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Abstract— This paper presents a method of determining

optimal contact transition times for a surface exploration

task. A transition time optimization algorithm is developed

which uses a measure of ergodicity as the objective function,

requiring the time-averaged dynamics of the system to optimally

approximate the spatial average of a distribution on a finite

time interval. This approach is demonstrated to be effective for

determining a finite number of contact transition times in a

computationally efficient way. The approach is generalized to

include a measure of energy loss during sampling modes. The

algorithm is shown to result in solutions that are qualitatively

similar to the observed behavior of human subjects performing

feature localization tasks.

I. INTRODUCTION

Humans are particularly adept at identifying objects using
tactile information [1]. Several studies in psychology have
attempted to characterize human tactile exploratory behavior
in order to motivate control techniques that operate using
similar principles [1]–[3]. Notably, Lederman and Klatzky
experimentally demonstrated that human tactile exploration
can be described by a sequence of distinct exploratory pro-
cedures (EPs), dependent on the sensing task. For example,
object enclosure is typically used for extracting gross-level
shape, and surface scanning is used for feature localization
and identification [3].

In addition to being naturally described by switching
between a discrete set of high-level modes, tactile exploration
is also characterized by making and breaking contact with
an object or surface. Huynh, Stepp et. al demonstrate that
during feature localization, the exploration strategy used
by human subjects switches from continuous scanning to
ballistic motion followed by local exploration if the subject
has previous experience with the task [2]. This suggests that
the sensing strategy chosen reflects whether or not a subject
has an internal expectation of the location of a feature.

The aim of this paper is to derive a mathematical algorithm
for determining when mode transitions (e.g. when to make
and break contact) should occur for the example of a surface
feature localization task. Motivated by observations of human
exploratory behavior, this algorithm explicitly takes into
account a probabilistic representation of the location of the
desired feature. For a localization task, this is equivalent
determining which regions of the domain to sample and
which to ignore.

The contact decision problem is formulated as a transition
time optimization problem. The objective function for the
optimization uses the principle of ergodicity to quantitatively
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assess how well a spatial distribution is being sampled,
averaging the trajectory of a sensor over time. A general-
ized method for including a measure of energy loss during
sampling modes was examined as well. Several simulations
are performed using this method. These results are shown
to be qualitatively similar to behavior observed in human
subject experiments.

A. Related Work
Numerous studies have been devoted to reconstructing

surfaces or objects in three dimensions [4]–[8], and iden-
tifying surface features [9] from tactile information. Most of
these strategies assume some variation of regular or uniform
sampling; there has been a relatively little work done on
designing efficient control strategies to drive tactile data
collection. In [6] an algorithm is developed to match 3D
objects to a known database that uses an interpretation tree
method to select the optimal next sensing move from a set of
primitives, but does not allow ballistic motion. A method is
proposed in [10] which uses a residual hull method for 3D
object recognition, choosing a movement that reduces the
difference between an initial enveloping polyhedral model
and the hull defined by a discrete set of contact points at
each point in space. Mathew and Mezic derive a receding
horizon control strategy based on the principle of ergodicity
for continuous systems [11].

While there is a great deal of work in reconstructing
features or identifying objects from tactile information, there
remains a lack of a method that uses a precise measure
of spatial expectation to plan exploratory motion that is
amenable to hybrid systems, and efficient both computation-
ally and energetically.

II. TRANSITION TIME OPTIMIZATION

Hybrid systems are those that experience discrete changes
between continuous dynamic modes. A general hybrid sys-
tem with N transitions can be described by a sequence of
dynamic equations of the form:

x(t0) = x0, ẋ(t) = gi(x(t)) τi < t < τi+1 (1)

for i = 1, . . . , N , where each gi(t, x) is a distinct dynamic
mode. Transition time optimization involves determining the
optimal times for transitions between these modes by min-
imizing an objective function. Derivations of optimization
algorithms for determining switching times can be found in
[12]–[14]. Hybrid optimization is a particularly compelling
framework for studying exploratory behavior for several
reasons. At a high level, tactile exploration can be naturally
presented as a hybrid system, as it can be categorized into



distinct exploratory procedures [15]. Additionally, tactile
sensing involves making and breaking contact; contact tran-
sitions are naturally hybrid.

Hybrid system optimization is also appealing from an
implementation perspective. Solving for transition times
between known dynamic modes is often a better-posed,
better-conditioned problem than the continuous problem, in
that it is only necessary to solve for a finite number of
transition times. Additionally, previous work in hybrid sys-
tem optimization using second-order information has shown
significant decrease in computation time compared to first-
order methods, which is critical for real-time calculations
necessary for active sensing [12], [13], [16].

In this paper, it is assumed that the number of switches as
well as the mode order is known. A method for determining
the order in which mode changes occur is provided in
[12]. The problem therefore reduces to solving for a set of
transition times that minimize a cost function J , for a given
set of modes and distribution, i.e.

arg min
τ

J(τ),

where τ is the set of transition times.

A. Optimization Methods
This paper presents derivations of the first and second

derivatives of the objective function J(τ) with respect to a
set of transition times, which are then used in standard first
and second order iterative optimization algorithms. Gradient
descent, which relies on the first derivative of the cost
function with respect to the transition times, chooses a
descent direction d = −DτJ , iterating until some con-
vergence criteria has been met. Newton’s method, which
can improve convergence time of the algorithm in convex
regions by orders of magnitude, relies on both the gradient
and the Hessian to calculate a descent direction according to
d = −D2

τJ
−1 ·DτJT .

In the simulations provided in section VI, a combination of
gradient descent and Newton’s method was used: given a set
of initial transition times, the algorithm initially iterates using
gradient descent, and switches to Newton’s method when the
Hessian is determined to be positive definite. A backtracking
line search was utilized in the optimization methods shown
above in order to ensure sufficient decrease. Details on the
optimization algorithms can be found in [17].

B. Notation
The notation used in this paper follow [13]. Slot derivative

notation is used throughout; i.e. Dnf(arg1, arg2, ...) rep-
resents the derivative of the function f(·) with respect to
the argument at position n. Darg(...) is the derivative with
respect to arg. The ◦ operator is used to represent linear
mappings, e.g. M ◦ v = M · v, and M ◦ (v, u) = vT [M ]u.

III. ERGODICITY

In order for a system to be ergodic, the fraction of time
spent sampling an area should be equal to some metric
quantifying the density of information in that area. This idea

is expressed graphically in Fig. 1, where the distribution
φ(x), depicted as level sets over the domain X , is sampled
by a sensor following the trajectory x(t) from t = 0 to
t = T . The trajectory x(t) is ergodic with respect to the
PDF φ(x) if the percentage of time spent in any subset N
of X from t = 0 to t = T is equal to the measure of N .
The equations in Fig. 1 represent the condition for ergodicity
for the two subsets shown; this condition must hold for all
possible subsets.

The objective for a sensing task should capture the same
information; the aggregate motion of a sensor should result
in more samples from the most information-dense areas of
a distribution. The spatial distribution used for calculating
ergodicity will vary based on the sensing task. For example,
if the goal is to reconstruct a surface, a desirable distribution
would be the variance of the estimated surface over the
surface manifold. If the goal is to localize a feature, the dis-
tribution would be the probability that the feature is located
at any point in the domain. Mathew and Mezic [11] derive
a continuous time feedback controller for a sensing task that
uses a metric that quantifies both the ergodicity of a system
and energy expended. In this paper an algorithm is developed
using the same measure of ergodicity as in [11], adapted to
hybrid systems, and is shown to be computationally efficient
and effective for nonlinear systems.

A. Metric for Quantifying Ergodicity

There are different ways of expressing ergodicity. In this
paper, the metric presented by Mathew and Mezic will
be used to calculate how far a trajectory is from being
ergodic with respect to a distribution. This approach uses
the distance between the Fourier basis functions of the spatial
distribution and the time-averaged distribution, quantified by
the weighted norm of the Fourier coefficients, as a measure of
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Fig. 1: Conceptual illustration of what it means for the trajectory x(t) to
be ergodic with respect to the distribution φ(x), represented by the level
sets shown. Equations representing the condition for ergodicity for the two
subsets, N1 and N2 are shown.



the ergodicity. A clear and thorough derivation of the metric
can be found in [11]. A brief summary follows.

It is assumed there is a probability distribution function
φ(x) over a rectangular region of interest X ⊂ Rn defined
as [0, L1]× [0, L2]...× [0, Ln]. As in [11], the Fourier basis
functions that will be used, on the domain X are

fk(x) =
1

hk

n�

i=1

cos
�
kπ

Li
xi

�
, for k = 0, 1, 2...K

where hk =

��

X

n�

i=1

cos2
�
kπ

Li
xi

��1/2

,

where K is the number of basis functions used. The time-
averaged trajectory can be represented as a point wise
function of point x̄ and trajectory x(t) as follows:

C(x̄, x(t)) =
1

Tf

� Tf

0
δ(x̄− x(t))dt

The Fourier coefficients of the basis functions along the
trajectory, averaged over time, can be computed using the
inner product of C(x̄, x(t)) and fk(x̄), as follows:

ck(x(t)) =
1

Tf

� Tf

0
fk(x(t))dt. (2)

The Fourier coefficients of the spatial distribution φ(x) are
computed in a similar way:

φk =

�

X
φ(x)fk(x)dx.

The a measure of the distance between C(x̄, x(t)) and φ(x̄),
can therefore be expressed as

K�

k=0

Λk|ck(Tf )− φk|2, (3)

where Λk is a scaling factor which weights lower frequency
basis functions more than higher frequency, defined accord-
ing to [11], as

Λk =
1

(1 + ||k||2)s and s =
n+ 1

2
. (4)

While equations presented up until this point are essen-
tially identical to [11], the following sections present a novel
use of Eq. (3) in a transition time optimization framework,
used to solve a different class of problem.

IV. ERGODIC OBJECTIVE FUNCTION

The derivation and simulations presented in this paper
assume a single agent sampling along a one dimensional
space, although extension to multiple dimensions and agents
is straightforward. The time horizon, number of transition
times, and mode order is assumed to be known in advance,
as well as the PDF φ that represents the areas in a finite
region that are of particular interest to explore, as defined
in Section III-A. The system dynamics are defined as in Eq.
(1).

In order to mathematically differentiate between modes
during which sampling does or does not occur, it is conve-
nient to rewrite Eq. (2) as

ck(x(t), τ) =
1

TE(τ)

� Tf

T0

�k(x(t, τ))dt, (5)

where

�k =

�
fk(x(s, τ))

0

sampling modes
non-sampling modes

(6)

Thus, although the trajectory x(t) is continuous, the seg-
ments of the trajectory during non-sampling modes are not
included in the calculation of the Fourier coefficients of the
time-averaged trajectory. The total sampling time must also
be adjusted to represent the total duration of time spent in
sampling modes, defined as TE below:

TE(τ) = Tf −
�

i∈Ne

(τi+1 − τi). (7)

where Ne is the set of modes during which sampling occurs.
The objective function will now be defined as

J(τ) =
K�

k=0

Λk

��� 1
TE(τ)Gk(x(t, τ))− φk

���
2
, (8)

where

Gk(·) =

� Tf

T0

�k(x(s, τ))ds

=

� τ1

T0

�k,1(x(s, τ))ds+

� τ2

τ1

�k,2(x(s, τ))ds

+ . . .+

� Tf

τN

�k,N (x(s, τ))ds. (9)

As will be demonstrated in the next section, the disconti-
nuity in �k(x, τ) with respect to x(τ, t) results in the tran-
sition time derivatives looking almost identical to impulse
optimization [16].

V. OPTIMALITY CONDITIONS FOR ERGODIC
TRANSITION TIME OPTIMIZATION

A. First Derivative of J(·)
Lemma 1: The first partial derivative of the cost function

in Eq. (8) with respect to a single transition time τi can be
calculated as follows:

DτiJ(·) =
K�

k=0

Λk

�
2
�

1
TE(τ)Gk(x(t, τ))− φk

�
◦

�
Dτi

1
TE(τ) ◦Gk(x(t, τ))+

1
TE(τ)DτiGk(x(t, τ))

��
, (10)

where

DτiGk(x(τ)) = ψk(τi) ◦ Xi +

�k,i−1(x(τi), τi)− �k,i(x(τi), τi)(11)



and ψk(t) is the first-order adjoint found by solving the
following backwards differential equation:

ψ̇k(t) = −Dxg(x(t))
T ◦ ψk(t)−D1�k(x(t), t)

T (12)

ψ(Tf ) = 0.

Xi is defined as shown below for compactness, following
[13].

Xi = gi−1(x(τi), τi)− gi(x(τi), τi) (13)
Proof: Equation (10) results from the application of

the chain rule to Eq. (8). The expression for DτiGk(·) is
obtained by differentiating Gk(·) with respect to a transition
time τi, applying the chain rule and the Leibniz rule to obtain

DτiGk(·) =

� Tf

T0

D�k(x(s, τ)) ◦Dτix(s, τ)ds+

�k,i−1(x(τi), τi)− �k,i(x(τi), τi). (14)

The partial derivative of x(t) with respect to a transition time
τi can be calculated using a state transition matrix operating
on an initial condition:

Dτix(t) = Φ(t, τi) ◦Xi, (15)

where Φ(t, τ) is the solution to ż(t) = [D1g(x(t), t)] z(t).
By Substituting Eq. (15) for Dτix(t) into the expression for
DτiJ(·) above and pulling Xi out of the integral, ψk(t) can
be defined as

ψk(t) =

� Tf

τi

D1�k(x(s, τ)) ◦ Φ(s, τ)ds,

which is then differentiated to obtain the expression for ψ̇k(t)
shown above.

The derivation of DτiGk(·) is essentially the same as
switching time optimization if �i−1(x(τi) = �i(x(τi), or
impulse optimization if �i−1(x(τi) �= �i(x(τi). More formal
derivations of Dτix(t) and ψk(t, τ) for both cases can be
found in [13] and [16].

The benefit of solving this problem using the backwards
integration of the adjoint equation is that the cost of evaluat-
ing the gradient at each iteration of the optimization routine
does not scale with the number of switching times; K adjoint
equations are solved once per iteration, and evaluated at each
transition time.

B. Second Derivative of J(·)
Lemma 2: The derivative of (10) with respect to a second

transition time τj can be calculated as follows:

DτjDτiJ(·) =
K�

k=0

2Λk

��
Dτj

1
TE(τ) ◦Gk(x(t, τ))+

1
TE(τ) ◦DτjGk(x(t, τ))

�
◦

�
Dτi

1
TE(τ) ◦Gk(x(t, τ))+

1
TE(τ) ◦DτiGk(x(t, τ))

�
+

�
1

TE(τ)Gk(x(t, τ))− φk

�
◦

�
Dτj

1
TE(τ)Gk(x(t, τ)) +

1
TE(τ)DτjDτiGk(x(t, τ))

��
.

(16)

DτjGk(x(t, τ)) and DτiGk(x(t, τ)) are calculated according
to Eq. (14). DτjDτiGk(x(t, τ)) is calculated as follows:

DτjDτiGk(·) = D1�k,i(x(τi), τi) ◦Dτjx(τi)

−D1�k,i+1(x(τi), τi) ◦Dτjx(τi)

−D1�k(x(τi), τi) ◦Xiδji + ψk(τi) ◦Xi,j

+Ωk(τi) ◦ (Φ(τi, τj) ◦Xj , Xi), (17)

Where δji is the Kronecker delta. The first two terms in
this expression are the result of differentiating the Leibniz
terms from Eq. (14). Evaluating Dτjx(τi) depends on the
relationship between i and j, as follows:

Dτjx(τi) =

�
gi(x(τi), τi)

Φ(τi, τj) ◦Xj .

i = j

i > j

Equation (17) involves the n × n second-order adjoint
Ωk(t), which is found by solving the following backwards
differential equation:

Ωk(Tf ) = 0(n×n)

Ω̇k(t) = −D2
1�k(x(t), t)− ψk(t) ◦D2

1g(x(t), t)−
Ωk(t) ◦ (D1g(x(t), t))− Ωk(t) ◦D1g(x(t), t)).

(18)

The terms in Xi,j are defined as

Xi,j =






D1gi(x(τi), τi) ◦ gi(x(τi), τi)+
D1gi−1(x(τi), τi) ◦ gi−1(x(τi), τi)−
2D1gi(x(τi), τi) ◦ gi−1(x(τi), τi)+

D2gi−1(x(τi), τi))−D2gi(x(τi), τi))

[D1gi−1(x(τi), τj)−D1gi(x(τi), τi))]

◦Φ(τi, τj) ◦Xj

i = j

i > j.
Proof: Equation (16) is found by applying the chain

rule to (10). DτjDτiGk(·) can be derived following the same
approach as the first derivative, following the derivation in
[16]. In this expression, the second order adjoint equation
Ωk(t) is once again solved K times at each iteration, and
evaluated at each transition time.

Note: For systems with continuous sampling (i.e. �1 =
�2 = ... = �N ), the equations become somewhat simpler. The
total sampling time, TE = Tf , can be treated as a constant
and therefore does not need to be differentiated to calculate
DτiJ(·) and DτjDτiJ(·) and the Leibniz terms do not appear
inDτiG(·) or DτjDτiG(·).

These equations can also be modified to account for
multiple sensing agents, by averaging over agents as well
as time, as done in [11].

C. Including Energetic Cost

By including a second term in the cost function, a measure
of energetic cost can be included in the optimization as
follows:

JW (τ) =
�

K

Λk

��� 1
TE(τ)Gk(x(t), t)− φk

���
2
+ βW (x(t), t).

(19)



In this equation, β is a scaling factor which should be
chosen depending on the particular sensing task and energetic
constraints of the system. W (x(t, τ)) is a measure of energy
loss or work; for physical systems this might be energetic
cost for time spent in different modes, or losses due to
friction when in contact. This term, when differentiated with
respect to a transition time τi may involve Dτix(t) and
DτjDτix(t), and therefore involve a second adjoint system
derived analogously to Eq (12).

VI. SIMULATIONS

Simulations of two example systems and distributions
were performed using this algorithm. The first simulation in-
volves a nonlinear system sampling a unimodal distribution,
which experiences both contact switches and a directional
switch during sampling. The second simulation demonstrates
the effects of including the energy loss term in the optimiza-
tion for a linear system sampling bimodal distributions. All
calculations were done using Mathematica.

A. Example 1: Non-linear system sampling a unimodal dis-
tribution

In this example a system with four transition times,
switching between contact (sampling) and non-contact (non-
sampling), is simulated. Recall that there are two aspects
of the system that can switch at the transition times: the
dynamic equations, and whether or not the segment of the
trajectory in that mode is included in the calculations of the
basis functions, according to Eq. (6).

In this example, the transition times are calculated to
optimally sample a spatial distribution that is a unimodal

Fig. 2: Distribution and optimal ergodic trajectory calculated for Example
1. The value of the PDF is plotted on the positive vertical axis, the value
of time plotted on the negative vertical axis.

Fig. 3: Logarithmic plot of the norm of the gradient of the cost function for
Example 1. The algorithm takes five steps using gradient descent, followed
by Newton’s method to the optimum. Expected quadratic convergence
behavior is apparent; the system converges after only 11 iterations

Gaussian with mean L/2 and variance 0.17. The system
dynamics evolve according to

ẋ =






1
4x(t)

2

1
4x(t)

2

− 1
4x(t)

2

1
4x(t)

2

1
4x(t)

2

0 ≤ t < τ1
τ1 ≤ t < τ2
τ2 ≤ t < τ3
τ3 ≤ t < τ4
τ4 ≤ t < 6

non-sampling
sampling
sampling
sampling

non-sampling.

This distribution and the optimized trajectory are shown
in Fig. 2. Energy loss was not included in the objective
function for this example. The algorithm was given the
initial transition times τ = (1.5, 1.8, 2, 2.3), and converged
to τ = (1.4806, 1.8302, 2.0048, 2.2970). The optimization
demonstrates the expected quadratic convergence behavior
using Newton’s method, as shown in Fig. 3.

B. Example 2: Kinematic system sampling a bimodal distri-
bution

In this example, several variations on a bimodal distribu-
tion are used to demonstrate the results of the algorithm.
Optimal trajectories are calculated both with and without
including a measure of work loss due to friction in the
objective function.

The distribution φ(x) for this example is defined using a
bimodal skew normal distribution as shown below:

ρ(x) =
1
ρ

�
1 + erf

�
α1(x− ζ1)√

2ω1

��
exp

�
− (x− ζ1)

2

2ω2
1

�

+

�
1 + erf

�
α2(x− ζ2)√

2ω2

��
exp

�
− (x− ζ2)

2

2ω2
2

�

φ(x) =
ρ(x)�

X ρ(s)ds
.

where ζ, ω, and α are the location, scale, and shape pa-
rameters, respectively. The simulation was performed over
three variations of this distribution, all with ζ1 = 2, ζ2 = 8,
α1 = 5, α2 = −5. The scale variables ω1 and ω2 are
varied between three different levels (0.5, 1.0, and 2.0) to
demonstrate the results of sampling distributions that are very
bimodal, moderately bimodal, and nearly flat.



The dynamics ẋ and modes for this example are as
follows:

ẋ =






v1
v2
v1
v2
v1

0 ≤ t < τ1
τ1 ≤ t < τ2
τ2 ≤ t < τ3
τ3 ≤ t < τ4
τ4 ≤ t < 6

non-sampling
sampling

non-sampling
sampling

non-sampling

Although frictional work is taken into account in the cost
function, the dynamics assume that an input force is gener-
ated in each mode to exactly cancel the frictional force, i.e.
v̇ = 0, and the system can be represented by a single inte-
grator system with constant velocity in each mode. During
all five modes in this example, the sampling agent travels
in the same direction, and alternates between sampling
(experiencing friction) and non-sampling (no friction) modes.

The work loss due to friction during sampling modes will
be considered, calculated as

W (Tf ) =

� TF

T0

w(t, τ)dt,

where

w(t, τ) =

�
0

Ff · ẋ(t, τ)
non-sampling

sampling.

The weighting factor β in Eq. (19) for each distribution was
set to be proportional to the scale variable: β = 0.001ω.

The three distributions and optimal trajectories for each
calculated using an objective function dependent only on
ergodicity are plotted in Fig. 4. It can be seen that without
minimizing work as well as the distance of the trajectory
from being ergodic with respect to the distribution φ(x), the
second and third transition times converge as the distribution
flattens out, and the optimal trajectory approaches uniform
sampling.

The optimal trajectories calculated using an objective
dependent on both work and ergodicity are shown in Fig. 5,
as well as the trajectories corresponding to the same distribu-
tions without considering energy (the same as shown in Fig.
4). Changing the value of β in Eq. (19) effectively changes
how conservatively the distribution is sampled, which adds
a degree of flexibility to the algorithm. In some situations, if
the distribution is particularly tight (such as the distribution
shown in orange in Fig. 4), or if losses due to energy are
negligible, the purely ergodic calculations may be desirable.
If energetic losses are more critical however, an objective
that takes energy into account may be optimal, resulting in
a more conservative subset of a distribution being sampled.

VII. CONCLUSIONS AND FUTURE WORK

In order to model the contact decision process during
autonomous active tactile exploration, a measure of the er-
godicity of a time-averaged trajectory with a spatial distribu-
tion is developed as an objective function for transition time
optimization. The derivatives with respect to the transition
times of the objective are derived for use in first and second

order optimization algorithms. Simulations of two example
systems are presented which demonstrate that this method
is effective in selecting transition times which result in time

Fig. 4: Optimal trajectories using an ergodic objective function for three
different variations of a bimodal distribution. The color of the trajectories
indicates which distribution it was optimized with respect to. Modes in
which the system is in contact are shown as solid lines, non-contact modes
are shown as dotted lines.

Fig. 5: Optimal trajectories calculated for the same three distributions
shown in Fig. 4. For each distribution, the optimal trajectories using an
objective that takes ergodicity alone and the optimal trajectory based on
both ergodicity and work loss (darker) are shown separately. Color indicates
to the distribution sampled. The weighting factor on the work term in Eq.
(19), β is indicated for each trajectory



and spatial averages which are optimally ergodic for a given
set of dynamics sampling a known distribution. The effect of
also considering the weighted losses due to friction during
sampling modes was examined as well, generalizing the
method to a class of optimal solutions for a particular task.

The simulations in VI-B demonstrate that formulating the
contact decision problem as a transition time optimization
which uses a measure of ergodicity results in behavior that
is qualitatively similar to exploratory behavior carried out
by human subjects [2]. As seen in Fig. 4, contact transition
times chosen according to an ergodic objective result in
trajectories which sample a small area around the peaks of
the distribution for very bimodal distributions; trajectories
trend towards uniform scanning as the distribution becomes
more flat. This behavior is observed in humans. When
searching a space with no knowledge of a feature location,
uniform scanning behavior is observed. On a second trial for
the same task, once the user has some expectation of where a
feature is, ballistic motion is observed, followed by sampling
of a local area. The authors of [2] leave as an open question
whether or not factors such as high surface friction would
lead human subjects to resort to ballistic motion during
searching even when they have a less reliable internal model
due to increased cost of surface scanning. The algorithm
provided here provides a reliable way of mathematically
taking this effect into account, demonstrating as in Fig. 5 that
penalizing surface scanning by examining work loss through
friction results in more conservative sampling strategies.

Trials with human subjects are planned in order to charac-
terize if and how energetic cost plays a role in exploratory ac-
tion, and how this can be used in robotic applications. Future
work in this area will involve including the determination
of mode order as well as transition times, and applying this
algorithm to more complex systems with multiple degrees of
freedom and multiple sensing agents. Ultimately, this work
can be integrated into a control scheme for autonomous
tactile exploration for robotic systems.
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