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Abstract— This paper describes a project with the long term
goal of automated performance marionettes, accomplished by
capturing human motion and automating the motion imita-
tion synthesis for an experimental marionette system. The
automation and performance goals required the development
of hardware and software tools that enable motion imitation,
leading to a series of results in numerical simulation, optimal
control, and embedded systems. Marionettes are actuated by
strings, so the mechanical description of the marionettes either
creates a multi-scale or degenerate system—making simulation
of the constrained dynamics challenging. Moreover, the mar-
ionettes have 40-50 degrees of freedom with closed kinematic
chains. Choreography requires the use of motion primitives,
typically originating from human motions that one wants the
marionette to imitate, and resulting in a high dimensional
nonlinear optimal control problem that needs to be solved
for each primitive. Once acquired, the motion primitives must
be pieced together in a way that preserves stability, resulting
in an optimal timing control problem. We conclude with our
current results that enable the synthesis of optimal imitation
trajectories, and overview the next steps we are taking in this
project towards automated performance marionettes.

I. INTRODUCTION

This paper provides an overview of, and future directions
for, a project focusing on robotic marionettes. The project
(now five years old) was heavily motivated by the example
of puppet choreography, where motions are split into simple
primitives and concatenated in time using counts that help
the puppeteers synchronize their motions (e.g. Fig.1). This
example suggests a formal approach to motion synthesis for
complex systems that is very appealing—to first construct
primitive motions, potentially as a batch computation prior to
execution, and then piece those primitives together in a way
that ensures stability. Moreover, the marionettes are severely
underactuated, subject to unilateral constraints (because of
the strings being able to go slack), mechanically degenerate
(because of the strings being so light), and their articulated
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Fig. 1. An example of choreography from the Atlanta Center for
Puppetry Arts [9]. Choreography includes basic primitive motions that are
concatenated together in time. When multiple puppets are on stage, counts
are used to facilitate synchronization.

rigid body dynamics are nonlinear. Marionettes therefore
seemed a reasonably challenging system to consider: it was
clear that synthesizing stabilizing feedback controllers for
the marionettes would be challenging. Success however also
seemed likely: if puppeteers could do it, it seemed plausible
to be possible computationally as well.

Our plan was to first decide on an experimental approach,
and then choose a numerically feasible manner to simulate
the marionettes and compute control policies. What actually
happened was more complex than that; the experimental
approach and software approach have been iterating with
each other for several years. Indeed, many of the calculations
we are accustomed to performing for simpler systems were
numerically ill-posed for the marionettes. Moreover, one of
the main things we have learned thus far in this project is
that artistic performance creates a constraint on the project
outcome, which in turn requires flexibility in the various
technology design stages. Thus, the experimental system
had nontraditonal requirements—that is, artistic performance
requirements—regarding the types of inputs one should use
to drive the system. For instance, controllers that heavily
damped motion in order to stabilize it are unacceptable from
a performance perspective because the motion is not visible
to the audience.

The challenges that we encountered can roughly be placed
in three categories. First, simulation of the marionettes
was much more difficult than anticipated. Second, feedback
control synthesis was nontrivial, and even the form of inputs
to the system was not clear. (E.g., should marionette strings
be modeled as rigid or as unilateral constraints? Puppeteers



(a) (b) (c)
Fig. 2. (a) The marionettes are suspended by differential drive vehicles that have winches to pull on strings; the marionettes have real-time state feedback
at 30 Hz from a Kinect sensor. The differential drive vehicles are suspended by magnetic wheels and communicate wirelessly with a central computer
running the Robot Operating System (ROS). (b) The trep software used to simulate and control the marionettes has visualization capabilities allowing
the user to see if desired motions are stable in the simulated environment. (c) The goal is to take the motion capture data from dancers and automatically
synthesize a motion program for marionettes to imitate the dancers’ motion [16].

told us that if the strings ever go slack, they redesign the
mechanical puppet, suggesting that treating the strings as
constraints is reasonable.) Third, practical requirements such
as control of the individual actuators (the differential drive
vehicles in Fig.2(a)) was challenging because the actuators
are all coupled to each other through the dynamics of the
marionettes.

This paper is organized as follows. In Section II we
overview the experimental system description. In Section III
we provide our view of the “typical” approach to solving
control problems for mechatronic systems; we discuss the
various ways in which those approaches needed to be adapted
to function in the present setting and how our software
reflects those needs. In Section IV we discuss the current
state of the project, with the upshot being that we can
compute optimal imitation trajectories roughly only an order
of magnitude slower than real-time. We end in Section V
with a discussion of the next research direction that this
work is taking—including learning by demonstration—and
the importance of using the marionette performance as an
end goal.

II. EXPERIMENTAL SYSTEM DESCRIPTION

This work is a collaboration between Northwestern, Geor-
gia Tech, the University of Colorado at Boulder, the At-
lanta Center for Puppetry Arts, and Disney Imagineering.
Disney Imagineering has played a central role in helping
develop the hardware platform partially because animatronics
in theme parks are very heavy, slow, and expensive and
robotic marionettes promise to be both more agile and less
costly and cumbersome. However, controlling marionettes is
a very difficult technical problem; the marionettes have many

degrees of freedom, have mechanical degeneracy due to the
strings, and are highly constrained.

Why choose experimental marionettes? They have several
key advantages. First, it is clear what they should do—
because they are humanoid and are used to act out human
motions, the goals of the mechanism are clear. Indeed,
generating reference data for the marionettes can be as
simple as using a Microsoft Kinect sensor to track one’s
own body. Second, it is clear that they cannot achieve
those goals, at least not exactly. The dynamics of the
marionette are radically different from those of a person,
making exact motion replication impossible. Third, picking
up a marionette, or watching a professional manipulate
a marionette, tells us that close approximation of human
motion should be possible, at least in many instances, and
when it is impossible we can hope to know it is impossible.
We know that puppeteers can solve these high dimensional
motion planning problems—puppeteers do successfully get
marionettes to convincingly imitate human motion—so we
know the problems are solvable.

We have an animatronic marionette, pictured in Fig. 2(a),
that has 40 degrees of freedom (22 dynamic degrees of
freedom, 18 kinematic degrees of freedom, and 6 constraints
due to the strings). We can simulate and linearize to both
first and second order the marionette using the trep soft-
ware developed in our laboratory over the last five years.
Hence, we can compute feedback controllers to regulate
trajectories, and can perform nonlinear control synthesis. (As
an example, we can synthesize walking trajectories for the
marionette directly from reference walking motion data.) The
differential drive robots, used to winch and manipulate the



strings, are controlled using feedback controllers based on
differential flatness properties. Then we compute optimal
paths for the robots to follow, and string lengths for them
to create, based on the puppets’ dynamics and the desired
motion. The techniques we use are briefly described in the
next sections.

III. TYPICAL APPROACHES TO CONTROL OF
MECHATRONIC SYSTEMS

Efficient methods in simulation for highly articulated rigid
body systems have been studied for many years [2], [3],
[4], [12], [30], [31]. However, less emphasis on control
calculations for these same systems has been present (often
times motivated implicitly by the use of probabilistic plan-
ners, which only use sampling of the dynamics to generate
policies). In contrast, partially because of the high number
of degrees of freedom and the highly dynamic behavior they
exhibit, control of the marionettes benefits from numerical
methods that provide both simulation and control simultane-
ously in order to keep computations tractable.

A. Dynamics

Dynamics are often represented in the form

ẋ = f(x, u) (1)

where x = (q, q̇) and q ∈ Q describes the configuration
of the system. For rigid body systems, it has historically
been convenient to write down the rigid body system in
Newton-Euler coordinates; i.e., Q = SE(3)n, where n is
the number of rigid bodies in the system. This yields a state
space of dimension 12n that is subject to constraints. For the
marionette, for instance, just the body has 10 rigid bodies, so
the state space for just the body would be 120 dimensions.
If one includes the actuators, one adds a minimum of one
degree of freedom for the length of each of the five strings
and three to six degrees of freedom for each of the five
actuators (depending on whether the actuators are planar
or not). For the marionettes this brings the total nominal
dimension of the state space up to 12·10+2·5+12·5 = 190. It
should be clear that we don’t want to be solving for feedback
controllers in a 190 dimensional space if we can avoid it.

Because of these issues, we don’t want to represent Eq. (1)
as Newton-Euler equations and instead insist on working in
generalized coordinates. In the case of the marionettes, this
reduces the dimension of the state to 2m, where m is the
number of generalized coordinates. This give us 22 dynamic
degrees of freedom for the marionette itself and another 18
degrees of freedom for the actuators, yielding 80 states. By
utilizing a kinematic reduction [5], [6] we can reduce the
state of the actuators down to 18 because the actuators are
fully actuated. This gives us equations of motion

ẋa = u

ẋp = f(xp, xa) (2)

where xa is the kinematic configuration of the actuators and
xp = (qp, q̇p) is the dynamic configuration and velocity of
the marionette itself. (For details on this, see [21].) This

(a)

(b)

Fig. 3. Simulation of complex rigid bodies can take advantage of the
mechanical topology of the system. For instance, a marionette is being
simulated in (a) using a tree structure representation of the humanoid form
in (b), with the constraints represented by cycles in the graph (see [20]).

leaves us with a much smaller, more manageable system
to work with that only has a total of 62 dimensions in its
state space. Nevertheless, 62 is still a comparatively large
state space to be solving optimal control problems in, so the
numerical techniques employed need to be as efficient as
possible.

The last thing to point out is that because of the strings
there are holonomic constraints relating the end of the arm
to the length of the string (e.g., when the string length is
constant L, the end of the arm evolves on a sphere of radius
L). This creates a constraint

h(xa, qp) = 0 (3)

that must be maintained during the simulation.
As previously mentioned, the continuous representation of

dynamics found in Eq. (1) is not what we actually use to do
computations. Moreover, when there are constraints, such as
those seen in Eqs. (3), standard methods such as Runge-
Kutta methods fail to preserve the constraints. Typically
one would use solvers designed for Differential Algebraic
Equations (DAEs) that project the numerical prediction onto
the set of constrained solutions defined by the constraint in
Eq. (3). We have found, however, that for high-index DAEs
such as the marionette a tremendous amount of “artificial
stabilization” is required to make the simulation of the DAE
stable. This artificial stabilization—which typically takes the
constraint h(q) as a reference and introduces a feedback
law that “stabilizes” the constraint—changes the dynamics



of the system, and if the feedback gain is high often creates
a multi-scale simulation problem that is incompatible with
real-time operation. As an alternative, we consider variational
integrators [17], [22], [23], [24], [25], [29], [32].

Variational integration methods use the stationary action
principle as a foundation for numerical integration that
does not involve differential equations. This approach has
several advantages–known conservation properties (such as
guarantees about conservation of momenta, the Hamiltonian,
and the constraints) as well as guaranteed convergence to
the correct trajectory as the time step converges to zero.
More importantly, variational integration techniques exactly
simulate a modified Lagrangian system where the modified
Lagrangian is a perturbation of the original Lagrangian. The
Discrete Euler-Lagrange (DEL) equations are

D1Ld(qk, qk+1, k) +D2Ld(qk−1, qk, k) = Fk (4)
h(qk+1) = 0 (5)

where Ld is a discretized form of the Lagrangian and Fk
is an external force integrated over the k time step. This
forms a root solving problem in which, given qk−1 and qk,
one solves for qk+1. Repeating this rootsolving procedure
forms the basis of simulation. Using this method, we can
simulate the marionette considerably faster than real-time
(using time steps of 0.01 s) without adding any sort of
numerical heuristics such as artificial stabilization.

Let’s say we start from the DEL equations and assume, by
application of the implicit function theorem, that the solution
exists and is locally unique [26]. Then, once we have made
a choice of state (we choose xk = (qk, pk) where pk is the
generalized momentum), we have an update equation of the
form

xk+1 = fk(xk, uk)

just as we would if we had started from a differential
equation. That is, the general form of the discrete time
equation we wish to optimize is no different–in principle–in
the variational case than it is in the standard ODE case. One
can calculate an exact linearization of the DEL equations,
including constraints and closed kinematic chains [18].

The approach taken in our work is based on the methods
presented in [20] (based on [12]). Systems are represented
as graphs where each node is a coordinate frame in the
mechanical system and the nodes are connected by simple
rigid body transformations (typically translations along and
rotation about the X , Y , and Z axes, though any rigid
body screw motion can be used). Transformations are either
constant or parameterized by real-valued variables. The set
of all variables establishes the generalized coordinates for
the system. Figure 3 is an example of a marionette. The
graph description can include closed kinematic chains, but in
practice the graph is converted to an acyclic directed graph
(i.e, a tree) and augmented with holonomic constraints to
close the kinematic chains. This approach leads to fast ways
to calculate f(·, ·) in Eq. (2) and h(·) in Eq. (3). Moreover,
one can use the same structure to efficiently calculate the

linearization [18], which is critical to nonlinear optimal
control calculations, discussed next.

B. Nonlinear Optimal Control

Optimal control typically starts out with a cost function
of some sort, often of the form

J =

∫ tf

t0

L(x(t), xref(t), u(t))dt+m(x(tf ), xref(tf )) (6)

where L(·) represents a weighted estimate of the error
between the state and the reference state (which is potentially
not a feasible trajectory for the system), and m(·) a the
terminal cost at t = T . The xref(t) is the reference data we
wish the marionettes to imitate. Minimizing this cost function
subject to the dynamics in Eqs. (2) and (3) can be accom-
plished using iterative descent methods. In particular, one
uses the equivalence between the constrained minimization
and the unconstrained minimization of the objective function
composed with a differentiable projection P(·) onto the
constrained subspace. That is, the two minimizations

min
v∈W⊆V

g(v) = min
v∈V

g(P(v))

(where V is the vector space and W is the differentiable
submanifold of admissible vectors) are equivalent [15]. The
projection operator P(·) comes from computing a feed-
back law. In particular, if one interprets the “gradient”
descent algorithm as starting at some nominal trajectory ξ =
(x(t), u(t)) and solving for a descent direction ζ = (z, v)
that optimizes the local quadratic model

ζ = argmin
ζ
Dg(ξ) ·DP(ξ) · ζ + ‖ζ‖2,

then one just has to solve a standard time-varying LQR
problem. This means that one has to be able to compute
the time-varying linearization

ż = A(t)z +B(t)v (7)

where A(t) = ∂f
dx (x(t), u(t)) = D1f(x(t), u(t)) and B(t) =

∂f
du (x(t), u(t)) = D2f(x(t), u(t)). One has to be able to
do so for arbitrary trajectories in the state space, potentially
including infeasible trajectories (in the case of linearizing
about the desired trajectory). Solving for both the descent
direction and the projection operator itself involves solving
the Riccati equations

Ṗ +A(t)TP + PA(t) +Q− PB(t)R−1B(t)TP = 0 (8)

at each iteration, where Q > 0 and R ≥ 0 are time-
varying local estimates of the cost of the state and control
respectively. We follow this outlined procedure, but adapt
each step to the discrete variational case, so that the dynamics
are described by the DEL equations, the linearization is the
discrete time linearization of the DEL equations (instead
of the infinitesimal linearization), and the feedback law for
the projection operator comes from solving a discrete time
Riccati equation. This is surprisingly efficient; as discussed
in Section IV, solving for a 10 s walking motion takes a few
minutes even for a 62 state nonlinear system.



C. Choreography and Hybrid Optimal Control

In [9], [27], [28] we developed an optimal control in-
terpretation of choreography. In particular, we formalize
choreography as a sequence of modes that can be pieced
together to form a script. Each mode has its own dynamics,
creating a system with dynamics

ẋ = f(x(t), u(t)) = fi(x(t), u(t)) t ∈ (τi, τi+1)

where each i corresponds to a different mode of the system.
To optimize such a system, one needs to be able to mini-
mize an objective function J with respect to the switching
times τi of the system. This derivative ∂J

∂τi
with respect to

the switching times depends on the switching time adjoint
equation

ρ̇+A(t)T ρ+
∂L

∂x
= 0 (9)

along with a boundary condition at ρ(tf ) (see [7], [10], [11],
[19]). This adjoint equation only needs to be computed once
to compute all the derivatives of J .

It is tempting to simply create the discrete time analog
of this hybrid timing control problem, just as we did in
Section III-B, but in discrete time this timing control problem
becomes ill-posed. In particular, it is nonsmooth, for all order
of both explicit and implicit numerical methods [13] (but
appears to be provably locally convex if and only if the con-
tinuous time optimization is locally convex). Hence, although
we have not successfully solved the timing control problem
yet, the marionette example forced us to carefully investigate
what happens in discrete time, leading to surprising results.

IV. OPTIMAL MOTION IMITATION FOR MARIONETTES

So where is the project now? We can do optimal control
for a full dynamic model of a marionette, such as that seen
in Fig. 2(b). Using a 10 s walking motion that involves the
full body dynamics and the actuators, trep (available at
http://trep.googlecode.com) can compute a locally optimal
trajectory in about five minutes (depending on processor
speed and memory). (It can compute a “reasonable” trajec-
tory much faster than that.) The robotic marionettes will be
on public display for the first time on April 14, 2012 at the
Chicago Museum of Science and Industry.1

V. TOWARDS PHYSICAL LEARNING BY
DEMONSTRATION

The next steps of this project focus on how to program
the marionettes for performance. A person may have very
concrete ideas about what an autonomous, embedded system
is supposed to accomplish without having very good ideas
about how the system can be expected to accomplish it.
Moreover, that person may not be able to translate goals
for a system into a mathematical context understandable by
a machine, leading to the breadth of research in Learning
from Demonstration (LfD) [1], where the system infers in

1So by the time of this workshop we will be able to provide video of the
marionettes in a performance of sorts.

mathematical terms the goals implicit in the act of demon-
stration. Lastly, the system itself rarely has the ability to
generate goals for itself, but it may have very technically
precise information about what its own capabilities are (e.g.,
local properties such as controllability and observability are
computable). Balancing the ability of a person to direct a
system—typically in terms of infeasible system evolutions—
against the system’s representation of its own capabilities
and limitations is the purpose of our next research direction
within the marionette project.

The goal is for a human operator of the system to be able
to physically manipulate the marionette and thereby manipu-
late its control system, all while receiving feedback from the
system about the feasibility of the operator-provided trajec-
tories and without ever interacting with a computer keyboard
(thereby providing an intuitive interface by which a human
instructor is able to impart artistic performance goals). To
date, LfD has been a largely data-driven technique, with
neither the initial derivation nor the subsequent adaptation of
the resulting control behaviors being verified for feasibility
or stability. Moreover, if one has a system where controller
stability has implications for system safety, policy adaptation
becomes significantly nontrivial. By contrast, sophisticated
stability analysis is possible for control behaviors derived
via optimal control and other control design methodologies;
however, to date such formulations are rarely amenable to
human instruction. Moreover, until recently the formal verifi-
cation of nonlinear control strategies has been largely limited
to low-dimensional systems where the equations of motion
and their derivatives can be computed by hand. (This is
essentially the gap filled that trep and a few other software
packages (e.g., Dymola)). We posit that for accessible and
intuitive instruction of complex systems, characteristics of
both approaches are crucial: that is, the development and
adaptation of control behaviors by operators who are not
control or robotics experts, and the ability to verify and thus
ensure the stability of those control behaviors.

We therefore are taking an approach that is a synergy
between these two areas: that combines control theoretic
calculations and analysis with demonstration-based behavior
adaptation. In particular, the proposed approach first derives
an initial control behavior via optimal control, then engages
a human teacher to provide physical guidance for correc-
tive demonstration, and finally verifies that the controller
produced as a result of the inferred corrections is in fact
stable. Control theoretic techniques furthermore are used to
engage the teacher, by having the software identify regions
of difficultly for the nonlinear optimal control algorithms and
solicit the teacher to provide instruction that overcomes the
instability.2 The teacher also might provide instruction at her
own discretion, as traditionally happens in LfD paradigms.

The experimental target is that by the end of this portion of
the project, an operator will be able to physically manipulate
the marionette to produce a desired motion—embedded

2While active teacher engagement by the learner is not a new idea in LfD,
the focus has not been on the explicit analysis of controller stability—rather,
for example, on addressing dataset sparsity or ambiguity [8], [14].



within which might be artistic performance goals—all while
getting feedback from the automatic control system about the
stability of that motion. A key point is that the operator will
only interact with the physical system, rather than interacting
with software. During the interaction, both the software and
the person must be sufficiently aware of the net dynamics to
ensure stability while modifying motion. Hence, the operator
will be able to physically manipulate the marionette to
achieve desired goals, altering its dynamics enough to help it
make progress without altering them so much so as to make
the motion only feasible with help.

VI. CONCLUSIONS

Controlling marionettes is more complicated than it may
seem. It requires reliable simulation techniques capable of
handling degeneracies and closed kinematic chains in a
reliable manner. It requires control that is specifically tailored
to those numerical methods, and it requires a software archi-
tecture that is sufficiently flexible to incorporate experimental
changes as they occur. Even with motion imitation now
effectively a solved problem, concatenating motions is still
nontrivial since the dynamics are sensitive to the transitions
between motions. Hence, this project is still a good ways
off from successfully making a robotic marionette perform
a fully choreographed story.

As discussed in Section V, our next steps include the
incorporation of LfD techniques into a feedback control
framework. Key characteristics will include the ability for
a human to physically instruct the robotic platform as the
system reasons explicitly about control stability, with the end
result of an intuitive and computationally stable interface for
imparting artistic targets, within the larger goal of automated
marionette performances.
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