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Abstract— This paper extends recent work in linear
switching-time optimization to a class of impulsive systems. It
is shown that for cases with and without reference the first
derivative of a cost function over an arbitrary number of
impulse times can be calculated by computing two or three
total integrals respectively, which can be done offline. This
makes it possible to numerically optimize a cost function online
algebraically. A simulated example drawn from data association
to which impulse optimization methods are applied is provided.

I. INTRODUCTION

Switching-time optimization has been the subject of nu-
merous recent works[1], [2], [4], [5], [9], [10], [11], [12],
[13], [17]. The goal of switching-time optimization is to
optimize a cost function with respect to the finite number of
times at which the dynamics switch. The systems considered
typically have a known sequence of switched dynamics ([1],
[2], [4], [6], [13] focus on optimizing over the sequence order
as well), where the resulting system trajectory is C0.

Considering only first-order optimizations, the authors in
[5], [10], [11], [12], [13] present an algorithm which reduces
the calculation of the first-derivative of a cost function with
respect to an arbitrary number of switching times to a single
integration at each step of the numerical descent algorithm.
The authors in [7] show that a further reduction in the number
of total calculations is possible by considering only systems
with linear dynamics.

This paper presents an extension of the previous work in
[14], [15], which considers optimizing over an arbitrary num-
ber of impulse times for both linear and nonlinear systems.
The main contribution of this paper is the development of
the algorithm in Section III, which shows that by restricting
the scope of the systems considered to those with linear
dynamics, it is possible to optimize over an arbitrary number
of impulse times by computing a single integral for the
entire optimization. Previous work in [14], [15] requires a
single integral be computed for each step of the optimization
algorithm. This paper presents a direct extension of the work
in [7] to a class of impulsive systems.

The rest of this paper is organized as follows: Section
II analytically defines the type of impulsive systems con-
sidered in this work. Section III provides the derivation
of the linear time-varying impulse optimization algorithm,
considering both systems with and without reference signals.
Section IV presents an example system for which the impulse
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optimization described in Section III solves a data association
problem. Finally, section V gives conclusions and directions
for future work.

II. IMPULSIVE SYSTEMS

This paper considers linear-time varying (LTV) systems
which experience a known number of impulses. In general,
the assumption of a known number of impulses does not
have to be made as has been shown in previous work [16];
it is possible to estimate the number of impulses based on a
trajectory optimization procedure. In this work it is assumed
that the dynamics of the system in between the times at
which impulses occur are strictly linear, i.e., assuming that
the times at which impulses occur belong to the set T =
{T1, T2, . . . , TN−1}

ẋ(t) = A(t)x(t), x(Ti) = xTi
, Ti ≤ t < Ti+1. (1)

The solution to the linear dynamics in between impulses can
be written

x(t) = Φ(t, Ti)x(Ti), Ti ≤ t < Ti+1, (2)

where Φ(t, Ti) is a state transition matrix defined to be the
solution to Φ̇(t, Ti) = A(t)Φ(t, Ti), Φ(t, t) = I . Equations
(1) and (2) assume that the dynamics in between impulse
times are always A(t). This is a reasonable assumption for
the example presented Section IV. Extending the results
presented in this work to systems that experience switched
dynamics at the times which impulses occur is a straightfor-
ward direction of future work, as discussed in Section V.

Lemma 1 The state x(·) at time t, where Ti ≤ t < Ti+1 can
be written

x(t) = Φ(t, T0)x0 +
∑j−1

i=1 Φ(t, Ti)δi, T1 ≤ t < Tj

x(t) = Φ(t, T0)x0, t < T1.
(3)

Pf: Using the properties of the state transition matrix and
assuming that the impulse magnitudes are finite, it is possible
to write

x(t) = Φ(t, Tj−1) [Φ(Tj−1, Tj−2) [. . . [Φ(T1, T0)x0

+δ1] . . . ] + δj−1] , Tj−1 ≤ t < Tj . (4)

Equation (3) is easily obtained by expanding (4) using the
properties of the state transition matrix. The second part
of (3) is obtained directly from the definition of the state
transition matrix. �



III. OPTIMALITY CONDITIONS FOR IMPULSIVE SYSTEMS
WITH QUADRATIC COST

A. No Reference Signal

The cost functional is defined to be

J(·) =
∫ tf

0

`(s, x(s))ds+M(x(Tn)), (5)

where `(s, x(s)) is quadratic in the state x(s). In this sub-
section it is assumed that `(s, x(s)) = 1

2x
T (s)Q(s)x(s) and

M(x(TN )) = 1
2x

T (TN )P1x(TN ). In the rest of this paper it
is assumed, for simplicity, that the impulse magnitudes are
known. A method for simultaneously optimizing over the
impulse times and magnitudes was presented in prior work
[15]. In order to optimize over the times at which impulses
occur in the system, the following optimization problem is
defined

min
T

J(·) s.t. ẋ(t) = A(t)x(t). (6)

It was shown in previous work [14] that the first-order
optimality condition of the cost functional J(·) with respect
to the impulse times can be written in terms of the co-
state ρ(t)

DTiJ(·) ◦ ∂Ti =

ρ(t, Ti) ◦Xi + `(x(T−i ), T−i )− `(x(T+
i ), T+

i ), (7)

where Xi = (A(T−i )x(T−i )−A(T+
i )x(T+

i )) is a term which
comes from taking the time derivative of the trajectory x(t).
The second and third terms on the right hand side of (7)
come from applying Leibniz’s rule at the impulse time Ti.
The co-state can be shown [14] to be equal to

ρ̇(t) = −AT (t)ρ(t)−Q(t)x(t), ρ(TN ) = P1x(TN ). (8)

The following theorem states the relationship between the
state and costate.

Theorem 1 For LTV impulsive systems, the state x(t) and
co-state ρ(t) are related by the equation

ρ(t) = P (t)x(t) +
N−1∑
i=j

ΦT (Ti, t)P (Ti)δi, Tj−1 ≤ t < Tj ,

∀j ∈ {2, 3, . . . , N − 1}, and
ρ(t) = P (t)x(t), for TN−1 ≤ t

where P (t) is the solution to the following matrix valued
equation

Ṗ (t) = −AT (t)P (t)−P (t)A(t)−Q(t), P (TN ) = P1. (9)

Pf: Using the fundamental theorem of calculus, the solution
to (8) can be written

ρ(t) = ΦT (TN , t)P1x(TN ) +
∫ TN

t

ΦT (s, t)Q(s)x(s)ds.

(10)

Consider Tj−1 ≤ t < Tj , where j < N −1. Plugging in (3),

ρ(t) = ΦT (TN , t)P1

(
Φ(TN , T0)x0 +

N−1∑
i=1

Φ(TN , Ti)δi

)

+
∫ TN

T+
N−1

ΦT (s, t)Q(s)

(
Φ(s, T0)x0 +

N−1∑
i=1

Φ(s, Ti)δi

)
ds

+
∫ T−N−1

T+
N−2

ΦT (s, t)Q(s)

(
Φ(s, T0)x0 +

N−2∑
i=1

Φ(s, Ti)δi

)
ds

+ . . .

+
∫ T−j

t

ΦT (s, t)Q(s)

(
Φ(s, T0)x0 +

j−1∑
i=1

Φ(s, Ti)δi

)
ds.

Using only the properties of state transition matrices, this
can be rewritten as

ρ(t) = ΦT (TN , t)P1Φ(TN , t)

◦

(
Φ(t, T0)x0 +

N−1∑
i=1

Φ(t, Ti)δi

)

+
∫ TN

T+
N−1

ΦT (s, t)Q(s)Φ(s, t)

◦

(
Φ(t, T0)x0 +

N−1∑
i=1

Φ(t, Ti)δi

)
ds

+
∫ T−N−1

T+
N−2

ΦT (s, t)Q(s)Φ(s, t)

◦

(
Φ(t, T0)x0 +

N−2∑
i=1

Φ(t, Ti)δi

)
ds+ . . .

+
∫ T−j

t

ΦT (s, t)Q(s)Φ(s, t)Φ(t, T0)x0ds. (11)

Regrouping and again using Equation (3), (11) can be written
as

ρ(t) = ΦT (TN , t)P1Φ(TN , t) · x(t)

+
∫ TN

t

ΦT (s, t)Q(s)Φ(s, t)ds · x(t)

+
N−1∑
i=j

[
ΦT (TN , t)P1Φ(TN , Ti) · δi

+
∫ TN

Tj

ΦT (s, t)Q(s)Φ(s, Ti)ds · δi
]



Again, using the properties of the state transition matrix

ρ(t) =
[
ΦT (TN , t)P1Φ(TN , t)

+
∫ TN

t

ΦT (s, t)Q(s)Φ(s, t)ds
]
· x(t)

+
N−1∑
i=j

[
ΦT (Ti, t)

[
ΦT (TN , Ti)P1Φ(TN , Ti)

+
∫ TN

Ti

ΦT (s, Ti)Q(s)Φ(s, Ti)ds
]
· δi
]

(12)

Define P (t) to be

P (t) = ΦT (TN , t)P1Φ(TN , t)

+
∫ TN

t

ΦT (s, t)Q(s)Φ(s, t)ds. (13)

Taking the derivative of (13) with respect to t gives the
second part of the theorem. To obtain the first part of the
theorem, plug (13) into (12) to obtain

ρ(t) = P (t)x(t) +
N−1∑
i=j

ΦT (Ti, t)P (Ti)δi, T1 ≤ t < Tj ,

∀j ∈ {2, 3, . . . , N − 1}. (14)

The second part of the theorem, i.e., the solution for ρ(t)
when t ≥ τN−1 is easy to see. When j in (14) is larger than
N − 1, the sum is equal to zero, thus ρ(t) = P (t)x(t). �

Notice that because P (t) and Φ(T, t) only depend on
the matrices A(t) and Q(t), both can be solved for offline,
i.e., before beginning the optimization. This fact implies that
once P (t) and Φ(T, t) are calculated, the costate equation,
(14), is completely determined by function evaluations and
matrix multiplications. Noting that the terms in (7) are
simply function evaluations, this makes it is possible to
optimize over multiple impulse times and magnitudes as well
as over multiple iterations of the descent calculating only
two integrals. Notice also that when each of the impulse
magnitudes δi = 0, the standard relationship between the
state and costate, ρ(t) = P (t)x(t), is recovered.

B. Adding a Reference Signal

It is possible to incorporate a reference signal xd(t) into
the cost J(·) by modifying the objective function `(t, x(t))
and terminal condition M(x(TN )) such that

`(t, x(t)) = (x(t)− xd(t))TQ(t)(x(t)− xd(t))

M(x(TN )) = (x(TN )− xd(TN ))TQ(t)(x(TN )− xd(TN ))

In order to determine the first derivative of a cost function
which incorporates a reference signal, the costate equation
ρ(t) also needs to be modified,

ρ̇(t) = −A(t)T ρ(t)−Q(t)(x(t)− xd(t)),
ρ(TN ) = P1(x(TN )− xd(TN )). (15)

Theorem 2 For LTV systems that include a reference signal,
the relationship between the state and co-state is

ρ(t) = P (t)x(t) +
N−1∑
i=j

ΦT (Ti, t)P (Ti)δi − r(t),

T1 ≤ t < Tj ,∀j ∈ {2, 3, . . . , N − 1}, (16)

such that P (t) is the solution to the Riccati equation (9), and
r(t) is a linear mapping of the reference signal

r(t) = Pr(t)xd(t),

where

Ṗr(t) = −AT (t)Pr(t)−Pr(t)Ar(t)−Q(t), Pr(TN ) = P1

and Ar(t) satisfies

ẋd(t) = Ar(t)xd(t).

Pf: Starting with equation (15) and applying the fundamental
theorem of calculus

ρ(t) = Φ(TN , t)TP1(x(Tn)− xd(TN ))

+
∫ Tn

t

Φ(s, t)TQ(s)(x(s)− xd(s))ds. (17)

Equation (17) can be written to produce

ρ(t) = Φ(TN , t)TP1x(Tn) +
∫ Tn

t

Φ(s, t)TQ(s)x(s)ds

− Φ(TN , t)TP1xd(TN )−
∫ Tn

t

Φ(s, t)TQ(s)xd(s)ds.

(18)

The first two terms on the right-hand side of (18) are the
same as the right-hand side of (10), and are thus determined
by Theorem 1. In Theorem 1, the relationship between the
state and costate was found to be an algebraic relationship,
once the operator P (t) was determined. It is desirable to find
a similar algebraic relationship between the state and costate
when a reference is added. In order to accomplish this, the
second two terms on the right-hand side of (18) need to be
rewritten in a way such that they can be computed online
algebraically.

Define the residual, r(t), to be

r(t) = Φ(TN , t)TP1xd(TN ) +
∫ Tn

t

Φ(s, t)TQ(s)xd(s)ds.

(19)
Noticing that equation (19) looks similar to the equation for
ρ(t) in Theorem 1, we would like to write xd(t) in terms
of a state transition matrix operating on an initial condition.
To define the state transition matrix that governs the time
evolution of the reference signal, the assumption that Ar(t)
is known must be made, where

ẋd(t) = Ar(t)xd(t), xd(t0) = x0,d. (20)



Equation (20) is an LTV equation; its solution is known
to have the form [8]

xd(t) = Φd(t, t0)x0,d,

which can be used to rewrite (19) (using the properties of
the state transition matrix)

r(t) = Φ(TN , t)TP1Φd(Tn, t)xd(t)

+
∫ Tn

t

Φ(s, t)TQ(s)Φd(s, t)ds · xd(t)

=
(

Φ(TN , t)TP1Φd(Tn, t)

+
∫ Tn

t

Φ(s, t)TQ(s)Φd(s, t)ds
)
xd(t)

= Pr(t)xd(t), (21)

where Pr(t) is defined to be the solution to

Ṗr(t) = −AT (t)Pr(t)−Pr(t)Ar(t)−Q(t), Pr(TN ) = P1.

Thus, (18) can be rewritten as

ρ(t) = P (t)x(t) +
N−1∑
i=j

ΦT (Ti, t)P (Ti)δi − Pr(t)xd(t),

T1 ≤ t < Tj , ∀j ∈ {2, 3, . . . , N − 1}

= P (t)x(t) +
N−1∑
i=j

ΦT (Ti, t)P (Ti)δi − r(t),

T1 ≤ t < Tj , ∀j ∈ {2, 3, . . . , N − 1}. �

Although we will not typically know the exact form of
Ar(t), we can make the assumption that

Ar(t) = diag
(
ẋ{d,1}(t)/x{d,1}(t), . . . ,

ẋ{d,N}(t)/x{d,N}(t)
)
, (22)

where N is the dimension of xd(t) and the notation diag() is
meant to represent a diagonal matrix. It is possible to make
this assumption if we choose a coordinate parameterization
such that x{d,i}(t) 6= 0 ∀i = 1, 2, . . . N .

Theorem 2 illustrates that it is possible to algebraically
optimize online over an arbitrary number of impulse times
when the cost function (5) contains a reference signal.

IV. EXAMPLES

The results derived in Section III are general in the
sense that they are applicable to any non-hybrid impulsive
system. In order to provide a direct comparison of the results
presented in this work to those derived in previous work
([14], [15], [16]), an example addressing a data association
problem is selected.

A. Example System

Consider a system which contains two airplanes both with
dynamics described by

q̇(t) =

 ẋ
ẏ

θ̇

 =

 ϑ(t) cos(θ(t))
ϑ(t) sin(θ(t))

ψ(t)

 (23)

where ϑ(t) and ψ(t) are inputs. We assume that these
dynamics can be linearized, and that they will in general
not be known explicitly, i.e.,

q̇ = A(t)q(t) + w(t),

where w(t) is a noise term sampled from a zero-mean normal
distribution with covariance Q(t). It is assumed that a single
sensor makes continuous measurements of the form

y(t) = C(t)q(t) + v(t),

where v(t) is a noise term sampled from a zero-mean normal
distribution with covariance R(t). The problem to be solved
is: how can clear associations on the origin of measurements
at certain times be made when the level of noise contained
in the measurement is relatively high with respect to the
distance between the two airplanes?

Fig. 1: The dotted and dashed lines again represent circular
trajectories of two separate airplanes. The solid black line
represents a nondeterministic measurement signal.

In Figure 1 the dotted and dashed lines represent an
example of trajectories for the two airplane example system
with constant inputs. The solid black line represents a nonde-
terministic “measurement signal.” Figure 1 visually displays
the typical measurement noise level to airplane separation
distance considered in this work.

It is possible to associate measurements in the two airplane
example by first assuming that from the perspective of the
sensor, only a single object with a single trajectory exists.
This is a reasonable assumption due to the fact that it is
assumed that the sensor only makes a single measurement
at each time. The single trajectory experiences impulses
with respect to its spatial position at a number of different
times. In the actual system containing two airplanes, the
times at which impulses occur correspond to the sensor



switching between measuring the different airplanes. Using
the measurement signal as a reference, the results of Section
III-B can be applied to find the optimal set of times at which
impulses occur in the single model trajectory. With a priori
knowledge of which airplane is initially being measured,
determining the times at which the sensor switches between
measuring the trajectories of the two airplanes is equivalent
to associating measurements to the airplane from which they
originate.

B. Convergence Results

This section provides results of applying the LTV impul-
sive data association algorithm to the two-airplane example
described in Section IV-A. Both deterministic as well as non-
deterministic results are given.

Figure 2 shows first-order convergence results for the de-
terministic two-airplane system, optimizing over six impulse
times. The horizontal axis is the iteration number, and the
vertical axis the first derivative of the cost, plotted on a log
scale. Figure 2 shows near perfect linear convergence.

Fig. 2: Linear convergence results for the deterministic two-
airplane example, optimizing over six impulse times.

The purpose of providing Figure 2 is to provide a basis
of comparison for the nondeterministic results shown in
Figures 3 and 4. Figure 3(a) shows the y-component of the
measurement signal for a particular noise level in the two-
airplane example (due to the initial conditions the impulses
occur in the y-direction, all process noise is sampled from
a zero mean normal distribution with standard deviation
0.05, and all measurement noise is sampled from a zero
mean normal distribution whose standard deviation is 30%
of the average separation distance of the two airplanes).
The gray line represents the non-deterministic measurement
signal, and the black line denotes the portions of the two
separate trajectories that are measured. In this example, the
sensor switches between measuring the two airplanes,, i.e.,
impulses occur, at times T = {4, 6, 8, 10, 12, 14}. Figure
3(b) shows the first-order convergence results derived using
the reference signal shown in Figure 3 (a). Figure 4 shows
results similar to those shown in Figure 3, except for a higher
noise level (due to the initial conditions the impulses occur
in the y-direction, all process noise is sampled from a zero
mean normal distribution with standard deviation 0.05, and
all measurement noise is sampled from a zero mean normal
distribution whose standard deviation is 50% of the average
separation distance of the two airplanes). Figure 4 (a) shows

(a)

(b)

Fig. 3: (a) The y-component of the measurement signal in
the two-airplane example when the signal to noise ratio
is relatively high (gray line), and deterministic portions of
individual trajectories actually measured (black line). The
continuous measurement signal for this example was pro-
duced by interpolating discrete measurements, where dt =
0.05. (b) First-order convergence results with respect to the
reference signal shown in (a).

(a)

(b)

Fig. 4: (a) The y-component of the measurement signal in
the two-airplane example when the signal to noise ratio
is relatively low (gray line), and deterministic portions of
individual trajectories actually measured (black line). The
continuous measurement signal for this example was pro-
duced by interpolating discrete measurements, where dt =
0.05. (b) First-order convergence results with respect to the
reference signal shown in (a).

the y-component of the measurement signal used to produce
the first-order convergence results shown in Figure 4 (b). The
convergence results in Figure 4 (b) no longer exhibit the same
kind of linear behavior as those shown in Figures 2 and 3 (b),



but the algorithm somewhat surprisingly does still converge
with this low signal to noise ratio. In this example, the
sensor again switches between measuring the two airplanes,,
i.e., impulses occur, at times T = {4, 6, 8, 10, 12, 14}. The
initial guess for the optimization which produced the results
in Figures 2, 3, and 4 was T0 = {3.3, 6.2, 7, 9.4, 11, 16.5}.

C. Timing Results

Fig. 5: Timing plot comparing adjoint formulations (solid
line) and LTV formulations (dashed line) for the first deriva-
tive of the cost vs. the number of impulses.

Assuming that a nonlinear system may be linearized about
a nominal system trajectory, the algorithm derived in Section
III can be compared to the results of the algorithm described
in [14], which optimize over impulse times for either linear
or nonlinear systems, but require a single integration for each
step in the descent algorithm, e.g., steepest descent [3].

Figure 5 shows timing results that compare the adjoint
calculations of [14] to the LTV calculations presented in this
work (applied to the system of Section IV-B). The horizontal
axis represents the total number of impulses optimized over,
and the vertical axis the time in seconds it takes to calculate
the first derivative of the cost. The dashed line represents the
results using the LTV formulation (online), and the solid line
using the adjoint formulation. As we would expect, the LTV
calculations are much faster than the adjoint calculations; the
LTV calculations rely on a single integration over all steps
of the descent algorithm and the adjoint calculations rely on
a single integration for each step of the descent algorithm.

Although Figure 5 provides a clear advantage to using
the LTV method to optimize over impulse times, it is not
always possible to simply rely on the less computationally
burdensome method. The LTV formulations depend on the
quality of the linearization whereas the adjoint formulations
do not.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an extension of the work in [7], where
an optimization algorithm capable of optimizing over an
arbitrary number of switching times (for switched dynamic
systems) by numerically calculating two integrals is derived.
The work in this paper extends the concepts taken from
switched dynamical systems to impulsive systems. The al-
gorithm presented in Section III represents this extension.

Results of applying this algorithm to a data association
example are presented in Section IV. These results showed
that convergence over multiple impulse times was possible in
cases where the signal to noise ratio was relatively low. The
results also demonstrated a significant improvement in terms
of the time needed to complete the optimization between the
method presented in this paper and the previous state of the
art.

An extension of the work presented in this paper is to in-
clude hybrid dynamics in the impulse optimization algorithm
for LTV systems. This extension is straight forward, as it is
a combination of the work presented in this paper and that
found in [7].
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