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Abstract— We present a collision resolution method based
on momentum maps and show how it extends to handling
multiple simultaneous collisions. Simultaneous collisions, which
are common in robots that walk or climb, do not neces-
sarily have unique outcomes, but we show that for special
configurations—e.g. when the surfaces of contact are orthogonal
in the appropriate sense—simultaneous impacts have unique
outcomes, making them considerably easier to understand
and simulate. This uniqueness helps us develop a measure
of the unpredictability of the impact outcome based on the
state at impact and is used for gait and mechanism design,
such that a mechanism’s actions are more predictable and
hence controllable. As a preliminary example, we explore
the configuration space at impact for a model of the RHex
running robot and find optimal configurations at which the
unpredictability of the impact outcome is minimized.

I. INTRODUCTION

When it comes to impact and contact modeling, there are
many methods available for solving the problem [1]–[7].
Most of these methods, in particular those making use of
linear complementarity problem (LCP) solvers, are highly
efficient and robust when dealing with plastic impacts even
as they are simultaneous. However, relatively few methods
have been proposed for dealing with elastic and non-plastic
impacts [8]–[10], and even fewer were designed to work with
simultaneous impacts. The issue of simultaneous impacts is,
however, a rather important one. Consider the general field
of walking, running and climbing robots, and in particular
the RHex running robot [11]. It is very rare that impacts
between the legs and the ground are such that no other leg is
in contact. It is also the case that the assumption of plasticity
of the impacts cannot be, in most cases, based on properties
of the system or of the surfaces of contact, as large amounts
of kinetic energy destroy the plasticity of most impacts—
think, for example, about the different outcomes of dropping
a pen on a bed and of throwing a pen at a bed.

Motivated by the previous observations and our ultimate
goal of simulating and designing running robots like the
RHex, we propose a model of simultaneous impact based on
our previous results [12], [13] and on the iterative methods
for solving simultaneous impacts already proposed in the
literature [10], [14]. Our approach has the advantage of
returning the correct result in cases where other methods
fail, such as in the case of Newton’s cradle [12]. It also
possesses the ability to handle both plastic and non-plastic
impacts, as we will show in section II. While we are not
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guaranteed unique results, we find the special cases in which
unique answers are available. These cases are directly related
to orthogonality of the surfaces of impact under the local
Riemannian metric at the impact configuration. We often
have some degree of control over this measure, through both
physical mechanism design and also through gait design.
We also present a measure of how the whole state of a
system at impact will affect the uniqueness, provided that the
configuration is such that the surfaces of impact are close to
orthogonal.

Finally, we explore the configuration space at impact for a
simplified model of the RHex robot. This is the same model
that we use to run our dynamic simulations and for which we
have verified the efficacy of the empirically devised running
and walking gaits (see the attached video). We find that our
non-uniqueness measure is relatively small throughout most
of the configuration space, something that we attribute to
good underlying mechanical design. We also find that the
configurations that give the local minima in this measure
correspond to impact configurations during well behaved
gaits.

A. Discrete Mechanics and Variational Integrators
In this section we present a very quick overview of

variational methods for describing dynamical systems. This
formulation is what we use to simulate our systems before
and after the collision, and thus it is important to understand
how our impact model fits within the framework.

Suppose we have a system—mechanical or otherwise—
described by its continuous time Lagrangian, L(q, q̇, t). The
equations that govern this system’s behavior are

∂L

∂q
− d

dt

∂L

∂q̇
= 0, (1)

the well known Euler-Lagrange equations. Solving this sys-
tem of differential equations for q(t) and q̇(t) gives us
the configuration of the system as a function of time. In
general, the differential equations are far too complicated to
solve analytically, and numerical methods have to be used,
in which they are discretized and solved as a system of
difference equations.

An alternative method is to apply the discretization before
deriving the Euler-Lagrange equations, directly onto the
Lagrangian:

Ld(qi, ti, qi+1, ti+1) ≈
∫ ti+1

ti

L(q, q̇, t) dt. (2)

Note that the discrete Lagrangian Ld depends only on con-
figuration variables, and not on velocity information. There



are several ways we can implement this approximation, and
we will use the midpoint rule:

Ld(qi, ti, qi+1, ti+1) =

L(
qi + qi+1

2
,
qi+1 − qi
ti+1 − ti

,
ti + ti+1

2
)(ti+1 − ti). (3)

The discrete equivalent of the Euler-Lagrange equations is
the set of Discrete Euler-Lagrange equations (DEL), which
is a set of difference equations:

D3Ld(qk−1, tk−1, qk, tk) + D1Ld(qk, tk, qk+1, tk+1) = 0,

where DiF (x1, x2, . . . ) stands for “the derivative of the
function F with respect to it’s ith argument, xi”. Equa-
tion (I-A) can be thought of as a mapping from two known
configurations qk−1 and qk to an unknown one, qk+1. We
assume here that the time variables take on predefined values,
although, as we will soon see, this needn’t be the case.

A common interpretation of the DEL equations is that
they enforce the conservation of discrete momentum, which
we define through the use of the discrete momentum maps

F−(ta, tb) = D1Ld(qa, ta, qb, tb),

F+
(ta, tb) = D3Ld(qa, ta, qb, tb).

Using this notation, the DEL equations becomes

F+
(tk−1, tk) + F−(tk, tk+1) = 0, (4)

which state that the discrete momentum at the end of the
(tk−1, tk) interval has to equal the discrete momentum at
the beginning of the following interval, (tk, tk+1).

These equations are, for all but the simplest systems,
nontrivial. One could use a symbolic software package (e.g.
Mathematica) to derive and solve them, although this
might prove tedious or even impossible, depending on the
size of the system. As an alternative we cite previous work in
which the terms in these equations and their exact derivatives
are first derived using a tree structure and then used in a
Newton type root finding algorithm to solve for the unknown
variables [15] We will assume that all the terms needed in
any further equations and their derivatives will be calculated
using this method.

II. SINGLE COLLISION

The equations governing a single collision at time t∗ are:

∂L

∂q̇

∣∣∣t+∗
t−∗

+ λDφ(q∗) = 0, (5a)[
∂L

∂q̇
· q̇ − L

]t+∗
t−∗

= 0, (5b)

where q∗ = q(t∗) is the configuration at time of impact,
φ is the function describing the impact surface and λ is a
Lagrange multiplier. Equations (5) represent the conservation
of momentum tangent to the impact surface and conservation
of energy. The variables are q̇(t+∗ ) and λ, and we assume we
know q̇(t−∗ ) and q∗. From here on, we will work under the

assumption that we are dealing with a simple mechanical
system: potentials will not depend on the velocity, q̇. Under
this assumptions, we can write the Lagrangian as:

L(q, q̇) = 1
2 q̇

TM(q)q̇ − V (q),

where we can think of M as being a mass matrix or,
alternatively,

M(q) = ∂q̇q̇L(q, q̇). (6)

It is true, in general, that M(q) will not depend on q̇ (hence
the notation) and that it is positive definite (xTMx > 0, ∀x).
We also assume that coordinates were chosen to avoid any
degeneracy, and as such M(q) will be invertible. Under these
assumptions, (5) becomes

q̇T
∗+M − q̇

T
∗−M + λDφ = 0,

q̇T
∗+Mq̇∗+ − q̇T

∗−Mq̇∗− = 0,

where, for ease of notation, we dropped the dependency of
M and φ of the configuration q, implicitly assuming they
are evaluated at q∗, the impact configuration. We can rewrite
the equations as

p+ = p− − λu, (7)

‖p+‖2 = ‖p−‖2 , (8)

where p± = q̇T
∗±M is the momentum before and after the

collision and u = DφT is the normal to the surface of impact.
Here, and for the remainder of the paper, the norms and dot
products between covectors are assumed to be those defined
under the local Riemannian kinetic energy metric:

〈u,v〉 = uM−1vT

‖u‖2 = 〈u,u〉

This gives
λ2 ‖u‖2 − 2λ 〈p−,u〉 = 0.

The solution λ = 0 is trivial and gives p+ = p−, which
implies no change occurred through the collision. We know
this to always be false, hence we will discard this solution.
We get, finally

λ = 2
〈p−,u〉
‖u‖2

,

p+ = p−

(
I − 2M−1

uTu

‖u‖2

)
.

This result applies to a perfectly elastic collision. For other
types of collision the energy conservation equation doesn’t
hold in its current form. For instance, for a perfectly plastic
collision, we will want to substitute (8) by

〈p+,u〉 = 0,

which states that the exit velocity is tangential to the surface
of collision. This leads to the not very unexpected solution

λ =
〈p−,u〉
‖u‖2

,

p+ = p−

(
I −M−1 uTu

‖u‖2

)
.



and the energy conservation equation becomes

K+ −K− +
〈p−,u〉2

2 ‖u‖2
= 0,

where K± = 1
2 ‖p±‖

2. We interpret the new term as the
maximum loss of energy through the interaction with the
collision surface, and we name it K⊥. This makes it easy
to define a coefficient of restitution based collision, through
the energy equation

K+ −K− + (1− e)K⊥ = 0,

where e is the coefficient of restitution. Solving the rest of
the system using this equation, we get two possible solutions

λ =
(1±

√
e) 〈p−,u〉
‖u‖2

,

p+ = p−

[
I − (1±

√
e)M−1

uTu

‖u‖2

]
.

The (1−
√
e) solution can be shown to be always unfeasible.

Indeed, it leads to

〈p+,u〉 =
√
e 〈p−,u〉 < 0,

which is unfeasible since we assume we always start with
an unfeasible entry velocity.

Considering the previous derivation, define a momentum
map Γ(u) thusly

Γ(u) = I − (1 +
√
e)
M−1uTu

uM−1uT

for some covector u. Then, we can write the generalized
velocity of a system after a collision as a linear mapping of
the velocity before the collision

p+ = p−Γ(u). (9)

Note that in the case of discrete mechanics we will likely
not have access to the velocity q̇(t), and we must redefine our
momentum. We do this using the Legendre transformation
that gives us the forward momentum in (4):

p− = F+
(qk, q∗).

Once we find the p+—e.g. using (9)—we can go back
to a configuration-only representation using the backwards
momentum and the same Legendre transformation:

F−(q∗, qk+1) = p+.

III. MULTIPLE SIMULTANEOUS COLLISIONS

Suppose now that the impact occurs across two surfaces
at the exact same time. Each of the surfaces can act in
its normal direction with arbitrary magnitude. As such, (5)
becomes

∂L

∂q̇

∣∣∣t+∗
t−∗

+ λaDφa(q∗) + λbDφb(q∗) = 0, (10a)[
∂L

∂q̇
· q̇ − L

]t+∗
t−∗

= 0, (10b)

which has the same number of equations as (5), but one
extra variable, λb. As a consequence, the system described
by (10) will have a continuum of solutions instead of the
two we found before. In most cases, one cannot obtain a
unique answer by solving the problem using conservation
of momentum and energy alone. However, a propagative
approach, in which we solve for each surface of collision
separately until a feasible result is found, gives at most a
finite number of distinct results [12], [13]. Such an approach,
in our case, involves applying (9) repeatedly until a feasible
momentum is found

p1 = p−Γ(u1),

p2 = p1Γ(u2),

. . .

p+ = pn−1Γ(un),

where ui is the normal to any surface that renders pi−1
infeasible. Note that n is not the actual number of surfaces,
but rather the number of surfaces we must reflect over until
a feasible result is found. For example, in the case of two
surfaces of contact, represented by u and v, we might have

p+ = p−Γ(u)Γ(v),

p+ = p−Γ(v)Γ(u),

p+ = p−Γ(u)Γ(v)Γ(u),

p+ = p−Γ(v)Γ(u)Γ(v),

. . .

where the number of required mappings is related to p− and
the number of collision surfaces. In general, we will have:

p+ = p−Γ(u1)Γ(u2)Γ(u3) . . . . (11)

Of course, the product above is one of matrices, and as such
if we were to change the order of the terms we would not
be guaranteed with the same result. In fact, for even very
simple systems this will not be the case [12]. The only way
to make sure that the ordering of surfaces is irrelevant is to
require their corresponding matrices to commute:

Γ (u) Γ (v) = Γ (v) Γ (u) (12)

For unit length normals, this is equivalent to

uTv = vTu, (13)
or

〈u,v〉 = 0.

We will show that (13) is equivalent to the two vectors
being multiples of each other. First, we can safely assume
neither of the two vectors is zero. Let ui and vi represent
the components of the vectors. Then (13) is equivalent to

uivj = ujvi, ∀i, j

which, in particular, implies
vi
ui

=
v1
u1

= α



which, in turn, implies v = αu. The reverse implication is
shown by calculating

uTv = uTαu =
(
αuT)u = (αu)

T
u = vTu.

What this means is that, for our mappings to commute we
must have either

v = αu (14)
or

〈u,v〉 = 0. (15)

The condition in (14) can be met only if the two surfaces
are tangent at the point of contact. This is either an highly
degenerate case—if the two surfaces oppose each other—or
a trivial case—if the two surfaces are identical—neither of
which are likely to arise in any real physical systems. The
third possibility, and the one we are going to explore and
exploit, is given by (15): the two surfaces are orthogonal
under the local kinetic energy metric.

IV. ORTHOGONALITY

We want the mechanism to undergo multiple impacts in
such a way that the result is unique (as per section III).

Let us calculate how much a deviation from orthogonality
affects the result of the impact. To do this, consider two
surfaces defined by the covectors u and v, such that they
are unit length and orthogonal, as in (15). Now let us perturb
one of the vectors in a direction orthogonal to it:

vε = v + εw. (16)

We assume, without any loss of generality that w is also
normalized, such that ‖w‖ = 1. Starting with an incoming
momentum p, the mapping to the exit momentum is

pε = pΓ(vε)Γ(u) = p

[
I − 2M−1(

vT
εvε − 2ε 〈u,w〉vT

εu

‖vε‖2
− uTu

)]
. (17)

Using the ε trick to calculate the derivative, we get

dp = dpε

dε

∣∣∣
ε=0

= 2pM−1
(
vTw

+wTv − 2 〈u,w〉vTu
)
. (18)

This is a vector that describes the change in the solution due
to a small change in angle between the two surfaces of con-
tact. As we discussed before, the reflection transformations
are not commutative, which means that the order in which
we take them matters. The difference would show up in this
result, specifically by changing the sign of the derivative. It
is not completely unexpected that this change is orthogonal
to the original, unique solution:

〈dp,p+〉 = 2pM−1
(
vTw −wTv

)
M−1pT = 0.

The reason why this is expected is that the reflection opera-
tions are distance preserving, so that any infinitesimal change

in the result must occur on a direction perpendicular to the
original vector. Also, let’s look at the norm of dp:

〈dp, dp〉 = 4pM−1(vTv + wTw)M−1pT

= 4
[
〈p,v〉2 + 〈p,w〉2

]
= 4 〈p∗,p∗〉 = 4 ‖p∗‖2 , (19)

where
p∗ = 〈p,w〉w + 〈p,v〉v. (20)

In other words, p∗ is the projection of p onto the subspace
defined by v and w, Span {v,w}.

Equation (18) gives us a design criterion for the momen-
tum at the time of impact. Assuming we know that our
surfaces are close to orthogonal we can calculate the vector
εw which would bring them to perfect orthogonality. Then
the design decision should try and minimize p∗. We expect
this to be much easier to do in real systems than finding
a usable configuration for which the surfaces are perfectly
orthogonal (as in our example in sec.V).

V. NUMERICAL RESULTS FOR A TWO LEGGED RHEX
MODEL
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γL

−ϕL

−ϕR

θ
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0

Fig. 1. The diagram of the model we used indicating all the configuration
variables used to describe the system: x, y and θ are the coordinates and
angle of the robot body; ϕ are the angles of the left and right hip; and γ
are the angles at the knees. The model is actuated only at the hips and the
knees are modeled with a linear spring and damper. The gap functions φ
are the distances between the left and right foot and the ground, and their
derivatives are used to define the contact surface normals in (23)

We apply the concepts presented in the previous sections
to a simplified model of the RHex robot. We are interested
in designing and testing different gaits in simulation. For
this, our model will be a two dimensional, two legged
version of the hexapod-inspired robot. A diagram with the
relevant parameters is shown in fig. 1. Notice that this is a
seven dimensional system, and its configuration belong to a
seven dimensional manifold. We are only interested in the



configurations for which both feet touch the ground, which
are enforced by the two scalar constraints:

φR(q) = φL(q) = 0. (21)

What interests us is finding a gait such that the result of a
multiple impact is unique, or as close as possible to unique.
This would ensure that the outcome of the impact, and hence
the trajectory of the system can be better predicted and
controlled.

The two constraints in (21) reduce the dimensionality of
the model to five. Two of the configuration variables can be
safely ignored as well, specifically the x and θ coordinates
of the main body. This is because these are symmetries
of the system and as such they naturally disappear from
following equations. For ease in calculations we simply set
them to zero. One of the constraints in (21) gives us the
y coordinate as a function of the other ones. This leaves
us with four variables—the knee and hip angles—and one
constraint—that the feet have the same y coordinate. To this
we add an artificial constraint that the knee angles have to
be equal. This is not entirely unfounded, since the resting
knee angles are identical, and any deviation from that angle
due to bending will be small. Finally, we can represent all
simultaneous contact configurations using only two variables:
the knee angle and one of the hip angles. Without any loss of
generality we chose the right hip angle as the free variable.
The reason why we don’t choose the two hip angles as the
two free variables is that, given any two hip angles, there
might not be one knee angle such that the feet are at the
same height. However, given a hip angle and the knee angles,
there is always at least one angle for the other hip such that
both feet touch the floor.

We know from sec. IV that if the two surfaces of contact
are orthogonal under the inverse Riemannian metric then the
outcome of the impact is unique. We also have a measure of
the unpredictability of the impact outcome for surfaces that
are close to orthogonal (i.e. the dot product between their
normals is close to zero). This measure, described in (20),
depends on the direction of the incoming momentum at the
time of collision relative to a perturbation from an orthogonal
basis. Thus, it makes sense to look at our space of contact
configurations in terms of the dot product between the two
surface normals

s = 〈u,v〉 , (22)

where u and v are the normals of the contact surfaces:

u =
DφR(q)

‖DφR(q)‖
, v =

DφL(q)

‖DφL(q)‖
. (23)

Figure 2 shows the contour plot of s as a function of
the rigt hip angle and knee angle. Notice the two local
minima and the local maximum at A, B, and C respectively.
The configurations corresponding to the points marked on
the plot are shown in fig. 3. The configurations at points
A and B are, in fact, the same configuration with the

A

B

C
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5.12× 10−3

π
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0

ϕ
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)

γR = γL(rad)

Fig. 2. The contour plot of the dot product between surface normals as a
function of the configuration parameters, after the dimensionality reducing
assumptions made in sec. V. Points A and B mark two local minimums
(also the global ones), and point C marks a local maximum. The gaits
corresponding to these points are pictured in fig. 3.

left and right legs swapped. They look very much like
the impact configurations arising from a walking gait. The
configuration at C is shown for comparison, and represents
a local maximum. It is only a theoretical configuration, as
the body and knees would penetrate the floor. However, it
represents a symmetrically rotating gait, which was not found
to work, either in simulation or in experiment [11]. This
result gives us confidence that our non-uniqueness measure
is meaningful and that it will prove useful when extended to
gait and mechanism design.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the goal of simulating and designing gaits for
the RHex robot, we focused our attention on simultaneous
impacts, which are ubiquitous in the world of walking and
running robots. A fast and robust method of dealing with
such situations is needed. We presented our own version of
an iterative method, in which we sequentially solve for each
surface that renders the momentum infeasible, until none
such surface exists. We have shown that this approach will
not, in general, produce unique results, since the answer is
dependent on the order in which the momentum maps are
considered. However, we also show that when the surfaces
of contact are orthogonal in the appropriate sense, the
ordering of momentum maps is irrelevant and hence the
result becomes unique. We also develop a measure of how
deviating from orthogonality affects the uniqueness of the
result, a measure which turns out to depend on the full state
of the system at impact—both configuration and momentum.
Finally, we show numeric results for a model system based
on the RHex running robot.



A B

C

Fig. 3. The configurations corresponding to the points marked on the
contour plot in fig. 2. Notice how A and B are the mirror images of the
same walking stance, while C is an unrealistic stance.
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