
Trajectory Generation for Underactuated Control of a Suspended Mass

Jarvis Schultz
Department of Mechanical Engineering

Northwestern University
Evanston, IL 60208

jschultz@u.northwestern.edu

Todd Murphey
Department of Mechanical Engineering

Northwestern University
Evanston, IL 60208

t-murphey@northwestern.edu

Abstract— The underactuated system under consideration
is a magnetically-suspended, differential drive robot with a
winch system articulating a suspended mass. A dynamic model
of the system is first constructed, and then a nonlinear,
infinite-dimensional optimization algorithm is presented. The
Lagrangian mechanics based system model uses the principles
of kinematic reduction to produce a mixed kinematic-dynamic
model that isolates the modeling of the system actuators from
the modeling of the rest of the system. In this framework,
the inputs become generalized velocities instead of generalized
forces facilitating real-world implementation in an embedded
system. The optimization algorithm automatically deals with
the complexities introduced by the nonlinear dynamics and
underactuation to synthesize dynamically feasible system tra-
jectories for a wide array of trajectory generation problems.
Applying this algorithm to the mixed kinematic-dynamic model,
several example problems are solved and the results are tested
experimentally. The experimental results agree quite well with
the theoretical showing promise in extending the capabilities of
the system to utilize more advanced feedback techniques and
to handle more complex, three-dimensional problems.

I. INTRODUCTION

Applications involving cable-driven actuation of sus-
pended payloads include material transportation in facto-
ries, control of inspection equipment in hangars, stroke
patient rehabilitation, and robotic actuation of marionettes.
The systems used in these applications are often extremely
complex, and due to their nonlinear dynamics and under-
actuated nature, deriving effective control strategies is quite
difficult. However, intelligently designed controls that utilize
the inherent dynamics of the system allow the generation of
extremely complex trajectories that span large workspaces.
Automating the design of these controls will allow these
systems to be used to their full potential. This paper de-
velops a unique dynamic model that facilitates real-world
implementation in conjunction with an infinite-dimensional
optimization technique to automatically generate feasible
controls for a wide array of trajectory generation problems;
this algorithm is applied to two example problems, and the
results are implemented experimentally.

In the field of robotics, many problems in cable actuated
control have been studied. These problems include gantry
and crane systems, cooperative control and multiple cable
systems, and aerial conveyance of payloads [11], [4], [15].

This work is sponsored in part by the National Science Foundation and
Disney Research.

The underactuated system studied in [2] and [3] consists
of a single winch fixed in space that uses self-excitation
to increase its available workspace. The authors developed
an algorithm that was used to generate controls for several
different trajectory generation problems. These problems
include a point-to-point transfer of a load where only the
initial and final states of the system matter, and a path tracing
problem. The optimization technique utilized in this work is
capable of generating admissible system trajectories for both
of these situations; they will be used as example problems
in the coming sections.

In this paper a nonlinear, projection based optimization
technique capable of generating controls for a wide range of
trajectories is applied to a robotic system utilizing stringed
actuation of a suspended mass. This optimization algorithm
relies on a dynamic model of the system. To fill this role,
a mixed kinematic-dynamic model that facilitates real-world
system implementation is developed. With the optimization
utilizing this model, it is possible to automatically and ro-
bustly determine and utilize a set of controls for an arbitrary
trajectory generation problem. As part of our collaboration
with Disney Research, the robotic system that has been
developed for experimental validation can also be used
for performing automated marionette plays [10], [14]. The
techniques posed in this paper will likely play a fundamental
role in the execution of these plays in the future.

II. DYNAMIC MODELING

The present system consists of a differential drive mobile
robot magnetically attached to an elevated planar surface
such that it drives on the underside of the surface. The robot
has an additional motor that acts as a winch for controlling
the length of a string which has its other end attached to a
mass. A schematic of this system is shown in Fig. 1. The
robot utilizes a velocity-based motor controller motivating
the mixed kinematic-dynamic model presented in this sec-
tion. In this model, the kinematic inputs for the system are
the same quantities utilized by the robot when controlling
the motors. This eases experimental implementation of the
results obtained by the optimization.

In our dynamic model, we assume that the inputs to the
system are sufficiently powerful to be treated as kinematic
inputs [7]; i.e., we assume that the inputs are capable of per-
fectly following an arbitrary prescribed trajectory regardless



x

y
(xm, ym)

(xc, h)

h

Winch
System

Magnetic
Wheel

String of
length l

Mass, m

Gravity, g

Fig. 1: Schematic of mechanical system including relevant
geometric parameters.

of the magnitude of the forces and torques required to do so.
Implicit in this modeling choice is the assumption that the
frequency content of the actuator dynamics has little impact
on the behavior of the rest of the system. By also assuming
that the strings are massless, we can then use the principle of
kinematic reduction to generate a mixed kinematic-dynamic
model of the system [1]. The inputs to the system control the
horizontal position of the robot xc, and the length of the string
l. Therefore we define the kinematic configuration variables
as qK = [xc l]T. The dynamic configuration variables are then
defined as qD = [xm ym]

T. When we assume that the mass at
the end of the string is a point mass the Lagrangian for this
system is then

L(qD, q̇D) =
1
2

m
(
ẋ2

m + ẏ2
m
)
−mgym . (1)

The coupling between the kinematic inputs and the dy-
namic mass is accomplished through the use of a constraint.
Initially, possible loss of tension in the string is ignored, and
the string is considered to be a rigid wire between the robot
and the mass. The constraint that this wire imposes on the
system is given by

φ(q) = (xm− xc)
2 +(ym−h)2− l2 = 0 (2)

where we have implicitly used the definition of q as q =
[qD qK ]

T. To account for the fact that the terms in this
equation are allowed to vary with time we differentiate (2)
with respect to time and rewrite it as a Pfaffian constraint.
We then rearrage the constraint to separate the kinematic and
dynamic portions

A(q)q̇ = [AD(q) Ak(q)]
[

q̇D
q̇K

]
= 0 (3)

where AD(q) = ∂φ(q)/∂qD and AK(q) = ∂φ(q)/∂qK . To
complete the system’s dynamic model, we use the fa-
miliar Euler-Lagrange equations along with the Lagrange-
d‘Alhembert principle to arrive at

d
dt

(
∂L

∂ q̇D

)
− ∂L

∂qD
= λ AT

D(q) . (4)

This equation has introduced the Lagrange multiplier λ

as a new unknown term leaving the system of equations
underdefined. We differentiate Eq. (3) with respect to time
to provide an additional equation

ADq̈D + ȦDq̇D +AK q̈K + ȦK q̇K = 0 . (5)

Finally we define the inputs to the system as

u = q̈K =

[
ẍc
l̈

]
. (6)

Using Eqns. (4), (5), and (6), we can algebraically solve
for the second derivatives of the dynamic configuration
variables and the Lagrange multiplier. After this rearranging,
we are left with a set of equations of the form

q̈D =

[
g1 (qD,qK , q̇D, q̇K ,u)
g2 (qD,qK , q̇D, q̇K ,u)

]
. (7)

To facilitate numerical integration and our optimal control
algorithm we would like the above to be in the form ẋ =
f (x,u). Thus, we define the state to be

x =


qD
qK
q̇D
q̇K

=
[
xm ym xc l ẋm ẏm ẋc l̇

]T
. (8)

Then Eq. (7) becomes

ẋ = f (x,u) =
[
x5 x6 x7 x8 g1 g2 u1 u2

]T
. (9)

While this final system has a higher dimensional state
than it would if generalized forces were the system inputs,
it provides a nice division between the dynamics of the
system and the dynamics of the actuators. This is especially
convenient from a practical implementation viewpoint. In
many real engineering systems, such as those controlled by
DC motors, it is often much more convenient to control
velocities and accelerations than it is to control forces.

III. OPTIMIZATION ALGORITHM

For applications involving cable-actuated payloads, it is
often the case that it is desirable to specify some trajectory
for the payload to follow while being unconcerned with
the trajectory that the controlling mechanism follows e.g.
[2], [3], [4]. In this case, it is possible that the desired
trajectory is not dynamically feasible. Additionally, due to
the nonlinear dynamics and underactuated nature of the
system, it is not obvious how to determine the inputs to
generate a payload trajectory that follows the prescribed
trajectory. In this section we briefly describe a trajectory
optimization technique that automatically addresses both of
these issues simultaneously (more detail can be found in [5],
[6], [8]).

This optimization routine is particularly well suited to
handling the present system for several reasons. First, it is
fully capable of handling an underactuated or uncontrollable
system. Additionally, the projection operator (to be discussed
later in this Section) provides a stabilizing feedback con-
troller about a feasible system trajectory even if the system



is locally or globally unstable. The mathematical formalism
behind the algorithm poses the problem in an infinite-
dimensional vector space. Thus in the statement of the
problem the system is left in its natural, infinite-dimensional
representation. Numerical approximations happen at the so-
lution level rather that the problem statement level. This is
advantageous when a system contains dynamics in a range of
time scales. More traditional optimization techniques, such
as the discrete forms of model-predictive control or dynamic
programming, require an a priori, constant discretization of
the time horizon. When the frequency of the dynamics vary
over a large range, this discretization will either be too coarse
for high-frequency dynamics (reducing accuracy), or too fine
for low-frequency dynamics (reducing computational effi-
ciency). The present optimization algorithm allows the use
of powerful, adaptive time stepping integration algorithms to
automatically deal with this situation.

A. Problem Setting

We begin by defining the desired trajectory as ξd =
(xd(·),ud(·)) over the time horizon [t0, t f ] where the pair
(xd(·),ud(·)) may or may not satisfy the system dynamics.
We are interested in solving the following constrained opti-
mization problem:

minimize J(ξ ) =
∫ t f

t0
l (τ,x(τ),u(τ))dτ +m(x(t f ))

(10)
subject to ẋ(t) = f (x(t),u(t)), x(0) = x0

with ξ = (x(·),u(·)). The integrand and terminal cost that we
utilize are given by

l(τ,x(τ),u(τ)) =(x(τ)− xd(τ))
T Q(x(τ)− xd(τ)) (11a)

+(u(τ)−ud(τ))
T R(u(τ)−ud(τ))

m(x(t f )) =
(
x(t f )− xd(t f )

)T P1
(
x(t f )− xd(t f )

)
(11b)

where Q, R, and P1 are positive definite weighting matrices.
We would like to solve the optimization problem in Eq.

(10) using a standard iterative descent technique such as
gradient descent or Newton’s method [9]. However, if we
found a descent direction and added it to the current trajec-
tory, the resultant pair of curves would no longer satisfy the
system dynamics. Thus, we introduce a projection operator
that maps arbitrary trajectories to trajectories satisfying the
system dynamics. Using this operator, we can effectively
define an equivalent unconstrained optimization problem.

B. Projection Operator

To formally discuss the projection operator, we begin by
defining the trajectory manifold for the dynamic system as
T . If the pair η = (x(·),u(·)) obey ẋ = f (x,u), they lie on
the trajectory manifold i.e. η ∈ T . Given an arbitrary pair
ξ = (α(t),µ(t)), we define the projection operator P as the
mapping

P : ξ = (α,µ) 7→ η = (x,u) . (12)

Presuming that this operator exists we can convert the
original constrained optimization problem in Eq. (10) to an
equivalent unconstrained optimization problem i.e.

min
ξ∈T

J(ξ ) = min
ξ

J(P(ξ )) . (13)

This optimization problem can be solved using standard
descent techniques. Following [5] and [8], the projection
operator that we choose is a linear feedback law given by

x(t0) = α(t0)

u(t) = µ(t)+K(t)(α(t)− x(t)) (14)
ẋ = f (x(t),u(t))

where K(t) is a time-varying feedback gain matrix that
stabilizes the system about the current trajectory. To find
K(t), we solve a finite horizon linear quadratic regulator
(LQR) problem [12] on a linearized representation of the
system, found by linearizing the system about its current
trajectory. The projection operator is one of the primary
features of this optimization technique; its innate stabilizing
properties make this a particularly robust algorithm even
when dealing with unstable systems.

C. Descent Direction

Due to its infinite-dimensional structure, finding a descent
direction for this optimization problem is slightly different
than a traditional finite-dimensional problem. As is usually
done, a quadratic model function is used to locally approx-
imate the cost function around the current iteration point.
Then we solve the following problem to find the descent
direction ζi :

ζi = argmin
ζ

DJ(P(ξi))◦ζ +
1
2

q◦ (ζ ,ζ ) . (15)

The bilinear operator [17] q◦ (·, ·) can be chosen to give
different descent algorithms. If q is identity the descent
direction corresponds to a gradient descent algorithm, and
if q = D2J(P(ξi)) the solution to (15) corresponds to a
Newton’s method descent direction.

To solve the problem in Eq. (15), we convert the uncon-
strained optimization problem into a constrained optimiza-
tion problem by restricting ζ ∈ TξiT i.e. ζ must lie in the
set of trajectories of the linearization of ẋ = f (x,u) about
ξi ∈ T . This set TξiT actually forms a Banach space and
therefore this constrained optimization can be thought of as
a linear optimal control problem that can be solved without
the use of iterative search methods. In fact the solution to
this problem is found by using a Ricatti transformation to
produce a set of two initial value problems (IVP) that can
be numerically integrated [5].

D. Optimization Algorithm

The implementation of this optimization is programmed
in Mathematica. An initial guess is made for the set
of inputs u(t) that will follow the desired trajectory. This
guess is typically either trivial u(t) = 0 or inverse kinematics



based. These inputs are used to numerically integrate Eq.
(9) to obtain a feasible trajectory to seed the optimization.
If the space is locally non-convex we will be unable to
determine a Newton- descent direction, and the algorithm
reverts to a gradient descent algorithm utilizing and Armijo
line search [9]. Typically several steps of the gradient descent
algorithm are required at the beginning of the optimization
to get the initial guess near enough to the optimum to begin
using the Newton-descent direction. Inability to determine
the Newton-descent direction is manifested by the lack of a
solution to the aforementioned set of IVPs generated by the
Ricatti transform [5]. It was shown in [5] that this technique
maintains quadratic when utilizing Newton’s method.

Once the optimization has converged to a final answer, we
check that the desired solutions inputs are within the actuator
limits. Also, we look at the Lagrange multiplier associated
with the constraint in Eq. (4) to see if it indicates the string
being placed in compression by the ball. Since the string
cannot physically apply this type of force, this situation is
indicative of the string going slack and the ball entering a
free-flight phase. Even though this is physically possible, we
avoid this situation so that our optimization algorithm does
not need to handle the discontinuous velocities induced by
the string regaining tension.

If the solution exceeds actuator limits or the string goes
slack we simply adjust the weighting terms in the cost
function and use the original solution as the first guess
for the adjusted weights. This process repeats until we
have a converged solution that is physically realizable. It
is important to note that in the face of very strict actuator
limits it may be impossible to find a solution that satisfies
the actuator limits. Additionally if the desired reference
trajectory is highly dynamic, the algorithm may need a
reasonable initial guess to make any progress and in the
worst case, the desired trajectory may be so far from the
system’s reachable space that the algorithm will be unable
to find a feasible trajectory.

IV. EXPERIMENTAL SETUP
A. Robotic System

The robotic system consists of a number of magnetically-
suspended differential drive mobile robots developed as part
of our collaboration with Disney Research. Fig. 2 highlights
the important components of the system. In this experiment
we restrict ourselves to a single robot driving in a straight
line so that our problem is two-dimensional. A large, plastic
membrane is used for the surface that the robots drive on.
To provide rigidity to the thin, flexible plastic, it is held in
tension in all directions. A rectangular steel frame is placed
around the edges of the plastic membrane and a system
of clamps and turnbuckles provide the tension. The entire
assembly is then mounted on a support frame such that the
plane formed by the plastic sheet is parallel with the ground
at a height of approximately eight feet.

Each robot has two 24V DC motors powering large
magnetic drive wheels. There are also two passive, mag-
netic caster wheels providing stability. A completely passive

Fig. 2: Image showing the main components of the experi-
mental apparatus.

“idler” mechanism provides a magnetic surface for the robots
to cling to. The idler has the same geometric footprint as a
robot, but its magnetic fields have opposite polarity. This
idler is placed on the top surface of the plastic tarp, and the
robots then hang on its underside. The force generated by the
magnetic attraction between the robot and the idler is quite
high; the robot can support its own weight plus an additional
25 lbs of static load. The robots also have an additional motor
and associated string management system acting as a winch
for articulating suspended payloads.

Each robot is powered by two 12V lithium iron phosphate
batteries. Processing, communication and motor control for
each robot is handled by a Microchip PIC R© 32-bit micro-
controller. Wireless communication is performed using Digi
XBee R© modules. A central PC performs the optimizations,
and then the desired inputs to the system are communicated
wirelessly to the robot. The robot uses simple PID controllers
to track the desired inputs to the system; optical encoders act
as the feedback sensors. A tracking system provides real-time
information on the location of the mass (described in the next
section), however at this time the information is used only
for experimental validation and not for providing feedback
to the robot.

B. Motion Tracking

Motion tracking of the mass is handled using a Microsoft
Kinect R© sensor. The Kinect uses an infra-red structured light
array to build a three-dimensional point cloud representation
of its view of the world. Every element in the point cloud
contains the real-world location of a single infra-red point
with respect to the Kinect’s local coordinate system. Interface
to the Kinect is provided by the NITE

TM
open source

Kinect drivers released by PrimeSense
TM

[13]. The Robot
Operating System (ROS) is used for collecting, recording,



(a) (b)

(c) (d)

Fig. 3: Illustration of Kinect filtering algorithm. Image 3a shows a picture of the experimental space taken from the point-
of-view of the Kinect. Image 3b shows the point cloud representation of this three dimensional space. After the filtering
algorithm is implemented, the Kinect has identified the points located on the mass; these points are shown in blue and a
circle has been drawn around them in image 3c. When the mass is identified, it is segmented, and a centroidal value is
calculated. The coordinate system in 3d lies on this centroidal value.

and processing the data coming in from the Kinect [16] at
approximately 30 Hz.

When the tracking software begins running, the point
cloud is immediately segmented to remove the floor, ceiling
and all data beyond the far plane of the experimental setup. In
the absence of noise this smaller, segmented point cloud will
contain only points lying on the suspended mass. However
in a real, noisy environment there is a possibility of random,
errant data points existing within this volume. Additionally
through testing it was discovered that when the ball is in
motion, it is possible for the Kinect to detect the string
connecting the ball and the robot.

To eliminate the errors introduced by this noise a small
“volume of interest” is defined around the centroid of the
mass. Using the mass location at the previous two samples
and a linearized model of the mass’ dynamics a prediction
for the current location of the mass is used to determine
where the small volume should be placed. If the number of

points detected in the volume drops below a threshold value,
the volume is expanded, and the mass location process is
restarted. When this small volume is properly tracking the
mass, we simply find the location of the centroid of all points
contained within the volume to determine where the mass is
located. This process is illustrated in Fig. 3.

V. RESULTS

A. Point to Point Trajectory Generation

In this first example, we analyze a simplified version of
the system that is very similar to the one studied in [2] and
[3]. We remove the mobile robot’s translational degree of
freedom so we are essentially left with a stationary winch.
The desired trajectory is simply a point in state space at the
end of the time horizon. This scenario is representative of
the situation where a suspended payload is initally at rest on
a support structure. The goal is then to use the underactuated
winch system to relocate the payload to some new support



-0.75

-0.25

0.25

0.75

x [m]

y [m]

-1.5 -1. -0.5 0.5 1. 1.5

(a) (b)

0.5 1. 1.5 2. 2.5 3.

Time [s]

- 1.

- 0.5

0.

0.5

1.
l̇(t) [m/s]

l̈(t) [m/s2]

(c)

2 4 6 8

-2.0

-1.5

-1.0

-0.5

0.5

log10 ‖ξcurrent −ξ f inal‖L2

Iteration
Number

(d)

Fig. 4: Sample solution to the point to point problem. 4a shows the optimized trajectory in black and the corresponding
set of experimental data points in dotted gray. 4b shows the simulated and experimental dynamic configuration variables
throughout the time horizon. 4d shows the quadratic convergence achieved by the optimization algorithm.

structure where the intermediate trajectory followed by the
payload is unimportant.

To accomplish this task, we slightly modify the dynamic
model presented in Section II by removing the robot’s
translational degree of freedom. We then set the desired
trajectory as the goal state for all time in the arbitrarily
chosen time horizon. The weights in the cost function are
chosen such that very little weight is placed on the values
of the state throughout the time horizon i.e. the terms in Q
are small. Several orders of magnitude higher weights are
placed on the inputs R, and even greater weights are placed
on the final values for the state using the terms in P1.

Fig. 4 shows an example solution to the optimization and
the corresponding experimental data. The mass is 0.124kg
with a starting string length of 1.5m and an initial angle
of 45◦ from the vertical and zero velocity. In the global
coordinate system the robot is fixed at (xc,h) = (1,0) m. The
final desired location is a string length of 1m with an angle
of −45 ◦ from the vertical and zero velocity. The optimiza-
tion produces a dynamically feasible system trajectory that
achieves the desired final state, and the experimental system
does a reasonable job of following the simulated trajectory.
Note that Fig. 4b points out a zone where the mass left the
viewable space of the Kinect and the mass was temporarily

lost; the results of this are also evident at the end of the first
swinging cycle in the experimental data set of Fig. 4a.

B. Trajectory Tracking

For this problem a desired trajectory for the mass to
follow is specified, and the optimization attempts to find an
admissible system trajectory η ∈ T where the mass follows
the desired trajectory as closely as possible. This problem
is representative of the situation where a cable-suspended
payload must follow a specific path and the path that the
robot follows is unimportant; e.g., if the payload was a piece
of inspection equipment in an automobile manufacturing
facility that must be swept over a manufactured surface in
search of defects. For the problems analyzed here, the full
robotic system described in Section II is utilized.

Fig. 5 shows several example solutions to this problem.
The desired trajectories are arbitrary curves chosen simply
for illustration purposes. Fig. 5c shows an example of the
optimization automatically dealing with the situation where
the system’s initial conditions do not lie on the desired trajec-
tory. In both plots the experimental results track the optimal
admissible trajectories fairly well — especially considering
there is no state feedback for the mass being provided to the
robotic system. Note that the system inputs in Fig. 5b and 5d



-0.6 -0.3 0.3 0.6

- 0.25

0.25
y [m]

x [m]

Experiment Desired Trajectory
Optimal Trajectory

(a)

1 2 3 4

-0.6

-0.4

-0.2

0.2

0.4

0.6

Time [s]

l̇(t) [m/s]
ẋc(t) [m/s]

(b)

-0.6 -0.3 0.3 0.6

-0.25

0.25

y [m]

x [m]

Experiment

Desired Trajectory

Optimal Trajectory

(c)

1 2 3 4 5 6

- 0.4

- 0.2

0.2

0.4 l̇(t) [m/s]
ẋc(t) [m/s]

Time [s]

(d)

Fig. 5: Sample solutions and experimental trials for the trajectory tracking problem. 5a and 5c show the optimized trajectory
in black, the reference trajectory in dashed red, and the experimental results in dotted gray. 5b and 5d show the optimal
inputs to the system for the reference trajectories of 5a and 5c respectively.

are highly dynamic even though the desired trajectories are
quite smooth and controlled. This nicely illustrates why it
is difficult to manually devise control strategies for this un-
deractuated system. Videos of these trajectories being tested
experimentally can be seen at the Northwestern University
LIMS Laboratory Vimeo page http://vimeo.com/lims.

VI. CONCLUSIONS AND FUTURE WORKS
The dynamic model presented in Section II uses kinematic

reducibility to facilitate real-world implementations of the
system. In an attempt to control this system, we have
presented a trajectory generation optimization routine that
robustly and automatically solves a variety of problems. This
routine was used to solve several example problems and
their solutions were implemented on a novel robotic system
for verification. In the problems analyzed, both the dynamic
model, and the optimization routine behaved very well. The
system model produced realistic simulation behavior and the
optimization routine reliably achieved quadratic convergence
even with very poor initial guesses. It is suspected that
the errors between experimental and simulation results are
caused by several factors. The simulation does not take into
account any losses that occur due to the elasticity of the
string, and it assumes that the mass is a point mass when in
reality the mass has a finite volume and corresponding mass

moment of inertia. It is feasible that improving these aspects
of the simulation could increase its accuracy.

The other source of error, likely the far greater one, is
the experimental setup itself. The system is essentially being
run open-loop in that the controls from the optimization are
being sent to the robot regardless of any errors in the system’s
state that may have accumulated. Additionally it is possible
that the tracking mechanism itself is imperfect and could
be providing skewed results. The experimental setup is in
the early stages of development, and as the work progresses
these issues will be addressed.

The system is currently capable of executing complex
three-dimensional trajectories, and in future work we intend
to expand the capabilities of the software to investigate these
types of problems. Based on the open-loop experimental
results presented in the previous section, it is expected
that if the system were further developed to utilize real-
time state feedback, the experimental results would improve
significantly. Conveniently, the projection operator from the
final optimization iteration provides a state feedback law that
stabilizes the system about the optimal admissible trajectory,
which can be used for closing the loop. To facilitate the
analysis of these more complex problems, we also hope to
further develop the optimization technique to increase its



computational efficiency.

VII. ACKNOWLEDGMENTS

This work was sponsored in part by two grants from
the National Science Foundation, IIS-0917837 and CCF-
0907869. Additional support was provided by Disney Re-
search, and Walt Disney Imagineering.

We would additionally like to thank Lanny Smoot of
Disney Research for his contributions to the development
of the robotic platform, and John Ware of Northwestern
University for his support in the software development.

REFERENCES

[1] F. Bullo, Geometric Control of Mechanical Systems. New York:
Springer-Verlag, 2004.

[2] D. Cunningham and H. H. Asada, “The winch-bot: A cable-suspended,
under-actuated robot utilizing parametric self-excitation,” in IEEE
International Conference on Robotics and Automation, Kobe, Japan,
May12–17 2009, pp. 1844–1850.

[3] ——, “Continuous path tracing by a cable-suspended, under-actuated
robot: The winch-bot,” in IEEE International Conference on Robotics
and Automation, Anchorage, AK, May3–8 2010, pp. 1255–1260.

[4] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning and control for
cooperative manipulation and transportation with aerial robots,” The
International Journal of Robotics Research, vol. 30, pp. 324–334, Mar.
2011.

[5] J. Hauser, “A projection operator approach to the optimization of
trajectory functionals,” in IFAC World Congress, Barcelona, Spain,
July21–26 2002.

[6] J. Hauser and D. G. Meyer, “The trajectory manifold of a nonlinear
control system,” in IEEE Conference on Decision and Control, Tampa,
FL, Dec.16–18 1998, pp. 1034–1039.

[7] E. Johnson and T. D. Murphey, “Dynamic modeling and motion
planning for marionettes: Rigid bodies articulated by massless strings,”
in International Conference on Robotics and Automation, Roma, Italy,
Apr.10–14 2007, pp. 330–335.

[8] E. R. Johnson and T. D. Murphey, “Automated trajectory synthesis
from animation data using trajectory optimization,” in IEEE Con-
ference on Automation Science and Engineering, Bangalore, India,
Aug.22-25 2009, pp. 274–279.

[9] C. T. Kelley, Iterative Methods for Optimization. Philadelphia, PA:
Society for Industrial and Applied Mathematics (SIAM), 1999.

[10] T. D. Murphey and M. Egerstedt, “Choreography for marionettes:
Imitation, planning and control,” in IEEE Conference on Intelligent
and Robotic Systems: Workshop on Art and Robotics, San Diego, CA,
Nov. 2007.

[11] R. M. Murray, “Trajectory generation for a towed cable system using
differential flatness,” in IFAC World Congress, San Francisco, jul 1996.

[12] D. S. Naidu, Optimal Control Systems. Boca Raton, FL: CRC Press,
2003.

[13] (2010) PrimeSense
TM

NITE Middleware. PrimeSense. [Online].
Available: http://www.primesense.com/?p=515

[14] J. Schultz, T. Caldwell, T. Murphey, and L. Smoot, “Magnetically
suspended ambulatory robots supporting automated marionette shows,”
in IEEE International Conference on Robotics and Automation, Saint
Paul, MN, May14–18 2012, submitted for publication.

[15] W. Shiang, “Dynamic analysis of the cable array robotic crane,” in
IEEE International Conference on Robotics and Automation, Detroit,
MI, 1999, pp. 2495–2500.

[16] (2011) Robot Operating System. Willow Garage. [Online]. Available:
http://www.ros.org

[17] E. Zeidler, Applied Functional Analysis: Applications to Mathematical
Physics. New York: Springer-Verlag, 1995.

http://www.primesense.com/?p=515
http://www.ros.org

