with a Nonsmooth Path Space

To begin our discussion of nonsmooth mechanics, we
establish the following system model for the remainder of
the paper. Consider a mechanical system with configuration
space Q (assumed to be an n-dimensional smooth manifold
with local coordinates q) and a Lagrangian L : T Q→R. We



will treat this system in the presence of a one-dimensional,
holonomic, unilateral constraint defined by a smooth, an-
alytic function φ : Q → R such that the feasible space of
the system is C = {q ∈ Q |φ(q) ≥ 0}. We assume C is a
submanifold with boundary in Q. Furthermore, we assume
that 0 is a regular point of φ such that the boundary of
C, ∂C = φ−1(0), is a submanifold of codimension 1 in Q.
Physically, ∂C is the set of contact configurations.

The derivation of the nonsmooth impact mechanics of
the Lagrangian system above, using the approaches of [11],
[6], is as follows. To apply a space-time formulation of
Hamilton’s principle, we use the following path space of
nonsmooth curves

Mns = T ×Q,

where,

T = {ti ∈ (0,1)},
Q = {q(t) : [0,1]→C | q(t) is C0, piecewise C2,

∃ one singularity in q(t) at ti, q(ti) ∈ ∂C},

where ti ∈ (0,1) signifies the time of impact. Moving for-
ward, we will refer to an element of this path space with
the shorthand q̄ := (ti,q(t)) ∈ Mns. On Mns, we define the
action Gns : Mns → R as

Gns(q̄) =
∫ 1

0
L
(
q(t), q̇(t)

)
dt. (1)

We now examine the first variation of Gns. As in [13], this
is done with variations δ q̄ ∈ Tq̄Mns defined as

δ q̄ :=
d

dε
q̄ε

∣∣
ε=0, (2)

where q̄ε belongs to a family of curves in Mns with smooth
dependence on ε and q̄0 = q̄. We will also make use
of this definition componentwise, with δ q̄ = (δ ti,δq(t)) =
( d

dε
tε
i |ε=0,

d
dε

qε(t)|ε=0). We can now calculate

dGns(q̄) ·δ q̄ =
∫ ti

0

[
∂L
∂q

− d
dt

(
∂L
∂ q̇

)]
δq(t)dt

+
∫ 1

ti

[
∂L
∂q

− d
dt

(
∂L
∂ q̇

)]
δq(t)dt

+
[

∂L
∂ q̇

·δq(t)
]t−i

0
+

[
∂L
∂ q̇

·δq(t)
]1

t+i

+
[

∂L
∂ q̇

q̇−L
]t+i

t−i

·δ ti.

Hamilton’s principle of stationary action requires that
trajectories satisfy dGns(q̄) ·δ q̄ = 0 for all variations δ q̄ with
δq(0) = δq(1) = 0. This is stated equivalently as

∂L
∂q

− d
dt

(
∂L
∂ q̇

)
= 0, (3)

for all t ∈ [0,1]\ti, [
∂L
∂ q̇

q̇−L
]t+i

t−i

= 0, (4)

and [
−∂L

∂ q̇

]t+i

t−i

·δq(ti) = 0, (5)

for all variations δq(ti) ∈ T ∂C. It is crucial to recognize the
role of the variation δq(ti) in equation (5). That δq(ti) ∈
T ∂C rather than δq(ti) ∈ T Q is an immediate consequence
of the constraint q(ti) ∈ ∂C imparted by the path space, and
it reduces the dimension of equation (5) to n−1. Only with
the addition of equation (4) do we have a deterministic set
of equations of dimension n.

Qualitatively, equation (3) indicates the system obeys the
standard Euler-Lagrange equations everywhere away from
the impact time, ti. At the time of impact, equations (4)
and (5) imply conservation of energy and conservation
of momentum tangent to the impact surface, respectively.
Unsurprisingly, these are the standard conditions describing
an elastic impact.

B. A Projected Hamilton’s Principle

We now consider an alternative to the approach in the
prior subsection. Our goal is to, if possible, derive the correct
nonsmooth dynamics for elastic collisions without the use
of nonsmooth paths and the space Mns. Rather, we use a
smooth path space and a projection P : Q → C. With these
items we attempt to construct a variational principle with
projected solutions satisfying equations (3), (4), and (5).

We begin with the same path space as in the Hamilton’s
principle for smooth dynamics:

Ms = {z(t) : [0,1]→ Q | z(t) is C2}.

We have made use of the variable z for paths in Ms to
distinguish them from paths q ∈ Q. Moving forward, it is
crucial to keep in mind that paths q(t) are restricted to C,
whereas paths z(t) lie in the overlying Q (maybe in part in its
inadmissible portion, Q\C). Since there are no singularities
permitted with Ms, we will introduce nonsmoothness into
Hamilton’s principle through the use of a projection P : Q→
C. Specifically, we work within the family of projection
mappings

P = {P : Q →C | P(P(z)) = P(z), P is C0 on Q,

P is C2 on Q\∂C, P|C is an isomorphism,

P|Q\C is an isomorphism}.

Using P ∈P , consider the action Gp : Ms → R defined as

Gp(z(t)) =
∫ 1

0
L
(
P(z(t)),P′(z(t))ż(t)

)
dt, (6)

where P′ signifies the Jacobian of P. It should be apparent
that this action is equivalent to that in equation (1) under
the substitution P

(
z(t)

)
= q(t). To make a direct comparison

with previous results, when taking variations of Gp we will
assume z(t) crosses ∂C during one isolated instance at time
ti. Extending the following analysis to multiple crossings



is straightforward.1 Defining δ z(t) ∈ Tz(t)Ms in the same
manner as δ q̄ in equation (2), we calculate

dGp(z(t)) ·δ z(t) =
∫ ti

0

[
∂L
∂q

− d
dt

(
∂L
∂ q̇

)]
P′δ z(t)dt

+
∫ 1

ti

[
∂L
∂q

− d
dt

(
∂L
∂ q̇

)]
P′δ z(t)dt

+
[

∂L
∂ q̇

P′ ·δ z(t)
]t−i

0
+

[
∂L
∂ q̇

P′ ·δ z(t)
]1

t+i

.

If it is not evident, all instances of ∂L
∂q and ∂L

∂ q̇ are evaluated
at (P(z(t)),P′(z(t))ż(t)) and all instances of P′ are evaluated
at z(t).

Again employing Hamilton’s principle, we require that
trajectories satisfy dGp(z(t)) · δ z(t) = 0 for all variations
δ z(t). For this case, the stationarity conditions are

∂L
∂q

− d
dt

(
∂L
∂ q̇

)
= 0, (7)

for all t ∈ [0,1]\ti, and[
−∂L

∂ q̇
P′

]t+i

t−i

= 0. (8)

Note that equation (7) appears without the presence of P′

only as a result of the invertibility condition in P . That
P is invertible implies span(δ z(t)) = span(P′ · δ z(t)) for all
t 6= ti and thus equation (7), or equivalently equation (3),
holds. The question remains, do projected solutions P(z(t))
satisfy equations (4) and (5) as well? We cannot make any
conclusions without additional structure in the definition of
P, which we explore in the following section.

III. DEFINING A CANDIDATE PROJECTION

In this section, we further analyze the potential equiva-
lence between the variational solutions in subsections II-A
and II-B. First, we continue work with the general case as
long as possible, through the use of additional restrictions
on the projection mapping P. Eventually, we require more
information about the interaction between L and P. Thus,
we restrict the class of systems we wish to consider and
analytically define a candidate projection P about the impact
configuration.

A. Additional Constraints on the Projection

First, we consider conditions for projected solutions
P(z(t)) to satisfy equation (5). In the following, and for the
remainder of the paper, we use the shorthand zi = z(ti) for
the impact configuration. We note that if

P′ ·δ zi = δ zi, (9)

for all δ zi ∈ Tzi∂C, then solutions of equation (8) will satisfy
equation (5) as well. This is not a necessary but sufficient
condition on P, and one we will use.

1Truthfully, it is straightforward with the previous approach as well,
though it requires changes in the definition of Mns.

Secondly, we turn to P(z(t)) satisfying equation (4).
Consider just the first term, ∂L

∂ q̇ q̇, and examine that by
postmultiplying equation (8) by ż(ti) we have

0 = 0 · ż(ti),

=
[

∂L
∂ q̇

P′
]t+i

t−i

ż(ti),

=
[

∂L
∂ q̇

d
dt

(
P(z)

)]t+i

t−i

,

where we have made use of the property ż(t−i ) = ż(t+i ). Thus,
without any additional conditions on P ∈ P , we have that
solutions of equation (8) conserve ∂L

∂ q̇ q̇ through the impact.
This reduces equation (4) to the equivalent condition[

−L
(
P(z),P′(z)ż

)]t+i

t−i
= 0. (10)

Seemingly, we cannot make further determinations about this
condition without more information about the Lagrangian,
L. Thus, to progress, we assume a specific form of the
Lagrangian in the next subsection.

B. Restricting the Class of Lagrangians

In robotics [15], it is common to see a variety of sys-
tems (for instance, mechanisms, bipeds, etc.) modeled with
Lagrangians of the form

L(q, q̇) =
1
2

q̇T M(q)q̇−V (q), (11)

where M(q) is a symmetric positive definite mass matrix
and V (q) is a potential function. We will proceed working
with the Lagrangian (11) and the simplifying assumption2

Q = Rn. We now have ∂L
∂ q̇ = q̇T M(q) and

∂L
∂ q̇

q̇−L =
1
2

q̇T M(q)q̇+V (q).

As seen in [16], [5], [17], if M(q) is invertible on all of ∂C
then the equations (4) and (5) yield the explicit solution3

q̇(t+i ) = R(q(ti))q̇(t−i ), (12)

with

R(q(ti)) =
(

I− 2
∇φ T M−1∇φ

M−1
∇φ∇φ

T
)

,

where all instances of ∇φ and M−1 are evaluated at the
argument q(ti) and I signifies the n×n identity matrix. We
will use this solution as a guide to construct P about zi.

Let us assume that P is the identity on C, a natural choice.
Under this assumption q(ti) = z(ti) and q̇(t−i ) = ż(t−i ) =
ż(t+i ), where the final equality follows from the continuity of

2This assumption is not required for the impact mechanics that follow,
and is primarily used to simplify the definition of P and the end of the
subsection. We believe we can extend the given definition of P to general
manifolds, but exclude this extension for brevity.

3In actuality, (4) and (5) also admit a second solution q̇(t−i ) = q̇(t+i ), but
we disregard this as it would cause q(t) to exit the feasible space C for
t > ti.



ż. Substituting in these relations and P′(z)ż for q̇ in equation
(12), we arrive at

P′(z(t+i ))ż(t+i ) = R(zi)ż(t+i ),

or simply P′(z(t+i )) = R(zi). We note that this definition of
P′ satisfies condition (9), a consequence of ∇φ T · δ zi = 0
for all δ zi ∈ Tzi∂C. Also, the combination P′(z(t−i )) = I and
P′(z(t+i )) = R(zi) satisfies equation (10) since

R(zi)T M(zi)R(zi) = M(zi),

and V is independent of q̇. Thus, we have a Jacobian P′ that
yields the correct impact dynamics through equation (8).

We must now lift the P′ above to a candidate projection P.
Remembering that we are working in Q = Rn, one mapping
P with the correct Jacobian is

P(z) =

{
z, z ∈C,

z− 2φ(z)
∇φT M−1∇φ

M−1∇φ , z ∈ Q\C,
(13)

where all instances of ∇φ and M−1 are evaluated at zi and
only z and φ(z) are evaluated at the argument z. This P
produces the correct impact dynamics with C2 solutions z(t)
satisfying the stationarity condition (8). However, we cannot
guarantee that this mapping is actually a projection P ∈P .
Also, in the instance that it is, we would like some guarantee
on the existence of solutions z(t). These issues are explored
in the following section.

IV. VALIDATION OF THE CANDIDATE
PROJECTION

In this section, we examine the properties of the candidate
projection P in equation (13). While we cannot generally
verify P ∈P , we will show analytically that there exists an
open neighborhood N ⊂ Q local to the impact configuration
zi in which P acts as a projection. With this property,
we then discuss the existence of solutions under the PHP.
We conclude examining an example system, the double
pendulum, and computationally verify the existence of N.

A. Locally Validating the Projection about the Impact

Examining the definition of the candidate P in (13), we
cannot generally say P ∈P because we have no guarantee
that P : Q → C. Further, we cannot verify this property
without more information about Q, C, and φ . Rather than
invoking further restrictions and assumptions to prove this,
we provide the following lemma.

Lemma 1: There exists an open neighborhood N ⊂ Q\C
of zi such that P : N∪C →C.

Proof: Consider a general z ∈ Q\C, and examine the
Taylor expansion

φ(z) = φ(zi)+∇φ
T (z− zi)+O

(
‖z− zi‖2) ,

= ∇φ
T (z− zi)+O

(
‖z− zi‖2) ,

where ‖ · ‖ is the standard Euclidean metric on Rn. We
substitute this expansion in the following

P(z)− zi = z− zi−
2φ(z)

∇φ T M−1∇φ
M−1

∇φ ,

= R(zi)(z− zi)+O
(
‖z− zi‖2) ,

= O(‖z− zi‖),

indicating ‖P(z)−zi‖2 = O
(
‖z− zi‖2

)
. With this, we expand

φ (P(z)) as

φ (P(z)) = ∇φ
T (P(z)− zi)+O

(
‖P(z)− zi‖2) ,

= ∇φ
T (P(z)− zi)+O

(
‖z− zi‖2) ,

= ∇φ
T R(zi)(z− zi)+O

(
‖z− zi‖2) ,

=−∇φ
T (z− zi)+O

(
‖z− zi‖2) ,

=−φ(z)+O
(
‖z− zi‖2) .

Noting that ∇φ is nonzero at zi, there exists a neighborhood
N of zi in which −φ(z) = O(‖z− zi‖) and sgn(φ(P(z))) =
−sgn(φ(z)) > 0 for all z∈N. Therefore P(N)→C, and since
P is the identity on C the extension to P : N∪C→C is trivial.

In the following subsection, we discuss how the existence
of N provided by Lemma 1 may provide for the local
existence of solutions.

B. Existence of Variational Solutions z(t)

Global existence and uniqueness of solutions for nons-
mooth mechanical systems are complex issues, and results
are often intractable. However, it is mentioned in [6] that
for the Lagrangian (11) with quadratic kinetic energy and
the boundary ∂C of codimension-one in Q, solutions to
equations (3), (4), and (5) exist and are unique locally.
Given the complexity introduced by the many-to-one P in
our projected Hamilton’s principle, we focus our discussion
on the existence of solutions and save local uniqueness as the
subject of future work. With regards to existence, we have
the following results.

While we have been working with P as defined in equation
(13), we note here that we really only use that definition
for its value of P′ at ∂C. There is substantial freedom to
smoothly vary P on Q\C away from ∂C, as illustrated in the
following lemma.

Lemma 2: Given the following:

• a Lagrangian of the form (11) on Q = Rn,
• a boundary ∂C of codimension-one,
• P ∈P ,
• for all ζ > 0 there exists η > 0 such that for any z∈Q\C

and zi ∈ ∂C, ‖z− zi‖ < η implies ‖P′(z)−R(zi)‖ < ζ ,
where ‖ · ‖ applied to elements of Rn×n is the induced
matrix norm of the Euclidean metric,

there exists z(t) ∈ Q such that dGp(z(t)) · δ z(t) = 0 and
P(z(t)) satisfies equations (3), (4), and (5).

Proof: Given the system parameters, we know there
exists q(t) satisfying (3), (4), and (5). We construct z(t)



explicitly as

z(t) =

{
q(t), t ∈ [0, ti],
P|−1

Q\C(q(t)), t ∈ (ti,1].

That this z(t) satisfies equation (7) is trivial. The given
condition on P′(z) indicates P′(z(t+i ))ż(t+i ) = R(zi)ż(t+i ), and
thus (5) is satisfied as well. Lastly, in subsection II-B it was
shown (7) and (5) are equivalent to dGp(z(t)) ·δ z(t) = 0.

The above lemma provides a general condition to identify
a subset of P that produces the correct elastic collision
dynamics under the PHP. For some unilateral constraints φ ,
the projection P in (13) falls into this subset.

Corollary 3: Given the following:
• a Lagrangian of the form (11) on Q = Rn,
• a planar boundary ∂C defined by the linear constraint

φ(q) = bT q, where b ∈ Rn,
there exists z(t)∈Q and P∈P such that dGp(z(t)) ·δ z(t) =
0 and P(z(t)) satisfies equations (3), (4), and (5).

Proof: Given the system parameters, we know there
exists q(t) satisfying (3), (4), and (5). Hence, there exists
zi = q(ti) such that

R(zi) =
(

I− 2
bT M−1b

M−1bbT
)

,

where M−1 is evaluated at zi. Using the definition of P
in (13), we have P|Q\C(z) = R(zi)z. Noting φ(P|Q\C(z)) =
−φ(z), we have N = Q\C. Additionally, R(zi)2 = I indicates
P|−1

Q\C(z) = R(zi)z. From here, it is straightforward to verify
P ∈P and apply Lemma 2.

Existence results when using P as in equation (13) with
arbitrary φ are less certain. Essentially, we cannot determine
if P|N : N →P(N) is an isomorphism in general. When P|N is
invertible, one can construct a solution z(t) from an existing
solution q(t) as in Lemma 2, but only so long as q(t)∈ P(N)
following the impact. This is not considered to be a major
issue, as the system could be evolved further in time by
reinitializing with z(t) = q(t).

C. Computational Validation for an Example System

To get some sense of the nature of the neighborhood N, we
present the following example. Consider a double pendulum
in the plane composed of two point masses, m1 and m2,
connected in sequence (from the origin) by inertialess rods of
respective lengths L1 and L2. We henceforth refer to the rods
by their lengths. For simplicity,4 we specify the configuration
space as Q = R2 with coordinates q = (θ1,θ2), where θ1 is
the angle of L1 with respect to vertical and θ2 is the angle of
L2 with respect to L1. Assuming there exists only potential
forces and they are independent of q̇, the double pendulum
fits the form of (11) with

M(q) =[
m1L2

1 +m2(L2
1 +L2

2 +2L1L2c2) m2(L2
2 +L1L2c2)

m2(L2
2 +L1L2c2) m2L2

2

]
,

4While the true configuration space of the double pendulum is the 2-torus,
T 2, we work in R2 to remain true to our prior assumptions.

where we have introduced the shorthand ci = cosθi.
When introducing impacts into the system, we apply the

unilateral constraint

φ(q) = L1s1 +L2s12 +1,

where si = sinθi and si j = sin(θi + θ j). Physically, this
constrains the horizontal position of m2 (the end of the
double pendulum) to values greater than or equal to −1.

Using m1 = m2 = L1 = L2 = 1, we have computationally
sampled the configuration space Q to verify the existence of
the subset N for a variety of impact configurations zi. The
results are shown in Figure 1. We see that for each impact
condition, there is a blue set N indicating a domain on which
a solution z(t) may evolve past a collision and into Q\C. The
existence of a red area in each plot, composed of z for which
P(z) /∈C, means we should not expect solutions z(t) to exist
on a long time horizon, and reinitializing as discussed in the
prior subsection may be required.

V. DISCRETE TIME NONSMOOTH MECHANICS
WITH PROJECTIONS

As it is often the case that we cannot determine analytical
solutions z(t) satisfying equations (7) and (8), we regularly
turn to simulation. With our emphasis on the variational
nature of solutions, a natural choice of simulation method
is the use of discrete mechanics and variational integrator
(VI) theory [14], [8]. VIs are generated with discrete time
variational principles and represent a class of symplectic-
momentum integration schemes. The work of [6] presents a
VI for the nonsmooth mechanics of subsection II-A, although
with known energy stability issues [16]. In the following
section, we explore a discrete time version of the projected
Hamilton’s principle in subsection II-B.

A. Variational Integrators via a Discrete Projected Hamil-
ton’s Principle

Discrete mechanics specifies that in order to capture
smooth dynamics in discrete time we begin by replacing
our notion of the state space T Q with Q × Q and sub-
stitute for the continuous trajectory z(t) a discrete path
zd : {0,h, . . . , jh,( j +α)h,( j +1)h, . . .Nh = 1} → Q, N ∈ N,
where h is a constant timestep. This path is defined such that
zk := zd(kh) is considered an approximation to z(kh). Notice
that we treat the existence of an impact along the path zd in
the same manner as [6]. That is, we assume knowledge of the
time interval [ jh,( j +1)h], with j ∈ N and j < N, in which
the impact occurs. Then we use α ∈ (0,1) to parameterize the
partial timestep, αh, that precisely identifies the impact time,
( j + α)h. With this convention, the discrete configuration
z j+α := zd(( j+α)h)∈ ∂C approximates the continuous time
impact configuration z(ti).

Based on these discretizations, the action integral in
Hamilton’s principle is approximated on discrete intervals
of time using a discrete Lagrangian Ld : Q×Q×R such that

Ld(zk,zk+1,h)≈
∫ (k+1)h

kh
L(z(t), ż(t))dt.
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Fig. 1. For a variety of impact configurations (top row), we computationally validate that the mapping P acts as a projection on some subset N ⊂ Q\C.
Using samples of the double pendulum’s configuration space Q (bottom row), we see the impact configuration zi (black dot), the feasible space C (green),
the neighborhood N ⊂ Q\C with P(N)⊂C (blue), and the remainder Q\(C∪N) (red). For this system, N accounts for a sizeable portion of Q\C.

In practice, Ld is defined using quadrature rules, with
higher order rules resulting in higher order integrators [14].
Regardless of the choice of discrete Lagrangian, one can
approximate the action (6) with the discrete action

Gd(zd) =
j−1

∑
k=0

Ld
(
P(zk),P(zk+1),h

)
+Ld

(
P(z j),P(z j+α),αh

)
+Ld

(
P(z j+α),P(z j+1),(1−α)h

)
(14)

+
N−1

∑
k= j+1

Ld
(
P(zk),P(zk+1),h

)
.

We now examine the consequences of a discrete pro-
jected Hamilton’s principle that requires solutions to satisfy
dGd(zd) ·δ zd = 0 for all variations δ zd with δ z0 = δ zN = 0.
Using qi as shorthand for P(zi) and Di to denote the slot
derivative, the stationarity conditions for this case are

0 = D2Ld(qk−1,qk,h)+D1Ld(qk,qk+1,h), (15)

for 1 ≤ k ≤ N−1 with k 6= j, j +1, and around the impact

0 = D2Ld(q j−1,q j,h)+D1Ld(q j,q j+α ,αh), (16)
0 = D2Ld(q j,q j+α ,αh)P′(z−j+α

)

+D1Ld(q j+α ,q j+1,(1−α)h)P′(z+
j+α

), (17)

0 = D2Ld(q j+α ,q j+1,(1−α)h)
+D1Ld(q j+1,q j+2),h). (18)

Equation (15) is referred to as the discrete Euler-Lagrange
(DEL) equation and in this case, remembering our shorthand
qi = P(zi), it provides an implicit map from zk−1, zk to zk+1.
In practice, one would integrate solving the DEL equation
for zk+1 until a crossing of ∂C is indicated by the condition
sgn(φ(P(zk+1))) 6= sgn(φ(P(zk))). This occurrence would

identify k as j, and the existing zk+1 must be disregarded.
Instead of using that solution, one solves equation (16) in
combination with the condition z j+α ∈ ∂C to determine
z j+α and α . Following this, one solves equation (17) for
z j+1, equation (18) for z j+2, and returns to using the DEL
equations until the next collision is identified.

We now turn our attention to an existing impact integration
method, and its relation to the discrete time impact equations
(16), (17), and (18). The Collision Verlet Algorithm (CVA)
of [10] was designed for integrating Hamiltonian system
models of molecular dynamics with hard-core potentials. The
discrete time impact equations for the CVA read5(

q−j+α
, p−j+α

)
= Ψαh

(
q j, p j

)
, (19)(

q+
j+α

, p+
j+α

)
= RCVA

(
q−j+α

, p−j+α

)
, (20)(

q j+1, p j+1

)
= Ψ(1−α)h

(
q+

j+α
, p+

j+α

)
, (21)

where pi represents the momentum6 of the Hamiltonian
system in discrete time, Ψh : T ∗Q → T ∗Q represents the
discrete flow map for the Störmer-Verlet [7] method, and
RCVA : T ∗Q → T ∗Q is the reset map

RCVA(q, p) =
(
q, p+λ∇φ

T )
,

where ∇φ is evaluated at q, and λ ∈ R is a Lagrange
multiplier sized appropriately to conserve energy. We have
the following result comparing our variational equations with
the CVA.

5The algorithm in [10] is defined to handle an arbitrary number of
collisions per time step. We present a simplified version of the algorithm
under a single collision assumption.

6Momentum, p ∈ T ∗
q Q, is a covector and is thus treated as a row vector

in Rn for the remainder of our calculations.



Lemma 4: Given the following:
• Q, L, ∂C, and P as in Lemma 2,
• M is an global isomorphism on Q,
• the Störmer-Verlet producing discrete Lagrangian

Ld(qk,qk+1,h) =
h
2

(
L

(
qk,

qk+1−qk

h

)
+L

(
qk+1,

qk+1−qk

h

))
,

the variational discrete impact equations (16), (17), and (18)
are equivalent to the CVA equations (19), (20), and (21).

Proof: As we are examining integration methods in
both the Lagrangian and Hamiltonian and settings, we facil-
itate their comparison by introducing continuous and discrete
Legendre transformations [14]

(q, p) =
(

q,
∂L
∂ q̇

)
, (22)

(qk+1, pk+1) = (qk+1,D2Ld(qk,qk+1,h)) , (23)
(qk, pk) = (qk,−D1Ld(qk,qk+1,h)) . (24)

The discrete transformations (23) and (24) immediately
provide equivalence between the respective pairs of partial
timestepping equations (16), (18) and (19), (21). Substituting
(11) into (22), we have pT = M(q)q̇ and

RCVA(q, p) =
(

q,
(
M(q)R(q)M−1(q)pT )T

)
,

=
(

q,
(
RT (q)pT )T

)
,

= (q, pR(q)) .

With this simplified form of RCVA, we see that (17) is
equivalent to (20) by substitutions of P′(z+

j+α
)) = R(z j+α)

and (23), (24) and a postmultiplication by R(z j+α).
That we can demonstrate the CVA is variational in nature
is a significant development. Further analysis of the discrete
PHP may provide a proof of the symplecticity of the CVA,
which has thus far not been determined.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Our variational formulation of nonsmooth mechanics uses
smooth trajectories and a nonsmooth projection mapping
on the configuration space. With this approach we have
produced results analogous to those for autonomous smooth
systems, such as the condition of energy conservation as a
consequence of, not condition for, stationarity. By restricting
the class of systems considered, we have produced pre-
liminary results for the existence of admissible projection
mappings and stationary solutions. Examining our projected
Hamilton’s principle in discrete time, we revealed the varia-
tional nature of the CVA for impact integration.

B. Future Works

As discussed at the outset, there is great potential for
further applications of our projected Hamilton’s principle.
Moving forward, we intend to add forcing and controls,
eventually producing optimal control generation methods

in a manner analogous to [9]. Further, we may introduce
stochastic effects in our system model, with the projected
Hamilton’s principle aiding in the derivation of a version of
the Fokker-Planck equations for nonsmooth systems. Work-
ing in discrete time, we hope to determine the symplecticity,
if it truly exists, of the CVA. Also, we intend to demonstrate
the variational nature of other existing integration techniques
by using different choices of the projection P.
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