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Abstract— Switching time optimization (STO) arises in sys-
tems that have a finite set of control modes, where a particular
mode can be chosen to govern the system evolution at any
given time. The STO problem has been extensively studied
for switched systems that consists of time continuous ordinary
differential equations with switching laws. However, it is rare
that an STO problem can be solved analytically, leading to
the use of numerical approximation using time discretized
approximations of trajectories. Unlike the smooth optimal
control problem, where differentiability of the discrete time
control problem is inherited from the continuous time problem,
in this contribution we show that the STO problem will in
general be nondifferentiable in discrete time. Nevertheless, at
times when it is differentiable the derivative can be computed
using adjoint equations and when it is nondifferentiable the left
and right derivatives can be computed using the same adjoint
equation. We illustrate the results by a hybrid model of a double
pendulum.

I. INTRODUCTION

Physical processes as well as the dynamic behavior of
technical systems are typically modeled by systems of con-
tinuous time differential equations. However, for an ap-
propriate description of complex behavior and interactions,
discrete effects have to be additionally accounted for. Hy-
brid systems provide a general framework to describe the
interaction of continuous dynamics with discrete events. A
great interest lies in the optimal control of hybrid systems
since this includes not only the computation of optimal
control trajectories for the continuous parts but also an
optimization of the discrete variables. In this contribution,
we focus on the switching time optimization (STO) of
switched dynamical systems. That means, the time points,
when the system instantaneously switches between different
continuous subsystems during an evaluation are treated as
design parameters that can be optimized w.r.t. a cost function.
The STO problem has been extensively studied for switched
systems that consists of time continuous ordinary differential
equations with switching laws, e.g. in [1], [2], [3], [4], [5],
[6], [7], [8] which we discuss in more detail in Section II.

a) Problem setting: For simplicity, we consider a
switched dynamical system on state space X ⊂ Rn that
is described by only two different vector fields, f1 and f2
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(autonomous and continuously differentiable in x ∈ X ). We
aim to study the effects of one single switch at time τ , i.e.

ẋ(t) =
{
f1(x(t)) t < τ
f2(x(t)) t ≥ τ (1)

starting our observation at time t = 0 at the initial state
x(0) = xini. (An extension to more than one switching times
and several vector fields is straight forward though.) Then a
switching time optimization problem is stated as follows

Problem 1.1: Let X ⊂ Rn be a state space with xini ∈ X .
Let T, τ ∈ R with 0 ≤ τ ≤ T , f1, f2 ∈ C1 and ` ∈
C1 (continuously differentiable). We consider the following
problem

min
τ
J(τ) =

∫ T

0

`(x(t), t) dt (2)

w.r.t. ẋ(t) =
{
f1(x(t)) t < τ
f2(x(t)) t ≥ τ x(0) = xini.

A necessary condition for τ being the optimal switching
time is J ′(τ) = d

dτ J(τ) = 0. Commonly, descent techniques
are employed that are based on the derivative of J (cf.
Section II for a formula to calculate J ′(τ)).

b) Discretization: In most cases, it is not possible to
solve Problem 1.1 analytically. Therefore, numerical methods
for integration and optimization have to be applied in order
to approximate an optimal solution. They are based on a dis-
cretization of Problem 1.1. Euler integration is a common nu-
merical integration scheme for differential equations, while
an integral cost function can be approximated e.g. by the
trapezoidal rule. To discretize (1), we choose a discrete time
grid {tk}Nk=0 = {t0, t1, . . . , tN} (not necessarily equidistant)
with t0 = 0, tN = T . A discretized version of Problem 1.1
is given by

Problem 1.2: Let {tk}Nk=0 = {t0, t1, . . . , tN} be a dis-
crete time grid with t0 = 0, tN = T and τ ∈ [ti, ti+1] for
some i ∈ {0, . . . , N}. Let X ⊂ Rn be a state space with
xini ∈ X , f1, f2 ∈ C1 and ` ∈ C1. Then we consider the
following problem

min
τ

Jd(τ) =
N∑
k=0

Ψ(xk) ≈
∫ T

0

`(x(t), t) dt (3)

w.r.t. K
(
{tk}Nk=0, τ, {xk}Nk=0

)
= 0, with K being a system

of algebraic equations resulting from the discretization of (1).
The discretized trajectory {xk}Nk=0 is an approximation of
the exact solution, i.e. xk ≈ x(tk).

For the minimization of Jd(τ) by descent directions, the
derivative is required. If it exists, it is given by

Jd
′(τ) :=

d

dτ
Jd(τ) =

N∑
k=0

DΨ(xk) · d
dτ
xk. (4)



In the following, we will show that Jd is in general non-
differentiable. Nevertheless, at time points when d

dτ xk does
exist, we give explicit formulas for it. Unlike the smooth
continuous case, nondifferentiable points occur when τ ,
which is still allowed to vary continuously, coincides with a
discrete time point. Analogously to the continuous setting,
Jd
′(τ) can be evaluated by discrete adjoints, that originate

from the necessary optimality conditions of an optimal con-
trol problem (cf. Section IV). We extend the discretization
scheme for state-adjoint-equations, as e.g. given in [9] to the
hybrid case. In our analysis and by illustrating numerical
tests we show that the nondifferentiability is less severe for
a refined time grid and vanishes when the step size goes to
zero. However, our focus does not lie on time grid refinement
but on dealing adequately with relatively large step sizes even
for highly nonlinear problems typically arising in mechanics.
In the research field of discrete mechanics, a great interest
lies in structure preserving methods for simulation and
optimization [10], [11]. Here, structure preservation and a
good longtime energy preservation is not primarily achieved
by reducing the time steps, but by finding a discretization
that inherits the properties of the continuous time solution.
Thus, optimization techniques that allow large step sizes are
also of great interest for hybrid mechanical systems.While
this is still future work, our contribution provides first ideas
how to adress this challenge.

To emphasize the relevance of our research, we introduce
the example of a double spherical pendulum that switches
between a locked and an unlocked mode.

Example 1.1 (Hybrid locked double pendulum):
Postponing all technical details to Section V, the
optimization problem for the hybrid double pendulum
is to approach a given final position. The numerical example
is designed such that this requires one single switch from the
locked to the unlocked mode with an optimal switching time
τ∗ = 0.33. In Fig. 1 the cost function evaluation is given,
which is obviously continuous w.r.t. τ . Approximating the
derivative DJ(τ) = d

dτ J(τ) (cf. (4) and Sections III–IV
for the corresponding formulas) reveals nondifferentiable
points, i.e. jumps in the evaluation. They coincide with
the grid points of the discretized time interval and do not
depend on the specifically chosen discretization scheme for
the trajectory, as we will see later. The nondifferentiable
points generally lead to problems in gradient based STO
techniques. One can observe in Fig. 1 that the discretized
objective function in this example is still convex which
leads to a uniquely defined τ∗ though. However, for general
applications, our analysis shows that nondifferentiability has
to be accounted for, e.g. by providing subgradients at those
points.

c) Outline: The remainder of this contribution is or-
ganized as follows: in Section II main results in STO for
continuous time dynamics are recalled. In Section III, we
study discretized STO problems and present general explicit
and implicit integration schemes for hybrid dynamics. In
Section IV corresponding discrete adjoint equations are
introduced. We illustrate our results by the example of a
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Fig. 1. Left: Sketch of the locked double pendulum: in mode 1, the outer
pendulum is locked w.r.t. the inner pendulum with angle θ. In mode 2, the
system is a normal planar double pendulum. Right: Cost function evaluations
and its derivative for a switched trajectory of the pendulum: while J is
continuous w.r.t. switching time τ , nondifferentiable points occur when τ
coincides with a node of the discrete time grid (red dots). This is caused
by the approx. trajectory, which is nondifferentiable w.r.t. τ at those points.

locked double pendulum in Section V and conclude with an
outlook to future work in Section VI.

II. STO FOR CONTINUOUS PROBLEMS

Derivatives of the cost function w.r.t. switching times in
a continuous setting have been studied in several works. We
recall from [1]:

Lemma 2.1: Let f1, f2 and ` from Problem 1.1 be con-
tinuously differentiable. Define the costate by

ρ̇(t) = −
(
∂f2
∂x

(x(t))
)T

ρ(t)−
(
∂`

∂x
(x(t))

)T
(5)

ρ(T ) = 0.

Then, J ′(τ) has the following form,

J ′(τ) = ρ(τ)T [f1(x(τ))− f2(x(τ))]. (6)
The result is extended to several switching times and vector
fields in [1] and to second order derivatives in [7]. Later
we will see that the case, when switching times coincide,
are of special importance to us when dealing with discrete
approximations of the system dynamics.

Further, the discrete analog of dx(t)
dτ is required for the

derivative of the cost function (cf. (4)). In the continuous
setting of Lemma 2.1, it is given for t ∈ (τ, T ) by (cf. [1])

dx(t)
dτ

= Φ(t, τ)(f1(x(τ))− f2(x(τ))), (7)

with Φ(t, τ) being the state transition matrix of the au-
tonomous linear system ż = ∂f2(x(t))

∂x z (cf. [7]).

III. DISCRETIZED STO PROBLEMS

In the following, we consider discretized problems such
as Problem 1.2 for explicit and implicit one-step integration
schemes.
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Fig. 2. Notation for discretization as used in the explicit and implicit
integration schemes and for the definition of discrete adjoints.

A. Explicit One-step Integration Schemes

Problem 3.1 (STO with explicit scheme): Based on the
setting in Problem 1.2, we consider the problem

min
τ

Jd =
N∑
k=0

Ψ(xk) w.r.t.

F =


xk+1 − F1(xk, tk, tk+1) = 0 k = 0, . . . , i− 1,
x∗ − F1(xi, ti, τ) = 0 and
xi+1 − F2(x∗, τ, ti+1) = 0 for k = i,

xk+1 − F2(xk, tk, tk+1) = 0 k = i+ 1, . . . , N − 1.
(8)

F1 and F2 denote the schemes for the different vector
fields f1 and f2 that switch at τ (cf. Fig. 2). Thus, it holds
τ ∈ [ti, ti+1] for some i ∈ {0, . . . , N}. It can be seen that
{xk}Nk=0 is continuous w.r.t. τ . For the derivative of {xk}Nk=0

w.r.t. τ , the following holds

d

dτ
xk+1 =
0 for k = 0, . . . , i− 1,
D1F2(x∗, τ, ti+1) ·D3F1(xi,
ti, τ) +D2F2(x∗, τ, ti+1) for k = i,

D1F2(xk, tk, tk+1) · ddτ xk for k = i+ 1, . . . , N − 1.
(9)

Here, we use the slot derivative notation, i.e. D1F2(·, ·, ·)
is the partial derivative of F2 w.r.t. its first argument,
D2F2(·, ·, ·) is the derivative w.r.t. the argument in the second
slot and so forth. For τ ∈ (ti, ti+1), d

dτ xk+1 for k =
0, . . . , N − 1 is continuous, if F1 and F2 are continuously
differentiable, which is a reasonable requirement on an
explicit integration scheme. Now the case when τ coincides
with a grid point, say ti+1 is studied. Therefore, we look
at the left and right limits: while limτ→ti+1

τ>ti+1

d
dτ xi+1 = 0,

because switching happens afterwards, in general,

lim
τ→ti+1
τ<ti+1

d

dτ
xi+1 = lim

τ→ti+1
τ<ti+1

D1F2(x∗, τ, ti+1) ·D3F1(xi, ti, τ)

+D2F2(x∗, τ, ti+1) 6= 0 (10)

and thus, d
dτ xi+1 is nondifferentiable for τ = ti+1. Although

(10) has to be checked for each integration scheme and each
system individually, most likely the nondifferentiability of
xk, (k = i+1, . . . , N) at time points is existent for a system

with arbitrary switching vector fields. As we saw in (4),
d
dτ xk is part of the discrete cost function derivative and thus,
nondifferentiability of the discrete trajectory generally leads
to nondifferentiability of Jd.

The iterative relation of the derivatives at neighboring
trajectory points gives rise to a transition operator

Φ(k + 1, k) := D1F2(xk, tk, tk+1) (11)

for k ∈ {i+ 1, . . . , N − 1}. Further, we define Φ(k, k) := 1
and for l > k+1 Φ(l, k) := Φ(l, l−1) · . . . ·Φ(k+2, k+1) ·
Φ(k + 1, k). Thus, for k ∈ {i+ 1, . . . , N − 1} one receives
the propagation scheme

d

dτ
xk+1 = Φ(k + 1, i+ 1) · d

dτ
xi+1.

Example 3.1 (Explicit Euler): Now we investigate one
specific integration scheme, i.e. an explicit Euler approxima-
tion to illustrate the general result of the nondifferentiability
of xk w.r.t. τ as stated above. The explicit Euler scheme
for a switched system is defined for k ∈ {0, . . . , N − 1}
as Fj(xk, tk, tk+1) = xk + (tk+1 − tk) · fj(xk), j =
{1, 2} and on the switching interval with x∗ and τ in the
appropriate arguments. Thus, by using the partial derivatives
D3F1(xk, tk, tk+1) = f1(xk), D1F2(xk, tk, tk+1) = 1 +
∂
∂xf2(xk)(tk+1 − tk) and D2F2(xk, tk, tk+1) = −f2(xk),
we verifiy that
d

dτ
xi+1 = f1(xi) +

∂

∂x
f2(x∗) · (ti+1 − τ) · f1(xi)− f2(x∗)

with x∗ = xi + f1(xi) · (τ − ti). The left hand side limit for
τ = ti+1 is

lim
τ→ti+1
τ<ti+1

d

dτ
xi+1 = f1(xi)− f2(xi+1).

In general, f1(xi) and f2(xi+1) will not coincide. Then
{xk}Nk=0 is nondifferentiable at τ = ti+1. For dt = ti+1 −
ti → 0, it holds x∗ = xi = xi+1 and thus, the result matches
the continuous case (cf. (7)).

For the next node, xi+2 we get the following derivative
and limits d

dτ xi+2 = Φ(i+ 2, i+ 1) d
dτ xi+1 = (1 + (ti+2 −

ti+1) ∂
∂xf2(xi+1)) d

dτ xi+1, and hence limτ→ti+1
τ<ti+1

d
dτ xi+2 =(

1 + (ti+2 − ti+1) ∂
∂xf2(xi+1)

)
· (f1(xi) − f2(xi+1)), but

limτ→ti+1
τ>ti+1

d
dτ xi+2 =

(
1 + (ti+2 − ti+1) ∂

∂xf2(xi+1)
)
·

f1(xi+1)− f2(xi+2), where the second limit is received by
the second case of (8) for an index shifted by one. Again,
only for vanishing time steps these limits will coincide.

Remark 3.1: To sum up, {xk}Nk=0 generated by an arbi-
trary one-step explicit integration scheme is not guaranteed
to be differentiable for τ ∈ {t0, . . . , tN}, but everywhere
else. This is consistent with the continuous setting described
in Section II, because we can also interpret the approximated
trajectory, e.g. from an explicit Euler scheme as a piecewise
linear function given by

x(t) =


xk + f1(xk)(t− tk) if k < i, and tk ≤ t ≤ tk+1,
xi + f1(xi)(t− ti) if k = i and ti ≤ t ≤ τ,
x∗ + f2(x∗)(t− τ) if k = i and τ ≤ t ≤ ti+1,
xk + f2(xk)(t− tk) if k > i and tk ≤ t ≤ tk+1.



This can be seen as the hybrid trajectory of a switched linear
system with switching points t0, . . . , tN and τ . For disjoint
switching points, the theory presented in Section II can be
applied. However, if two switching points coincide, i.e. τ =
ti+1 for some i as studied above, x is not differentiable there.
This is in correspondence with [3], in which the nonexistence
of a gradient in case of coinciding switching points is shown.

B. Implicit One-step Integration Schemes

When using an implicit integration scheme instead of an
explicit, (8) of Problem 3.1 is replaced by

G =
G1(xk, xk+1, tk, tk+1) = 0 for k = 0, . . . , i− 1,
G1(xk, x∗, tk, τ) = 0 and
G2(x∗, xk+1, τ, tk+1) = 0 for k = i,
G2(xk, xk+1, tk, tk+1) = 0 for k = i+ 1, . . . , N − 1.

(12)

By computations similar to those in Section III-A, we
derive for τ ∈ (ti, ti+1)

d

dτ
xi+1 =−D2G2(x∗, xi+1, τ, ti+1)−1 · (D1G2(x∗, xi+1,

τ, ti+1) · d
dτ
x∗ +D3G2(x∗, xi+1, τ, ti+1))

with d
dτ x
∗ = −D2G1(xi, x∗, ti, τ)−1D4G1(xi, x∗, ti, τ).

Defining the discrete transition operator as Φ(k + 1, k) :=
−D2G2(xk, xk+1, tk, tk+1)−1 ·D1G2(xk, xk+1, tk, tk+1) for
k ∈ {i + 1, . . . , N − 1}, the propagation rule can be again
written as d

dτ xk+1 = Φ(k + 1, i + 1) · d
dτ xi+1 for k =

i+ 1, . . . , N − 1.
In this section, we showed that the STO problem in

discrete time is in general not differentiable everywhere.
The points at which the objective function is generally
nonsmooth are the time grid points. However, in between
neighboring time points, the discrete objective function
inherits the smoothness of the corresponding continuous
problem. Therefore, the derivative of the cost function can
be computed using discrete adjoint equations analogously to
the continuous case. At nondifferentiable points the left and
right derivatives can be computed using the same adjoint
equation, as we will show in the following section.

IV. DISCRETE ADJOINTS

Optimal solutions of continuous optimal control problems
(under appropriate regularity assumptions) satisfy first-order
optimality conditions, the well known minimum principle
(see e.g. [9]). A discretization leads to a nonlinear constraint
optimization problem, where the constraint on (ti, ti+1)
is dependent on τ . Here, necessary optimality conditions
are called Kuhn-Tucker equations and give rise to discrete
adjoint multipliers (cf. [9]). The optimality conditions can be
either formulated in terms of a Hamiltonian or a Lagrangian
function, we choose the latter for our problem settings. The
aim is to compute Jd′(τ) in terms of the discrete adjoints
(cf. (6) for the time continuous case).

A. Discrete Adjoints for Explicit Schemes

Definition 4.1 (Discrete Lagrangian): The discrete La-
grangian of Problem 3.1 is given by

Ld({xk}Nk=0, {ρ}Nk=0, τ, x
∗, ρ∗)

=
N∑
k=0

Ψk(xk)−
i−1∑
k=0

ρk+1(xk+1 − F1(xk, tk, tk+1))

− ρ0 · (x0 − xini)− ρ∗ · (x∗ − F1(xi, ti, τ))
− ρi+1 · (xi+1 − F2(x∗, τ, ti+1))

−
N−1∑
k=i+1

ρk+1 · (xk+1 − F2(xk, tk, tk+1))

with the discrete adjoints {ρ}Nk=0 and ρ∗ (cf. Fig. 2).
Note that the discrete adjoints are treated as row vectors in
contrast to the continuous formulation in Section II.

Theorem 4.1 (Discrete adjoints for explicit schemes):
The backwards difference equations defining the discrete
adjoints for an explicit integration scheme analogously to
the continuous case (cf. Section II) are given by

ρN = DΨN (xN )
ρk = DΨk(xk) + ρk+1 ·D1F2(xk, tk, tk+1)

for k = N − 1, . . . , i+ 2,
ρi+1 = DΨi+1(xi+1) + ρi+2D1F2(xi+1, ti+1, ti+2)
ρ∗ = ρi+1 ·D1F2(x∗, τ, ti+1)
ρi = DΨi(xi) + ρ∗D1F1(xi, ti, τ)
ρk = DΨk(xk) + ρk+1 ·D1F1(xk, tk, tk+1)

for k = i− 1, . . . , 0.
Proof: Taking variations w.r.t. xk, ρk, x∗, ρ∗ and τ

leads to the necessary optimality conditions, i.e. the discrete
equations of motions, the boundary condition x0 = x(0) =
xini and also the discrete adjoint equations as given above. It
further holds ρ∗ ·D3F1(xi, ti, τ)+ρi+1 ·D2F2(x∗, τ, ti+1) =
0 which defines τ .
These adoint equations are consistent with the system given
in [9]. Using the operator Φ(k + 1, k) from (11), the
difference equation can be written as

ρk = DΨk(xk) + ρk+1 ·Φ(k + 1, k)

for k = N, . . . , i+1, with boundary value ρN = DΨN (xN ),
or alternatively, ρk =

∑N
j=kDΨj(xj)·Φ(j, k), where ρi+1 is

the last adjoint before switching (looking backwards in time).
Thus, the adjoints are continuous w.r.t. τ , if the DΨk and
the transition operator are continuous, which is reasonable
to assume.

This provides an elegant way to write the discrete cost
function derivative (cf. (4))

Jd
′(τ) =

N∑
k=0

DΨk(xk)
d

dτ
xk

=
N∑

k=i+1

DΨk(xk) · Φ(k, i+ 1) · d
dτ
xi+1 = ρi+1 ·

d

dτ
xi+1.



So it can be nicely seen that although the adjoint itself is
continuous, its argument, i.e. d

dτ xi+1 leads to nondifferen-
tiability of Jd. In fact, if τ = ti for i = 0, . . . , N , d

dτ xi+1

and therefore Jd′ can only be defined by either the left or
the right limit as defined in (10).

Example 4.1 (Adjoints for explicit Euler): For a specific
integration scheme, the formula for the discrete adjoints
can be explicitly computed and analyzed. Here, we consider
again the explicit Euler as an example. Recall that in the
explicit Euler scheme (cf. Example 3.1), it holds Φ(k +
1, k) = D1F2(xk, tk, tk+1) = 1 + (tk+1 − tk) ∂

∂xf2(xk) for
k = i + 1, . . . , N − 1 with f2 the active vector field after
switch. If we plug this in the adjoint equation, we get

ρk = DΨk(xk) + ρk+1

(
1 + (tk+1 − tk)

∂

∂x
f2(xk)

)
= ρk+1 +

(
DΨk(xk)
tk+1 − tk

+ ρk+1
∂

∂x
f2(xk)

)
· (tk+1 − tk).

(13)

For choosing Ψ(xk) = (tk+1 − tk) · `(xk), (13) is a direct
discretization of the continuous formulation in (5). The
resulting adjoint scheme itself is explicit, since we are going
backwards in time. However, because the computation of ρk
explicitly depends on xk, the discrete scheme for the system
of equations consisting of (1) and (5) is a symplectic or semi
implicit Euler scheme (cf. [9], where general Runge-Kutta,
but non-hybrid schemes are studied).

Example 4.2 (Switched linear system): We compare the
analytic solutions of the commonly used continuous setting
to the results we received for the discrete time setting.
Therefore, consider the following simple one-dimensional
linear switched system

ẋ =

{
x t ≤ τ
2x t > τ

with linear vector fields f1(x) = x, f2 = 2x, x(0) = 10 and
switching time τ . The corresponding flow, i.e. the solution
of the switched differential equation is hence given by

x(t, τ) =

{
x0 exp(t) t ≤ τ
x(τ) exp(2(t− τ)) t > τ.

The cost function to be minimized is chosen to be
J(τ) =

∫ T
0
x2(t, τ) dt and depends on τ through

the hybrid trajectory x(t, τ). The derivative of x(t, τ)
w.r.t. τ equals d

dτ x(t) = −x0 · exp(2t − τ) for
t ≥ τ with f1(x(τ)) − f2(x(τ)) = −x0 exp(τ) and
Φ(t, τ) = exp(2(t − τ)) (cf. Section II). Further, the
analytic solution of the adjoint equation is given by
ρ(t) = − 1

2x(τ) exp(2t − 2τ) + 1
2x(τ) exp(4T − 2τ − 2t).

Thus, J ′(τ) can be exactly determined by equation (6). In
general applications, analytical solutions cannot be found
and one therefore has to approximate x(t, τ) as well as ρ(t)
and also the evaluation of the cost function integral. For
this example, we approximate x(t, τ) by an explicit Euler
scheme with x0 = x(0) and for k = 1, . . . , N

Fig. 3. Left: The derivative of the approximated trajectory d
dτ
xk (black)

on the discrete time grid {tk}Nk=0 with tk = k ·0.2 and τ ∈ (0, 2) approx-
imates the analytically computed exact solution (gray). Non-differentiable
points occur when τ ∈ {t0, . . . , tN}. Right: The corresponding discrete
adjoints (black) are continuous w.r.t. τ and they approximate the adjoints
(gray) from the analytic solution of the continuous problem.

Fig. 4. Left: The discrete cost function derivative (black) shows non-
differentiability at discrete time points. The dashed lines illustrate the
discrete time grid (same as in Fig. 3, dt = 0.2). Right: Reducing the
grid width to tk = k ·0.04, the jumps at the nondifferentiable points of the
discrete derivative Jd′(τ) = d

dτ
Jd get smaller and the discrete derivative

approaches the continuous solution.

xk+1 =


xk + f1(xk)(tk+1 − tk) if k + 1 < i

xi + f1(xi)(τ − ti)
+(ti+1 − τ) · f2(x∗) if k = i,

xk + f2(xk)(tk+1 − tk) if k + 1 > i,

with the approximated switching state x∗ = xi +
f1(xi)(τ − ti) and the switching interval [ti, ti+1] as de-
picted in Fig. 2. The trapezoidal rule for a quadrature of
the cost function is chosen, i.e. J(τ) ≈

∑N
k=0 Ψ(xk) =∑N−1

k=1 `(xk) · tk+1−tk−1
2 + `(x0) · t1−t02 + `(xN ) · tN−tN−1

2
(cf. (3)).

In Fig. 3 (left) we compare d
dτ {xk}

N
k=0 to the exact values

of d
dτ x(t) evaluated on {tk}Nk=0. It can be observed that

the derivative of the approximation is not well defined if
τ = tk for k ∈ {1, . . . , N − 1} (time grid marked as dashed
lines) since left and right hand side limits are not equal (cf.
Section III-A). The discrete adjoints (see Fig. 3 (right), cf.
Section IV for their definition) are continuous w.r.t. τ . Thus,
since Jd

′(τ) =
∑N
k=0DΨ(xk) · d

dτ xk (cf. (4)), Jd(τ) is
nondifferentiable for τ ∈ {tk}Nk=0 (cf. Fig. 4) as the results of
Section III state. However, this nondifferentiability vanishes
when the grid width tends to zero, as Fig. 4 (right) illustrates.
Here, the step size is reduced from dt = 0.2 to dt = 0.04.



B. Discrete Adjoints for Implicit Schemes

For an implicit integration scheme as in (12), a Lagrangian
can be defined and adjoints can be derived analogously to
the explicit scheme (details have to be postponed to a future
publication). Although the adjoints are continuous under
normal smoothness conditions, d

dτ xi+1 (cf. Section III-B)
may generally be not well defined on time grid points, as in
explicit schemes. Thus, for the cost function derivative the
same problem of nondifferentiability occurs.

V. NUMERICAL EXAMPLE: THE HYBRID
LOCKED DOUBLE PENDULUM

As an illustrating example for nondifferentiable points of
a cost function for discretized switched systems, we consider
the double pendulum. The model consists of two mass points
m1, m2 on massless rods of length l1, l2. The motion of
the pendula are described by two angles, ϕ1 and ϕ2 (cf.
Fig. 1). The standard double pendulum is turned into a hybrid
system by introducing two different modes: M1: The outer
pendulum is locked w.r.t. the inner pendulum with angle θ,
i.e. the system behaves like a single pendulum with a special
inertia tensor. M2: Both pendula can move freely as in the
standard case.

In M1, the following energy terms are valid

K1(ϕ1, ϕ̇1) =
1

2
(m1l

2
1 +m2r

2) · ϕ̇2
1

V1(ϕ1) = (m1 +m2)gl1 cos(ϕ1) +m2gl2 cos(ϕ1 + θ − π)

with distance of outer mass to origin r2 = l21 + l22 −
2l1l2 cos(θ). The position of the outer mass can be updated
according to ϕ2 = ϕ1 + θ − π and it naturally follows that
ϕ̇1 = ϕ̇2. In M2, the system is defined by

K2(ϕ1, ϕ2, ϕ̇1, ϕ̇2) =
1

2

„
ϕ̇1

ϕ̇2

«T

·„
(m1 +m2)l

2
1 m2l1l2 cos(ϕ1 − ϕ2)

m2l1l2 cos(ϕ1 − ϕ2) m2l
2
2

«
·

„
ϕ̇1

ϕ̇2

«
V2(ϕ1, ϕ2) = m1gl1 cos(ϕ1) +m2g(l1 cos(ϕ1) + l2 cos(ϕ2)).

In both cases, the equations of motion are derived by the
Euler-Lagrange equations d

dt
∂Li
∂q̇ −

∂Li
∂q = 0 for Li(q, q̇) =

Ki(q, q̇) − Vi(q, q̇) (i = 1, 2) with q = (ϕ1, ϕ2) being
the configurations and q̇ = (ϕ̇1, ϕ̇2) the corresponding
velocities. We focus on the scenario, when the system
switches a single time from M1 to M2. One can check that
the energies of M1 and M2 coincides in a switching point
xτ = (ϕ1, ϕ1 + θ−π, ϕ̇1, ϕ̇1) and thus we will have energy
conservation along the entire hybrid trajectory. We assume
that the velocities directly before and after the switch are
the same, i.e. ϕ̇−1 = ϕ̇+

1 = ϕ̇+
2 . As a cost function we

choose J(τ) = Ψ(x(T )) =
∥∥∥∥(ϕ1

ϕ2

)
− qfinal

∥∥∥∥2

to minimize

the distance to a given final point. This is an algebraic
cost function as considered in Problem 1.2. The final point
qfinal = (−1.5487,−1.9733) is chosen such that the optimal
value is τ∗ = 0.33. We approximate the switching time
derivative Jd′(τ) by evaluating the corresponding formula for
d
dτ xi+1 and the appropriate discrete adjoints. In Fig. 1 (right)
the nondifferentiable points of Jd′(τ), i.e. points in which the

left hand right hand side derivatives do not coincide, can be
clearly seen.

VI. CONCLUSION AND FUTURE WORK

In this contribution, we show that in contrast to time
continuous STO, in discretized problems the differentiability
of a cost function w.r.t. the switching time is not guaranteed
if the switching time matches grid points of the time grid.
Consequently, smaller time steps actually make the neighbor-
hood in which a smooth optimality condition may be used
smaller. This indicates the need for application of optimality
conditions appropriate for nonsmooth systems.

So far, we restrict our numerical test to implicit and ex-
plicit Euler methods. Thus it is straight forward to extend to
other integration methods, e.g. multi step methods, higher or-
der Runge Kutta schemes or geometric integrators. The latter
are of special importance for structure preserving integration,
e.g. energy or momentum preservation in mechanical systems
(cf. [10]). Therefore, our future work will focus on STO of
discrete hybrid mechanics (cf. [12] for a discrete variational
modeling of hybrid mechanical systems). From a numerical
point of view, the information of nondifferentiable points
should be used to improve STO algorithms by providing e.g.
subgradients in those cases. Applications to more complex
examples will then be of great interest.
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