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Abstract— The line search is considered for the problem of

numerical switched system optimization using projection-based

techniques. Switched system optimization may be formulated

as an infinite dimensional optimal control problem where the

switching control design variables are constrained to the inte-

gers. Projection-based techniques handle the integer constraint

by considering an equivalent problem with unconstrained de-

sign variables but where the cost is dependent on the projection

of the design variables to the constrained set of feasible switched

system trajectories. This paper is concerned with the line search

step of the projection-based optimization procedure. The main

result provides sufficient conditions on the descent direction so

that the update rule is absolutely continuous with respect to

the step size.

I. INTRODUCTION

This paper considers the line search of projection-based
switched system optimization. Switched systems evolve ac-
cording to multiple distinct modes where only one mode
is active at any time. The control is the scheduling of the
mode sequence and the timing of the mode transitions.
An equivalent control representation is realized by a set of
functions of time, labeled the switching control, that dictate
which mode is active at any time. However, the values of the
switching control must be constrained to the integers, which
makes efficient numerical optimization difficult. This paper
furthers our work in [4] which handles the integer constraint
using a projection operator.

Other switched system optimization methods include:
switching time optimization [3], [5], [7], [14] which fixes
the mode sequence and optimizes only over the switching
times; mode injection methods [5], [6] which compute the
timing for when an injected mode will result in a decrease to
the cost; embedding methods [2], [11], [13] which relax the
integer constraint on the switching control design variables
and optimizes the relaxed cost.

In comparison, for projection-based methods, the design
variables live in an unconstrained space but the cost is
computed on the projection of the design variables to the
set of feasible switched system trajectories. Suppose J is
the cost, µ is the unconstrained switching control and P
projects µ onto the set of feasible switching controls where
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the integer constraint is in effect. The goal is to solve the
problem

argmin
µ

J(P(µ)).

Numerical optimization algorithms begin with an estimate
of the optimizer, µ, choose a search direction, v, take
a step of size γ in that direction and iterates. At each
iteration, two quantities need to be calculated: v and γ. This
paper assumes v is fixed and is concerned with calculating
the step size. The process of calculating γ is known as
the line search and calls for finding the γ that minimizes
J(P(µ + γv)). However, calculating the minimum exactly
is often less computationally desirable than finding a γ that
satisfies Armijo and weak Wolfe conditions [1], [8], [10]. For
nonsmooth optimization, [8] presents a line search algorithm
and proves that it terminates in a finite number of steps to a
step size satisfying Armijo and weak Wolfe conditions if J
is locally Lipschitz and weakly-semismooth.

However, for projection-based switched system optimiza-
tion, the derivative of the cost with respect to γ can go
unbounded and therefore, J is not locally Lipschitz. We
prove, though, that for the max-projection presented in this
paper and for the reasonable assumptions on the search
direction v, J(P(u + γv)) is absolutely continuous in γ.
Absolute continuity is the main result of this paper since
the line search is viable because of work by Lewis and
Overton [9]. They consider a similar line search to the one
presented in [8] and show that if J is absolutely continuous,
the line search converges to a γ containing points satisfying
the Armijo and weak Wolfe conditions.

This paper is organized as follows: Section II presents
the numerical optimization algorithm for projection-based
switched system optimization. Section III introduces
switched systems and states the optimization problem. In
Section IV, the max-projection is introduced and the update
rule for numerical optimization is considered. Section V
shows that under certain assumptions on the variations of
the switching control, the line search is not differentiable
every where and that it can go unbounded. However, the
derivative is still Lebesgue integrable and we find the line
search is absolutely continuous. Finally, Section VI discusses
the viability of implementing an inexact line search.

II. ITERATIVE PROJECTION-BASED OPTIMIZATION

This paper is concerned with the line search step of
iterative projection-based switched system optimization. It-
erative optimization methods compute a new estimate of the
optimum by taking a step in a search direction from the



current estimate of the optimum so a decrease in cost is
achieved. Even if the chosen direction descends the cost, the
size of the step taken must ensure that a sufficient decrease is
achieved for convergence. This section presents an iterative
procedure in the context of projection-based switched system
optimization:

Algorithm 1: Suppose η is the constrained design vari-
able, J(η) is the cost and P maps the unconstrained space to
the constrained space and is a projection. Then, the iterative
projection-based optimization algorithm is as follows:

1) Set initial optimal estimate η0 and set k = 1.
2) Choose a search direction ζk

3) Solve for step size γ: argminγ∈R+ J(P(ηk−1+γζk))
4) Update: ηk = P(ηk−1 + γζk).
5) If ηk satisfies a terminal condition, then exit, else,

increment k and repeat from step 2.
Remarks:

• In step 3, ηk−1+γζk is calculated in the unconstrained
space and P projects the unconstrained result onto the
constrained space.

• For smooth optimization problems, it is computation-
ally desirable to approximate the minimizing step size
with an inexact line search (see [1], [8]). The primary
purpose of this paper is to validate the line search for
projection-based switched system optimization. As we
will see in Section V, the line search for the problem
of switched systems is non-smooth. However, under
certain conditions on the descent direction and with the
projection proposed in Section IV, the line search is
in fact absolutely continuous and thus a line search is
viable [9].

In the following section we present switched systems and
state the switched system optimization problem.

III. SWITCHED SYSTEM OPTIMIZATION

A switched system’s evolution is dictated by multiple
modes but where the instantaneous evolution is dictated by
only one of those mode. The control is the scheduling of
the modes. There are many useful switched system repre-
sentations. One representation specifies the mode sequence
and the timings for when mode switches occur. Another
representation assigns a function of time to each mode where
at any time only one function has value 1 and all others have
value 0. A value of 1 implies that function’s corresponding
mode is currently active. We call the set of these functions
the switching control.

A. Switched System
Let X and U be spaces of Lebesgue integrable func-

tions from the time interval [0,T] to, respectively, Rn

and RN . Consider a switched system with n states
x = [x1, . . . , xn]T ∈ X , N switching controls u =
[u1, . . . , uN ]T ∈ U , and N modes fi(x), i ∈ {1, . . . , N}
which are Cr, r > 0, on X . The state equations are given by

ẋ(t) = F (x(t), u(t)) :=
N�

i=1

ui(t)fi(x(t)), x(0) = x0.

(1)

We say the pair (x, u) satisfies the state equations if

G(x, u, t) := x(t)− x(0)−
� t

0
F (x(τ), u(τ))dτ = 0 (2)

for almost all time t ∈ [0, T ]. The integral is understood to
be the Lebesgue integral.

Additionally, for the evolution of the state equation to be
consistent with that of a switched system—i.e. for only one
mode to be active at a time—the switching controls must
belong to the following set of admissible switching controls:

Definition 3.1: The curve u = [u1, . . . , uN ]T composed
of N piecewise constant functions of time is an admissible
switching control if

• for almost each t ∈ [0, T ] and each i ∈ {1, . . . , N},
ui(t) ∈ {0, 1},

• for almost each t ∈ [0, T ],
�N

i=1 ui(t) = 1, and
• for each i ∈ {1, . . . , N}: ui does not chatter—i.e. in

the time interval [0, T ], the number of switches between
values 0 and 1 is finite.

Denote the set of all admissible switching controls as Ω.
According to the first two properties, u(t) is equal to
one of the standard basis vectors of RN . In other words,
define EN = {e1, . . . , eN} where ei has value 1 at its
ith entry and 0 for every other entry. Then, u(t) = ei for
some i ∈ {1, . . . , N}. As such, the state, given by Eq.(1),
evolves according to only one mode for almost all time. The
third property disallows Zeno behavior, in which an infinite
number of mode switches occur in finite time.

If the state, x, and switching control, u, satisfy the state
equations, Eq.(2), and u is admissible, then (x, u) constitutes
an admissible switched system. Formally, define the set of
such (x, u) as:

Definition 3.2: The pair (x, u) ∈ X×U constitutes a valid
switched system if

1) u ∈ Ω and
2) G(x, u, t) = 0 for almost all t ∈ [0, T ].

Denote the set of all such pairs of state and switching
controls by S .

B. Switching Schedule
We relate the switching control given by Definition 3.1

with the equivalent representation of switching schedules.
A switching schedule is the mode sequence as well as the
times the switches occur. We define two mappings Σ and T
on Ω which return the mode sequence and switching times
respectively. The switching times are the discontinuity points
of u ∈ Ω

T (u) := {t ∈ [0, T ]
��u(t+) �= u(t−)}

As for the mode sequence, consider the switching control
u ∈ Ω. Let {T1, . . . , TM−1} = T (u) and suppose that
u(t) = eσi for t ∈ (Ti−1, Ti) where σi ∈ {1, . . . , N} and
eσi ∈ EN . The ith mode in the mode sequence corresponding
to u is σi and set Σ(u) = {σ1, . . . , σM}. The switching
schedule corresponding to u is (Σ(u), T (u)). When we are
only concerned with the schedule on a connected interval



I ⊂ [0, T ], we denote the switching times and mode
sequence for that interval by T I(u) and ΣI(u).

The state equations given by the switching schedule rep-
resentation is

ẋ(t) = fσi(x(t)), Ti−1 < t < Ti, for i ∈ {1, . . . ,M}
(3)

where x(0) = x0, T0 = 0 and TM = T .

C. Problem Statement

The objective is to find the switching control—or equiv-
alently, the mode sequence and switching times—that opti-
mizes the performance of the system. Define the usual cost
function as

J(x, u) =

� T

0
�(x(τ), u(τ))dτ

where the running cost, � : X × U → R is continuously
differentiable with respect to both X and U . The problem
of interest is to minimize J with respect to x and u under
the constraint that x and u constitute an admissible switched
system—i.e. (x, u) ∈ S .

Problem 1 (Constrained Problem): Solve

arg min
(x,u)∈S

J(x, u).

Note the constraints (x, u) ∈ S include the integer constraint
on u that for each i ∈ {1, . . . , N} and t ∈ [0, T ], ui(t) ∈
{0, 1}.

This paper handles the integer constraint by furthering
the projection-based method introduced in [4]. In [4], we
consider an equivalent problem to the constrained problem
where the design variables live in the unconstrained space
(X ,U) and the cost is evaluated on the projection of the
design variables to the set of admissible switched system
trajectories:

Problem 2 (Unconstrained Problem): Suppose P : X ×
U → S is a projection—i.e. P(P(α, µ)) = P(α, µ). Solve

arg min
(α,µ)∈X×U

J(P(α, µ)).

Observe that what we refer to here as the unconstrained
problem differs from the procedure of finding the solution
to a problem where the cost is minimized for unconstrained
variables and the result is projected onto the constrained
set of switched system trajectories. Instead, the cost for
the unconstrained problem is calculated on the projected
unconstrained design variables. Therefore, both the uncon-
strained problem and constrained problem are equivalent in
that if (x�, u�) is a solution to the constrained problem then
there is an (α�, µ�) ∈ P−1(x�, u�) which is a solution to
the unconstrained problem and if (α�, µ�) is a solution to
the unconstrained problem, then (x�, u�) = P(α�, µ�) is a
solution to the constrained problem.

The next section introduces the max-projection operator
for solving the unconstrained problem.

IV. PROJECTION OPERATOR

The projection maps curves from an unconstrained space
X ×U to the set of switched systems, S . The projection en-
riches the set of local variations. To elaborate, suppose ηk−1

lives in a constrained space and the iterative optimization
procedure computes the new estimate of the optimum, ηk,
by adding a descent direction, ζk, scaled by a step size γ to
the previous estimate, ηk−1—i.e. ηk = ηk−1 + γζk. For the
case of switched systems, consider ηk = (xk, uk) ∈ S and
ζk = (zk, vk). Since uk−1 ∈ Ω is constrained to specific
integers, the only feasible variation of uk−1 is trivially vk =
0(t) since no other curve adds with uk−1 —under the usual
sense of addition—for general γ ∈ R+ to a feasible curve in
Ω. However, by computing uk−1 + γvk in an unconstrained
space and projecting the result to the constrained set Ω,
the admissible variations are only limited by the choice of
projection. In this section, we propose the max-projection.

A. Max-Projection

Let the set R to be the admissible subset of X ×U which
the max-projection maps to S—i.e. maps to solutions satis-
fying Definition 3.2. In order to define the max-projection,
we first define the following reproducing mapping—i.e. a
mapping Q : R → Ω where for all (x, u) ∈ S , u = Q(x, u):

Definition 4.1: Take (α, µ) ∈ R. The ith: i ∈ {1, . . . , N}
element of the max-reproducing mapping, Q : R → Ω, at
time t ∈ [0, T ] is

Qi(α(t), µ(t)) :=

�
1 µi(t) = max{µ1(t), . . . , µN (t)}
0 else.

(4)
Now, define the max-projection as:

Definition 4.2: Take (α, µ) ∈ R. The max-projection, P :
R → S , at time t ∈ [0, T ] is

P(α(t), µ(t)) :=

�
ẋ(t) = F (x(t), u(t)), x(0) = x0

u(t) = Q(α(t), µ(t)).
(5)

Remarks:
1) Notice the max-reproducing mapping and the max-

projection do not depend on X . Therefore, for the
remainder of the paper, we write P(µ) and Q(µ).
Likewise, we denote the admissible domain of P(µ)
as R ⊂ U with the understanding that R = (X ,R).

2) Other projections depend on X (see the feedback
projection in [4]).

3) The max-projection is so named because it maps the
element of µ(t) with greatest value to 1 and all other
elements to 0. Furthermore, since the maximal element
of µ(t) maps to the maximal value of 1, it is clear that
P(P(µ)) = P(µ)—i.e. P is a projection.

As in [4], the reproducing condition, Eq. (4), can be
written using the step function. Define 1 : R → {0, 1} to
be the step function where for a ∈ R,

1(a) :=

�
0 a < 0
1 a ≥ 0.



The max-reproducing mapping is given by the product of
step functions as follows:

Qi(µ(t)) =
N�

j �=i

1(µi(t)− µj(t)). (6)

For brevity, we write µij := µi−µj . For t to be a switching
time, there must be i �= j ∈ {1, . . . , N} such that µij crosses
0 at t. Since µij may cross 0 at a point of discontinuity, we
define a zero crossing and the number of zero crosses as
follows:

Definition 4.3: A function crosses 0 at time t ∈ [0, T ] if
• y(t−) < 0 and y(t+) > 0 or
• y(t−) > 0 and y(t+) < 0.

Further, the number of times y crosses 0 in the interval [0, T ]
is N (y).

B. Update Rule

In the optimization procedure Algorithm 1, a new estimate
of the optimum is obtained by varying from the current
estimate and projecting the result to the set of feasible
switched system trajectories. Suppose u ∈ Ω, γ ∈ R+ is
the step size and v ∈ V is a variation of u. The update rule
is given as P(u + γv). The set V is the admissible set of
variations—i.e. if v ∈ V , then u+γv ∈ R for all γ ∈ R+. A
sufficient condition on the curve v to be admissible is given
by the following assumption:

Assumption 1: Assume the curve v = [v1, . . . , vN ]T is
the N piecewise C0 functions on [0, T ] where [0, T ] may be
partitioned into the disjoint sets, I and J ⊂ [0, T ] where
I ∪ J = [0, T ] and

• for each i �= j ∈ {1, . . . , N}, vi−vj has a finite number
of critical points1 in I or

• for each t ∈ J , v1(t) = v2(t) = · · · = vN (t).
Recall the calculation of the max-projection as given by the
max-reproducing mapping in Eq.(6) and let uij = ui−uj and
vij = vi − vj . Then, Qi(u(t) + γv(t)) =

�N
j �=i 1(uij(t) +

γvij(t)). By supposing v satisfies Assumption 1, uij(t) +
γvij(t) may be partitioned into disjoint time intervals where
either the number of critical points of vij is finite—and
therefore the number of critical points of uij + γvij is also
finite—or vij = 0. Since critical points separate strictly
monotonic intervals, the number of times uij + γvij crosses
zero is finite and thus the number of times 1(uij + γvij)
switches between values 1 and 0 is as well finite. As such,
Q(u+γv) does not chatter. We state this conclusion formally
in the following lemma:

Lemma 1: Suppose u ∈ Ω, γ ∈ R+ and v satisfies
Assumption 1. Then, u+ γv ∈ R.

Proof: Set µ = u+γv and use notation µij = µi−µj ,
uij = ui − uj and vij = vi − vj . In order for µ ∈ R, it
must be the case that Q(µ) ∈ Ω. Consider each property of
Definition 3.1. First, according to Eq.(4), Qi(µ(t)) ∈ {0, 1}
for each t ∈ [0, T ]. Second, property 2 is satisfied as long as

1A critical point is a point t0 of a real valued function y in which either
ẏ(t0) = 0 or y is not differentiable at t0.

for almost all times t ∈ [0, T ], there exists a single greatest
element of µ(t), which is clear since the greatest element of
µ(t) maps to value 1 and all other elements map to value 0.
Finally, the rest of the proof shows that the number of times
Q(µ) changes values is finite.

We first consider all intervals J ⊂ [0, T ] where v1 =
v2 = · · · = vN . For these intervals, the greatest element at
any time t ∈ J of µ(t) = (u+ γv)(t) is given by u(t) and
thus Q(µ(t)) = Q(u(t)) = u(t). Since u ∈ Ω, it must be
the case that u switches values a finite number of times in
J .

Second, we consider all other intervals I = J c where
∀i �= j ∈ {1, . . . , N}, vij has a finite number of critical
points. Further partition I into pairwise disjoint intervals
{Ik} where ∪Ik = I. Let {sk,1, . . . , sk,�k} ∈ Ik be the
collection of all of the critical points for each i �= j ∈
{1, . . . , N} in the kth interval. Further set sk,0 = inf Ik
and sk,�k+1 = sup Ik and note �k is finite. Clearly each
vij is strictly monotonic over each interval (sa, sa+1), a ∈
{0, . . . , �k} and thus, vij can cross any value at most once in
each (sa, sa+1). This implies that for a constant u, uij+γvij
can cross zero a single time in the interval (sa, sa+1).
However, uij can have values 0, 1, or −1 and thus in each
interval (sa, sa+1), uij + γvij can at most cross zero three
times in addition to the finite number of times uij changes
values. Thus for each i and j, µij crosses zero a finite number
of times for each of the �k + 1 intervals of each of the
finite number of intervals Ik. Therefore, µij crosses zero
a finite number of times. Finally, by inspection of Eq.(6),
Q(µ) can switch values only at a time when there is an
i �= j ∈ {1, . . . , N} in which µij crosses zero. Thus, Q(µ)
switches values a finite number of times and property 3 is
satisfied, proving u+ γv ∈ R.
We will find in the next section that for v satisfying Assump-
tion 1 with an additional assumption that bounds the flatness
of v that J(P(u+γv)) is absolutely continuous with respect
to γ. This result is important for the line search—step 3 of
Algorithm 1—since absolute continuity is assumed for the
non-smooth line search in [9].

V. ABSOLUTE CONTINUITY OF LINE SEARCH

Assume u ∈ Ω and v ∈ V are fixed and only γ varies.
Define

J(γ) := J(P(u+ γv)).

We find in this section that the derivative of the cost with
respect to γ—i.e. DJ(γ)—exists almost everywhere and
we provide sufficient conditions for DJ(γ) to be Lebesgue
integrable. Consequently, J(γ) is then absolutely continuous.

A. Dependence of the Mode Sequence on γ

When varying γ the mode sequence of Q(u + γv) only
changes when the local mode order changes at some time
t ∈ [0, T ]. Define constant local mode order as follows:

Definition 5.1: Suppose u ∈ Ω, v ∈ V , γ ∈ R+ and
t ∈ (0, T ). If there is δt > 0 such that Iδt = (t−δt, t+δt) ⊂



0 t)()(

ukj + γvkj

γ−: ΣIδt = {j, k}
γ+: ΣIδt = {j, k}

γ−: ΣIδt = {j}
γ+: ΣIδt = {j, k, j}

Fig. 1. An example where the mode order local to γ and t is constant
(left) and an example where it changes (right).

[0, T ] and the left and right limits of the local mode sequence
to γ are equal—i.e.

lim
γ�→γ−

ΣIδt(Q(u+ γ�v)) = lim
γ��→γ+

ΣIδt(Q(u+ γ��v))

then the mode order local to γ and t of Q(u(t) + γv(t)) is
constant.

The γ where the mode sequence changes are non-
differentiable points of J(γ). Figure 1 shows an example
where the local mode order is constant and an example where
the local mode order changes. The first example is not at a
critical point of ukj + γvkj while the second example is. In
fact, as shown in the following lemma, the local mode order
is constant for all γ ∈ R+ if t ∈ (0, T ) is a non-critical time.

Lemma 2: Suppose u ∈ Ω, v ∈ V , γ ∈ R+ and t ∈ (0, T ).
If for each i �= j ∈ {1, . . . , N}, t is not a critical point of
µij = uij + γvij , then the mode order local to γ and t of
Q(u(t) + γv(t)) is constant.

Proof: Since each µij(t) is not critical, µ̇ij(t) exists and
is non-zero. As such, µij(t) is not a maximum or minimum.
Separately consider the case where a single element of µ(t)
has greatest value and the case where multiple elements
of µ(t) have equal greatest value. First, suppose there is a
k ∈ {1, . . . , N} where µki(t) > 0 for each i �= k. By the
continuity of each µki(t), there is a δt > 0 such that for
each t� ∈ (t− δt, t+ δt) =: Iδt and each i �= k, µki(t�) > 0.
Furthermore, by the continuity of each µki = uki + γvki
with respect to γ, there is an open interval around γ such
that for each γ� in this open interval, uki(t�) + γ�v(t�) > 0
and thus

lim
γ�→γ−

ΣIδt(Q(u+γ�v)) = lim
γ��→γ+

ΣIδt(Q(u+γ��v)) = {k}.

Now, consider the case where multiple elements of µ(t) have
equal greatest value. By the assumption that each µij are not
critical at t, a single element of µ(t) can have greatest value
just prior to time t and another just after time t. Suppose
these two elements have index k and j and thus µkj(t) = 0,
µki(t) > 0 and µji(t) > 0 for each i ∈ {1, . . . , N} not equal
to k or j. This case is depicted in Figure 1. Since µkj(t) is
not critical it is strictly monotonic. Assume the monotonicity
is increasing and if not swap k and j. Thus, there is a δt > 0
such that µkj(t�) > 0 for each t� ∈ (t, t+δt) and µkj(t�) < 0

for each t� ∈ (t − δt, t). Setting Iδt = (t − δt, t + δt), the
local mode sequence is ΣIδt(Q(u + γv)) = {j, k}. By the
continuity of µkj with respect to γ, the left and right limits
of µkj(t�) do not change the strict inequalities for t� < t and
t� > t and thus,

lim
γ�→γ−

ΣIδt(Q(u+γ�v)) = lim
γ��→γ+

ΣIδt(Q(u+γ�v)) = {j, k}

completing the proof.
When v satisfies Assumption 1, the number of critical points
of each vij is finite. Therefore, the total number of γ for
which the mode sequence of Q(u + γv) changes is finite.
Let Γ(u, v) be the increasingly ordered set of γ ∈ R+ for
which the mode sequence of Q(u+ γv) changes:

Γu,v := {γ ∈ R+|∀δγ > 0, ∃γ� ∈ (γ − δγ, γ + δγ) ∩ R+,
where Σ(Q(u+ γv)) �= Σ(Q(u+ γ�v))}.

For example, if {γk} ∈ Γ(u, v) and ordered, then Σ(Q(u+
γv)) is constant for each γ ∈ (γk, γk+1).

Lemma 3: Suppose u ∈ Ω and v satisfies Assumption 1.
Then, the dimension of Γ(u, v) is finite.

Proof: The mode sequence of Q(u+γv) changes when
there is a time t ∈ (0, T ) for which the local mode orde
changes. According to Lemma 2, the only times t where
there can be a non-constant local mode order is if there is
an i �= j ∈ {1, . . . , N} such that µij is a critical point.

Take J to be the subset of [0, T ] for which vij = 0
for each i �= j ∈ {1, . . . , N}. Here, µ = u and clearly
the local mode order is trivially constant for all γ ∈ R+.
Now, consider all other intervals, I = J c, of [0, T ] for
which each µij has a finite number of critical points. Let
{sij1, . . . , sij�ij} be the collection of critical points of µij

and note �ij is finite. The local mode order can only change
at a time sijk, k ∈ {1, . . . , �ij}, if µij crosses zero at sijk. If
µij(sijk) is continuous, then µij(sijk) crosses zero for only
a single γ ∈ R+. However, if µij(sijk) is discontinuous, then
µij(sijk) crosses zero for a continuous interval of γ. For γ
in the interior of this interval, the local mode order remains
constant, and thus the only γ where the local mode order
may not be constant are the two interval bounds. Thus, each
critical point may contribute one or two values of γ toward
the count of non-constant mode sequence points. Since there
are a finite number of critical points for each of the µij ,
the number of γ ∈ R+ for which the mode sequence of
Q(u + γv) changes is finite—i.e. the dimension of Γ(u, v)
is finite.

B. Derivative of Line Search

When the mode sequence is constant, only the switching
times of Q(u + γv) vary as γ varies. For this reason,
it is convenient to use the switching schedule representa-
tion instead of the switching control representation. Define
Σu,v(γ) := Σ(Q(u + γv)) and Tu,v(γ) := T (Q(u +
γv)). The cost parameterized by the switching schedule is
J(Σu,v(γ), Tu,v(γ)) := J(P(u + γv)) = J(γ). Consider
{γk} = Γ(u, v) where for γ ∈ (γk, γk+1) the mode sequence



is constant. Assuming the cost is differentiable at γ, the
derivative of the cost with respect to γ is

DJ(γ) = D2J(Σu,v(γ), Tu,v(γ)) ·DTu,v(γ) (7)

where D2J(Σu,v(γ), Tu,v(γ)) is the switching time gradient
and DTu,v(γ) is the derivative of the switching times with
respect to the step size. Calculations for these derivative are
given in the following two Lemmas. The switching time
gradient is from the literature: [3], [5], [7]:

Lemma 4: Let {σ1, . . . , σM} be the constant mode se-
quence of the switched system and τ = {T1, . . . , TM−1} be
the variable switching times. Suppose each mode, fi(x(t)),
and the running cost, �(x(t)), is C1. Then, the ith switching
time derivative is

DTiJ(τ) = ρT (Ti)(fσi(x(Ti))− fσi+1(x(Ti))) (8)

where x is the solution to the state equations, Eq.(3), and ρ
is the solution to the following adjoint equation

ρ̇(t) = −Dfσi(x(t))
T ρ(t)−D�(x(t))T ,

Ti−1 < t < Ti for i ∈ {1 . . . ,M} (9)

where ρ(T ) = 0, T0 = 0 and TM = T .
As for the second term in Eq.(7), the derivative of the
switching times with respect to γ is given as:

Lemma 5: Suppose u ∈ Ω, v ∈ V , µ = u + γv
and γ ∈ R+ is such that Σ(Q(u + γv)) is constant. Let
{σ1, . . . , σM} = Σu,v(γ) and {T1(γ), . . . , TM−1(γ)} =
Tu,v(γ). Then the ith derivative of Tu,v(γ), DTi(γ), is given
for the following two cases:

1) If Ti(γ) is not a critical point of µσiσi+1 , then

DTi(γ) =
uσiσi+1(Ti(γ))

γ2v̇σiσi+1(Ti(γ))
, (10)

2) or if Ti(γ) is a discontinuity point of µσiσi+1 and 0 ∈
(µσiσi+1(Ti(γ)−), µσiσi+1(Ti(γ)+)), then

DTi(γ) = 0.
Proof: For the immediate mode to switch from σi to

σi+1, µσiσi+1 = uσiσi+1 + γvσiσi+1 must cross 0 at time
Ti(γ), which is clear from Eq.(6). First, consider case 1
where Ti(γ) is not a critical point of µσi,σi+1 . As such,
uσiσi+1(Ti(γ)) is constant, vσiσi+1(Ti(γ)) is continuous and
v̇σiσi+1(Ti(γ)) �= 0. For the continuous µσiσi+1 to cross 0
at Ti(γ),

uσiσi+1(Ti(γ)) + γvσiσi+1(Ti(γ)) = 0.

Take the derivative with respect to γ:

vσiσi+1(Ti(γ)) + γv̇σiσi+1(Ti(γ))DTi(γ) = 0.

Solve for DTi(γ):

DTi(γ) =
−vσiσi+1 (Ti(γ))

γv̇σiσi+1 (Ti(γ))
=

uσiσi+1 (Ti(γ))

γ2v̇σiσi+1 (Ti(γ))
.

As for the second case where Ti(γ) is a discontinuity point
of µσiσi+1 , for a zero cross to occur, the value 0 must be
contained in the left and right limits of µσiσi+1 at time
Ti(γ). The lemma calls for 0 to be in the interior of the

0

uσiσi+1 + γvσiσi+1

uσiσi+1 + (γ + �)vσiσi+1

γ → γ + �

t
Ti+1(γ) = Ti+1(γ + �)

Ti(γ)

Ti(γ + �)

Fig. 2. Shows the transition from σi to σi+1 at a continuous zero crossing,
Ti(γ), as well as the transition back to σi+1 at a discontinuous zero
crossing, Ti+1(γ). When γ increases to γ+ �, uσiσi+1 +γvσiσi+1 slides
upward. Since uσiσi+1 (Ti(γ)) + γuσiσi+1 (Ti(γ)) is decreasing, the ith

switching time, Ti(γ) moves right as γ increases and so DTi(γ) is positive
and given by case 1 of Lemma 5. However, the i+1th switching time occurs
at a discontinuity point of uσiσi+1 + γvσiσi+1 and the derivative follows
case 2 of Lemma 5 and is DTi+1(γ) = 0.

limit values—i.e. 0 ∈ (µσiσi+1(Ti(γ)−), µσiσi+1(Ti(γ)+)).
Consider the perturbation to γ resulting in the perturba-
tion ν of µσiσi+1 . For small enough � > 0, it is the
case that (µσiσi+1(Ti(γ)−)+�ν(Ti(γ)−), µσiσi+1(Ti(γ)+)+
�ν(Ti(γ)+)) still contains 0 and thus the perturbed switching
time remains at Ti(γ). Therefore, DTi(γ) = 0.

Figure 2 shows two switching times, one for each of the
two cases in Lemma 5. There may be other cases where the
switching times are differentiable, however we will find that
if v satisfies Assumption 1, there are only a finite number
of γ ∈ R+ for which Q(u+ γv) has a switching time with
derivative not given by one of the two cases.

As follows from Eq.(7), the derivative of the cost DJ(γ)
is given by the dot product of the result in Lemma 4 with
the result in Lemma 5 if the mode sequence is constant and
each switching time satisfies the conditions for either case 1
or case 2. In general, the derivative will not exist everywhere.
For example, DJ(γ) goes unbounded for γ where Q(u+γv)
has a switching time Ti(γ) near a critical point of vσiσi+1

where v̇σiσi+1(·) = 0—see Eq.(10). However, with the
following additional assumption on v, the derivative of the
switching time, DTi(γ), is still Lebesgue integrable around
such γ.

Assumption 2: Take v ∈ V and consider every subset I ⊂
[0, T ] where for each i �= j ∈ {1, . . . , N}, vij has a finite
number of critical points in I. Assume that if for any i �=
j ∈ {1, . . . , N} and t ∈ I it is the case that v̇ij(t) = 0, then
there is an integer k: k ≥ 2 where the kth derivative of vij
exists and is non-zero in a neighborhood of t.

Lemma 6: Suppose u ∈ Ω, v satisfies Assumption 1 and
Assumption 2 and γ1 ∈ R+ is so that as γ → γ1, the ith

switching time Ti(γ) → Tγ1 where v̇σiσi+1(Tγ1) = 0. Then,
DTi(γ), Eq.(10) is Lebesgue integrable near γ1.

Before proving the lemma we first consider the following
differential equation: Suppose h : R → R is continuously
differentiable, d1 and d2 are constants and k ≥ 1 is an



integer. The solution to

h�(z) =
d1

(d2 − h(z))k
(11)

is
h(z) = d2 − ((k + 1)(c− d1z))

1
k+1

for some constant c. Now to prove Lemma 6 Proof:
By the assumptions on vσiσi+1 there is an integer k > 2

and an � ∈ R such that v(k)σiσi+1(Ti(γ)) is non-zero for γ ∈
(γ1, γ1 + �] and thus v̇σiσi+1 can be expanded around Tγ1

as:

v̇σiσi+1(Ti(γ)) =
�k

j=1

v(j)
σiσi+1

(Tγ1 )

(j−1)! (Tγ1 − Ti(γ))j−1

+O((Tγ1 − Ti(γ))j).

Without loss of generality, assume k is the least order
derivative of vσiσi+1(Tγ1) that is non-zero. Then, for �
small,—γ near γ1 and thus Ti(γ) near Tγ1 ,

v̇σiσi+1(Ti(γ)) ≈
v(k)σiσi+1(Tγ1)

(k − 1)!
(Tγ1 − T (γ))k−1

Therefore, DTi(γ) is approximately

DTi(γ) ≈
uσiσi+1(Tγ1)

γ2
1

v(k)
σiσi+1

(Tγ1 )

(k−1)! (Tγ1 − T (γ))k−1

, (12)

Set
d1 =

uσiσi+1(Tγ1)(k − 1)!

γ2
1v

(k)
σiσi+1(Tγ1)

Eq.(12) has the same form as Eq.(11) and thus

Ti(γ) ≈ Tγ1 − (k (c− d1γ))
1
k

where c is such that Ti(γ) → Tγ1 as γ → γ1—i.e. c = d1γ1.
Plugging Ti(γ) into Eq.(12), DTi(γ) is approximately

DTi(γ) ≈
d1

(kd1(γ1 − γ))
k−1
k

which is Lebesgue integrable as γ1 − γ goes to zero.

C. Absolute Continuity
In order for J(γ) := J(P(u + γv)) to be absolutely

continuous, DJ(γ) must exist almost everywhere and J(γ)
must be the indefinite integral of DJ(γ) plus a constant term
[12]. For the indefinite integral of DJ(γ) to exist, DJ(γ)
must be Lebesgue integrable. First, we count the number of
non-differentiable points of J(γ) for v satisfying Assumption
1. We find the count is finite:

Lemma 7: Suppose u ∈ Ω, v satisfies Assumption 1 and
DJ(Tu,v(γ)), Eq.(8), exists for γ ∈ [0, γmax] where γmax ∈
R+. Then, DJ(γ) = DJ(Tu,v(γ))·Tu,v(γ)—given by Eq.(7)
and Lemmas 4 and 5—exists for all but a finite number of
γ ∈ [0, γmax].

Proof: It is assumed that the switching time gradient,
DJ(Tu,v(γ)) exists. The only γ ∈ [0, γmax] for which
DJ(γ) does not exist are γ for which T (Q(u + γv)) does
not exist. These γ for which the cost is non-differentiable
are such that either Σ(Q(u + γv)) is not constant or there

is a switching time that is not satisfied by either case 1 or
2 of Lemma 5. First, according to Lemma 3, the number
of γ for which the mode sequence is not constant is finite.
Second, if the derivative of the switching time Ti(γ) is
not given by case 1 or 2 of Lemma 5, then either 1)
µσiσi+1(Ti(γ)) is continuous and Ti(γ) is a critical point
of µσiσi+1 or 2) µσiσi+1(Ti(γ)) is discontinuous but zero is
not in (µσiσi+1(Ti(γ)−), µσiσi+1(Ti(γ)+)). Consider 1) first.
For Ti(γ) to be a continuity point and a switching time, it
must be the case that µσiσi+1(Ti(γ)) = 0. By the linearity
of µσiσi+1 with respect to γ, there can only be one γ for
which µσiσi+1 is zero at time Ti(γ). Since u ∈ Ω and v
satisfies Assumption 1, there are a finite number of critical
points of µσiσi+1 . Therefore, there are a finite number of γ
with a switching time Ti(γ) where uσiσi+1 is continuous but
are not included in case 1).

As for case 2), for Ti(γ) to be a discontinu-
ity point of µσiσi+1 and a switching time, by def-
inition of zero crossing, it is possible for 0 ∈
[µσiσi+1(Ti(γ)−), µσiσi+1(Ti(γ)+)]. In other words, it is
possible for µσiσi+1 to additionally cross zero at the bound-
aries of (µσiσi+1(Ti(γ)−), µσiσi+1(Ti(γ)+)) and not just the
interior, in which DTi(γ) exists and is given in case 2). There
can only be a single γ for which µσiσi+1 = 0 at each of the
bounds of the interval. Thus, there are a finite number of γ
with discontinuous µσiσi+1 which are not included by case
2). It follows that DJ(γ) exists except at the finite number
of γ considered in the proof.

Now, using this lemma, Lemma 7, as well as Lemma
6, we give sufficient conditions for J(γ) to be absolutely
continuous:

Theorem 5.2: Suppose u ∈ Ω, v satisfies Assumption 1
and DJ(Tu,v(γ)), Eq.(8), exists for γ ∈ [0, γmax] where
γmax ∈ R+. Then, DJ(γ) is absolutely continuous on the
interval [0, γmax].

Proof: According to Lemma 7, there are a finite number
of γ ∈ R+ for which DJ(γ) does not exist. Since DJ(γ)
can go unbounded only for the γ considered in Lemma 6 and
that the term of DJ(γ) that goes unbounded is still Lebesgue
integrable, DJ(γ) is Lebesgue integrable. Therefore, we can
define

H(γ) :=

� γ

0
DJ(γ�)dγ�,

which is absolutely continuous. Finally, by Theorem 37 of
[12] (chapter 6), since DH(γ) = DJ(γ) for almost every
γ, H differs from J by a constant and therefore, J(γ) is
absolutely continuous.

VI. IMPLEMENTATION LINE SEARCH

As seen in Algorithm 1, numerical optimization algo-
rithms iteratively choose a search direction vk and take
a step in that direction from the current estimate of the
optimizer uk−1. An option for choosing the size of the step
taken is to calculate the γ that minimizes the cost—i.e.
argminγ∈R+ J(P(u + γv)). This process is called the line
search. Another option is to approximate the minimizer by a
step size that satisfies Armijo and weak Wolfe conditions so



that a sufficient reduction to the cost and that a reasonable
step is taken [10].

Observe for the projection-based switched system opti-
mization problem that the step size must be sufficiently
large for the new cost to differ from the current cost. To
demonstrate, suppose uk−1 ∈ Ω is the current estimate of
the optimizer, vk ∈ V is the direction and γ ∈ R+ is the
step size. For J(P(uk−1+γvk)) to differ from J(P(uk−1)),
there must be a time t ∈ [0, T ] where Q(uk−1(t)+γvk(t)) �=
uk−1(t). Suppose i ∈ {1, . . . , N} is the active mode of
uk−1 at time t—i.e. uk−1(t) = ei. Then, there must be a
j ∈ {1, . . . , N} : j �= i where uk−1

ij (t) + γvkij(t) < 0 for
the new active mode at t to not be mode i. The inequality
may be rewritten as γvkij(t) < −1 since uk−1

ij (t) = 1.
Therefore, if |vkij | were bounded by 0 < L < ∞ for each
i �= j ∈ {1, . . . , N}, then γ must be greater than 1/L for
Q(uk−1 + γvk) to differ from uk−1.

Label γk
0 as the lower bound on the step size for which

Q(uk−1(t)+γvk(t)) differs from uk−1. In order to calculate
γk
0 , let i(t) ∈ {1, . . . , N} be the curve of active modes of

uk−1—i.e. uk−1(t) = ei(t). We wish to find the least value
of γ for which there is a t ∈ [0, T ] and j �= i(t) such that
uk−1
i(t)j(t) + γvki(t)j(t) = 0—i.e. γ = −1/vki(t)j(t). Let j(t) =

argminj �=i(t) v
k
ij(t). If there is a time t where vki(t)j(t)(t) <

0, then
γk
0 = − 1

mint∈[0,T ] vki(t)j(t)(t)
.

If vki(t)j(t)(t) is never negative, then there is not a γ for which
Q(uk−1 + γvk) differs from uk−1. Set

h(κ) = J(P(uk−1 + (γk
0 + κ)vk))− J(P(uk−1))

and note J(P(uk−1)) = J(P(uk−1 + γk
0 v

k)).
The non-smooth line search in [9] assumes absolute con-

tinuity. Suppose the assumptions in Theorem 5.2 hold and
that in addition,

s = lim sup
κ→0

h(κ)

κ
< 0.

Then, h(κ) is absolutely continuous and according to The-
orem 2.7 of [9], the line search algorithm given in [9],
Algorithm 2.6, either

1) terminates to a step size satisfying the weak Wolfe and
Armijo conditions, or

2) it eventually generates a nested sequence of finite
intervals which contain a set of nonzero measure of
step sizes that satisfy the weak Wolfe and Armijo
conditions.

VII. CONCLUSION

This paper considers the viability of the line search for
projection-based switched system optimization. The cost is
shown to be absolutely continuous with respect to the step
size when the search direction satisfies reasonable assump-
tions. While assuming absolute continuity, [9] present a
line search algorithm and shows that it either terminates to
a step size satisfying Armijo and weak Wolfe conditions
or it generates a nested sequence of finite intervals which
contain step sizes satisfying the Armijo and weak Wolfe
conditions. Future work is to find search directions with good
convergence properties.
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