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Abstract—We study a trajectory tracking problem for
a mobile robot moving in the plane using combinatorial
observations from the state. These combinatorial observa-
tions come from crossing binary detection beams. A binary
detection beam is a sensing abstraction arising from physat
sensor beams or virtual beams that are derived from several
sensing modalities, such as actual detection beams in the
environment, changes in the angular order of landmarks
around the robot, or recognizable markings in the plane.
We solve the filtering problem from a geometric perspective
and present its relation to linear recursive filters in control

Fig. 1. Trajectory tracking by moving toward landmarks. Tgray

- (thick) curve indicates the desired trajectory, and thelbtaurve indicate
theory. Subsequently, we develop the acceleration control the trajectory followed by the robot. Even in the presenceaftrol

of the robot to Fra_ck a given_ input trajectory, with a finite uncertainty, and sensor observations consisting on catdsial infor-
control set consisting on moving toward landmarks naturaly  yation, the robot is able to approximately track the destrajbctory.
modeling the robot as a switched dynamical system. We |n this example, the combinatorial information comes frohange of
present experiments using an e-puck differential-drive rdot,  the cyclic ordering of landmarks around the robot.
in which a useful estimate of the state for tracking is
produced regardless of nontrivial uncertainty.
abstract beams. Such linear segments appear naturally in
) ) several sensing modalities, such as a landmark entering
We adapt techniques developed for switched dynamig fie|d-of-view of the robot, changes in the landmark’s
cal systems [3], [9], [10] to robots whose main SOUrC@y cjic order around a robot [21], crossing inflection rays
of information consists of combinatorial aspects of thg, 4 bi-tangent complements of the boundary when new
environment, and whose control is limited to a finite S&fgions become visible [22], or crossing actual markings
of primitives. In particular, we study a robot in the plan&, the plane. As it will be developed in Section i, the
with control limited to moving toward landmarks, and,,qate to state estimate is a function of the intercept of
whose observations of the state come from abstract bingfg jine segment crossed. Given the limitations in sensing
detection beams [19], [20]. We naturally describe thi§,;jng online execution, we need to compute the sequence
robot as a switched dynamical system, in which each f time periods in which the landmarks should be chased
the modes moves the robot closer to a particular landmatk. o-qer to minimize a given cost for being away of
We aim to design each of the modes to behave wellg gesjred trajectory. Treating the robot as a switched
over periods of open-loop operation, and to provide Sta{fynamical system, our problem reduces to computing
feedback only when there is a combinatorial change i('S‘ptimaI switching times [5], [10] for the system.
the observation of the sensor (see Figure 1). Our work is 1o paper is conceptually divided in two parts. In the
inspired by chaining a sequence of motion primitives S_UCIIiTst part we study the filtering problem: we show by
as in [6], [7]. Note that in our case, however, 0bser"at'o"ﬁeometric means that the configuration of the robot can be
do not provide a perfect knowledge of the state, as {Iiquely determined by crossing three non-parallel beams,
was assumed in [13] for computing navigation amongq \ve make the connection to linear recursive filters in
landmarks. _ _control theory. In the second part, we first assume that
Combinatorial observations decompose the envirolse (opot has a perfect knowledge of the state, linear
ment into a countal?le number of c.ells;.the.z robot Obtairlfynamics, and no uncertainty in control, and in this
the same observation for any points inside a cell [4]gesjized setting, we compute the sequence of landmarks

[11]. This means that we somehow must convert thg,y syitching times to track a given desired trajectory.
combinatorial information into metric information that A ater we assume an imperfect knowledge of the state

stabilizing control law may require. Moreover, the metyity the inclusion of combinatorial observations coming

ric information generated yvhen crossing a beam can_nm)m the detection beams, and in Section V we adapt
depend on where the particular beam was crossed, sifge previous ideas to a differential-drive robot with non-

this information is not available during execution. In thig; agy dynamics, and present experiments withegpuck
regard, the key insight is that the decomposition of thFobot[14]. '

plane is given by thdinear segments supporting the

I. INTRODUCTION

I[l. MODEL
Department of Mechanical Engineering, Northwestern . . . . .
Uni-versity, 2145 Sheridan Road, Evanston, IL 60208, 1|ne robotis modeled as a point with configuratipr-

USA.{b-t ovar, t - nur phey}@or t hwest er n. edu (¢*,¢%,¢") € Q C SE(2), statex = (q,q) € TQ, and



(1,3) (1,2) . .
will draw connections to the well-known case of Kalman-

filtering. We will drop the compass assumption and show
that three beams crossings are sufficient to localize the
! robot, as long as such beams are not parallel.

X ~ A. Robot with a compass

(1,2) (1,3)
When the robot has a compass, the rotation of its
Fig. 2. E>r<]ar|?r|3_le of a detﬁctioré beafmhthrouqh Iandlmaék _crgﬁsin local reference frame with respect to the beams’ reference
gt o i o ot inescaaonay f12Me 15 known (e, is kniow). Therefore, we only
lines need to determing® and ¢Y. Assume that the robot
crossed the beam§,, and 5 € B, in that order, and
that the lines supportings; and 3, are not parallel.
state transition equatiod = f(x, u) given by: Further, assume that the line supportifigis given by

aiq” + big¥ + ¢; = 0.

q* veos¢? .

-y . e Lemma 1:When the robot has a compass, after cross-
X = fo(x,u) = qi; — ”Sllﬁq (1) ing 8, there is a uniquel;(q) € R such thata;¢® +

(je u9 biqy “+c; + dl(q) =0.

Proof: Let q; = (¢¥,q/,¢%) be the unknown
with control signalu = (u”,u%), and initial condition configuration of the robot when it crossed begm and
x(tg) = xo. With f¢, we havev = \/(4%)2 + (¢¥)2 and letq = (¢%,q",¢%) be its current unknown configuration.
we can write the state as= (q,v,?). We assume that When the robot crosse$, the linea;q? + biq! +¢; =0
the robot can only measure its stéveally, meaning that represents the set of its possible configurations. As the
the robot cannot immediately sense its configurakipn robot moves, the slope of this linear set representing the
with regard to a global reference frame, but that it capossible configurations does not change, but the intercept
measuraj with regards to a local reference frame. does. With¢* = ¢ + Az and¢¥ = ¢/ + Ay, we can

For this purpose, we further assume that the robot hagite:
an on-board clock. Between the global and local reference
frames we only assume that they have the same “right-
handedness”. a;¢* +b;¢ +¢c;+di(q) = 0

The robot moves among a set of binary detection,(¢* + Ax) + bi(q! + Ay) + ¢; +di(q) = 0
beamsB, in which each beanb € B is assumed to WAz +bidy+di = 0
be supported by a straight line. A binary detection beam ! ! !
detects whether the robot has crossed it, and it establishes —aiAr —bAy = di(q)
a sensing abstraction that encapsulates several physical (2

sensing modalities, such as actual detection beams in
the environment (e.g., a sensor that indicates a customeSince we assumed that the robot can meaguveth
enters a store), linear markings in the plane (see Figure 6¢spect to a local reference frame, the valuAefandAy
or swap-linesindicating the change of angular order ofis completely determined by integratiigfor any initial
landmarks around a robot [21] (see Figure 2). condition on the line supporting;. [ |

To facilitate the exposition, in the further developments Corollary 1: When the robot has a compass, after the
we consider onlyproper crossings of beamm which the robot crosses the beams and s € B, in that order, and
robot cannot cross two beams at the same time (i.e., at tiighey are supported by non-parallel straight lines, the
intersection of the beams), the robot cannot travel alongrabot lies on the intersection of the linegsqg” + b1¢¥ +
beam, the trajectory of the robot projectedR3 cannot c¢; + di(q) = 0 andaxq® + bag¥ + c2 + da(q) = 0.
have an inflection point along a beam, and no two beams Proof: At the moment of the second crossing,
in B have the same label (that is, the robot knows exacthy (q) = —a; Az — by Ay and dz(q) = 0. We have two

which beam has been crossed). equations forg®, andg¥, which values are computed as:
I1l. THE FILTERING PROBLEM
In this the section we study the problem of determin- o= bica — ba(cy + di)

ing the configurationg of the robot when the state is arby — azby

unknown, and the robot moves among a known set of v az(c1 +d1) —aje

beamsB. To facilitate the discussion, we first proceed by T = a1by — asby

assuming that the robot has a compass and show that two 3)
beams crossings are needed and sufficient to localize the

robot as long as such beams are not supported by paralleNote thata,b2 — a2b; = 0 implies that the supporting
lines. Our argument will be purely geometric, but wdines are parallel. ]




B. Robot without a compass

When the robot does not have a compass, we will show @i b |:q9”:| . 5)
that after crossing two beams supported by non-parallel
lines, there are only two configurations in which the robot -
might be, and the configuration is completely determined Further, writing
by crossing a third, non-parallel beam.
Lemma 2:After crossing two distinct non-parallel q* q*

beams3; and 3, there are at most two configurations in %= [ai bi] {qy] = Hi {qy} ’ ©6)
which the robot might be.

Proof: Consider the norm of the vect¢iAz, Ay), we can interpretz; = ¢; as the unique metric value
I =||(Az, Ay)||, and consider all the circles with centerassigned to the combinatorial observation of crossing a
at a1¢” + b1g¥ + ¢1 = 0 and radiud. There are exactly particular beam regardless of where the beam was crossed,
two such circles that are tangentdeq® +b2q? +co = 0. andfa b 0 ---]x as the expected value of such obser-
Since the robot can only move in the direction given byation. When a beans; is crossed, we can identify its
its heading, this also determines two possible values feupporting line and we writél; = [a; b; | and z; for the
q° B corresponding matrix and observation. Due to uncertainty

: . H H H T
Corollary 2: After crossing three distinct beams,_sup-on the initial position, we expect the quantity- H; Qy
ported by non-parallel lines without a common point of q

intersection, the configuration of the robot is uniquely© Pe different from zero. Using the stananrd aiman
determined. filter, assuming prediction covariande = UOP 02}
Proof: The proof consist of two applications of . . 9 o . 7

the previous Lemma, between bearfis and 32, with and observation covariande= [o5o%], (written in such _

the center of the circles on the line supportifig and a way for convenience), we find that the Kalman gain is:

between beamg; and 5., with the center of the circles

on the line supportingls. Since the supporting lines are

not parallel, ael% do ginfot have any po?r?t of i?ltersectiorf,(i = PH[HPH" +R]™!

only two of the circles will be tangent at the same point ~ [o6% 0] [ 0% 0] [a; 2 9 -
- [T A E) [ [T 3] f] ]

along ., which determines the configuration of the robot. 0 o%| |b; 0 o%||b;

" - aEal)
- 2 2 2 |
C. Relations to Kalman Filtering a; +b; + o b
We now draw parallels between the state filtering pre- This gain is used to update the state as:
sented above and the popular Kalman filtering approach.
This is particularly insightful in the case of the robot

with a compass. To start our discussi_on, su;:?pose.ﬂ‘gi\it+ = q + Ki(z — Hiqy)

the robot has previous knowledge of its configuration, ¢ 1 o ¢
say qo = (%, qY,qf), and after crossing some, € B, = [q;] ey [bj ( ci— la; by {qé])
we find thatq;, which is obtained by integrating©(x) ¢ L 12‘3 N !
from o does not lie on the supporting line ¢f. By — % <[ b; —a;bz] |:q§g:| _ [aicz} )(7)
Lemma 1, we know the actual configuratien to be aj + b7 +op \[~abi  aj q; bici

somewhere along the line supportig. Now (without

any indication that this is the correct manner to proceedyhich aso — 0, gives the same update rule as Equa-
we projectq; into the line supportings; by finding the tion 4, but certainly does not quite look like Equation 3.

closest point(gf, ¢/, ) in the Euclidean sense betweenn p.a_rticular, Equation. 7 depends explipitly on the ipitial

(g%, ¢?) and the supporting line. Such point, easily foumﬂ)osmon._To remove this _dependency, without errors in the
with a geometric argument, is given in matrix form by: observations we can write:

7 1 b} —aibi| [q] iCi
|:q1+:| — <|: 13 a2 :| |:q1:| o |:0/ C :|> ¢ = —al(xo + AwO,l) — bl(yO + AyO,Q)

1t a2 b2 —aibi a; i bl C;
Tt erh ’ o ca = —az(xo+ Axo1 + Az12) — ba(yo + Ayo1 + Ayi2),
In the case of the Kalman filter, we need to convert the
combinatorial information into metric information that wein which Az; ; and Ay; ; are the net changes on the
can use to update the state. As in the previous discussiorespective coordinates between crossings. These give two
the major constraint is that the robot obtains the sanlimear equations for(zo,yo), for which the value can
sensor reading regardless of where it crossed a beam. Wée substituted into Equation 7 to give the same update
can write the equations of the lines supporting the beamsle as in Equation 3, which was obtained by geometric
as: arguments.



IV. THE TRAJECTORYTRACKING PROBLEM

In this section we study the problem of trajectory 0 -1 .0 0 0 0
tracking among a given seB of beams, using the fil- 4 _ 0 0 0 0 andB = Lo (11)
ters developed in the previous section. Given a desired 0O 0 0 0 0 0
trajectoryx,, the tracking problem consists of finding the 0 0 0 -1 0 1
control input signak such that the followingostfunction A motion primitive is based on the solution of a
is minimized: Linear Quadratic Regulato(LQR)[1], which generates
4 the control inputy; = (u”,«Y) such that
J(u):/ U(x(t),u(t),xq)dt, (8)
to t2
— T T T
subject tox = f(x,u), with initial time ¢, and final Tror(u) = /ﬂ (7 Q-+ i Run)dt +(t2)" Po(iz)
time ¢;. In Equation 8,/ is a real-valued, non-negative o _ . (1_2)
function. A switched robotic system is a dynamic systerts Minimized, subject to Equation 10. W qr, P> is
governed by a sequence &f dynamic models [10]: a positive-semi-definite matrix that encodes the cost of

x(t2) being different from the origin, and bot® and R
(9) are positive-definite parameter matrices. The solutioh tha
minimizesJor(w;) is given byu; = —R-1BT P(t)z(t),
with boundary conditiorx(to) = xo. Foru : [to,tf] — Wwith P(t) found by integrating front, to ¢; the Riccati
{1,...,N}, and f(x,u,t) = fi—u@)(x) by minimizing equation
Equation 8 we optimize the sequence of modes and
switching times of the system in Equation 9 to track the 1T o
desired trajectoryx,. The minimization of Equation 8 ATP() + P(M)A+ P()BR™BTP() +Q = —P(1),

depends on the particular dynamical system we are inter- (13)

ested in. In the rest of this section we present the setting SlfbleCt to the final cos(t,) = P». Sinceu, is a feedback

landmarks in which we focus on, and how it is naturaIIyaW' Equation 10 can be written now as:

expressed as a switched dynamical system.

x = fi(x), 7 <t<Ti,

X = ALQR(t)X (14)
A. Landmark Motion Primitives with A or(t) = A— BR1BTP(t).

The movements of the robot are describedchgsing Now we introduce some notation to describe sequences
landmarks By this we mean that the robot chooses a paf motion primitives. For a sequence of motion primi-
ticular landmark, and moves towards it. Following [21]fives the order in which they are applied is encoded by a
let L be a finite set ofr indexed points inR2. A point functions : {1,2,...,m} — {1,2,...,|L[}, in which
p; € L is referred to as &ndmark with landmark label thei, motion primitive in the sequence is given by:i).

i. We assume that the landmarks are labeled fromsL to The times at which a motion primitive is applied are
For each landmark; = (p?,p!) € L we define anotion specified by the sequenee= [r1, 72, ..., T 1]. Given
primitive, denoted byx = chasg(i,x). The motion 7, o(i) is applied form; <t < 741, With 71 and 7,41
primitive chase (i,x) is constructed such that(x,u,t) being the initial and final times, respectively. A motion
stabilizes atp;. In other words, chasdi,x) takes the Pprimitive sequence is therefore completely specified given
robot to (p*,pY,0,0,0), with some free orientatiof. o andr.

Our motion primitives are based on the linearization Before going further, we note that the minimal sensing
of Equation 1 assuming that the heading of the robdequirements for detecting beams and chasing landmarks
is oriented with the landmark. Further, it is easier ténay seem incompatible, since it is possible to perform a
design the motion primitives for a landmark at the originfull metric SLAM using bearing only sensors [2]. How-
asuming that the robot is somewhere along the positi®ver, we are not interested in building a map, but tracking
x—axis, to then transform this solution to the correspond® dynamic trajectory. In this regard, the “landmarks” are
ing location of the landmarks in the plane. With this, th&€onsidered as part of the description of a switched system,
linear approximation of Equation 1 consists of two doublé&ather than environment's features for the robot to be
integrators, one modeling the change of distaide the localized.
landmark, and the other the change of the robot’s headi

: . . B Tracking Trajectories with Perfect Control and Sensing
orientation¢ with respect to the landmark:

In this section we assume that the robot is perfectly
localized, and can sense the precise position of the
landmarks. To start our discussion, we solve an easier

= Ax + Bu, (10)  problem: we assume that the desired trajectapy is
produced by following the motion primitive sequence
(o,7*). Suppose we are givea (that is, the order in

with which the primitives appear), the initial and final times,

X =

RS-
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Fig. 4. Tracking a line with two landmarks. Switching baclddorth
between the landmarks tracked might provide an acceptadiking
performance, as it is shown in the figure. However, the figlse shows
a potential drawback: note that as the robot gets closerttatidmarks,
the number of switches increases.

Fig. 3. Trajectory tracking when the desired trajectory éagrated by
moving toward landmarks. The figures show the initial and fiegation

of the optimization, with the gray curve showing the desinegectory

and the black curve the actual trajectory followed. We label black

curve at the instant a new landmark is chased. In this casesetjuence
of landmarks chased i&”, A, B, C].

corresponding trajectory approximation by chasing two
and assume that the initial state of the robot coincidddndmarks. . _
with 24(0), but we are not given*. How do we compute Thg ad_vantage to this scheme is that_ we can apply .the
switching timesr so that the difference between the actug®Ptimization procedure presented earlier in the section
trajectory of the robot:, and the desired trajectony; is with some minor modifications. We have to be careful:

minimized? the optimal sequence of motion primitives will consider
Following Equation 9 for switched dynamical systemgnfinitely many switches [3] (that is, the optimal sequence
we write: chatterg. To avoid this, minimization of Equation 16 is
stopped once its value reaches a prescribed, small number
e > 0.
x(t,0,7) = chase (o(i),x), 7 <t<Tit1. (15) In order to apply the optimization earlier in the section,

there are three issues we need to solve: 1) we need
Therefore, we have that(t, o, 7*) = x4(t). We encode o compute an initial motion primitive sequence; 2) we
the difference betweer andx, as a function ofr with  shoyld specify when an additional motion primitive should
the following cost function: be added to the sequence; and 3) we should specify when
— a motion primitive should be removed from the sequence.
J(7) :/ l|1x(t,0,7) — xq(t)||dt, (16) The initial motion primitive sequence is found by
! partitioning x4 according to the pairs of landmarks its
subject to Equation 15. We minimize Equation 16 usiningent falls between. For this, leg(t) = (ga(t), va, 7).
the method presented in [10], in which first and seconffith aa(t) = (g5 (1), ¢;(t), a3 (#)). Consider an infinite ray
derivatives of a cost functional subject to a switchedtarting at(q; (), ¢z (t)) with angleqg(t). Ast varies, the
dynamical systems are computed, and then are used® Sweeps over the landmarks, and the corresponding
a gradient descent optimization. Since each motion prin@irs are computed. Once the pairs of landmarks are
itive is a linear system, both first and second derivatives §und, we heuristically add four equidistant time switches
Equation 16 exist and are continuous [10]. This alloweB€r segment ofzy, which gives the motion primitive
us to minimize Equation 16 with quadratic convergenc%eque_”ce_(aoaTO)- This sequence is refined with the
using the Newton method with trust region [15] (sedollowing iteration:
Figure 3). 1) Fork=0,1,...
a) Optimization. Minimize Equation 16 subject

C. Switching between motion primitives: General Case to %(,o%,7%), to obtain optimal switching

In the previous example, we restricted to be gener- times 77+,
ated by a sequence of motion primitives. However, this is b) Reduce switcheslf for somei, 7%* = Tik_:l,
unusual, as we cannot expect the landmarks to coincide (o**+1, 7F+1) are constructed so that (i) is
with the desired trajectories for the robot. We found that not included.
good approximations can be found by a heuristic proce- ¢) Switches insertion.If no switches were elim-
dure, in which the robot switches several times between inated, then we compute the value of Equa-
two motion primitives to generate motion directions not tion 16 for each time segmeft*, 7/77, ). If it
originally available by tracking landmarks. This simple exceeds a prescribed performance parameter,
idea is reminiscent of procedures in motion planning (oF+1, 7F+1) is constructed from(o*, 77*),
such as in [12], or bang-bang control [17]. Consider for with an additional motion primitive inserted

example Figure 4, in whicly, is a vertical line, with the between(1/3)(/* + 7/7,) and (2/3) (7} +



itives by linearizing 1, but given that the linear model
""" @ @ |—©® @ is not a good approximation when the robot's heading
is not pointing near the location of a landmark (e.g.,
when the wheels’ axis is collinear with the landmark), we
must specify how the different motion primitives must be
smoothly chained together. This is achieved by replacing
Equation 14 with

L - ] cos ¢
(@) (b) , v
O o | @ @ 5

° for somek > 1. This straightforward change ensures that
the robot moves towards the landmark at full speed only
when the linear model is a good approximation, and make
the robot to tend to rotate in place to point towards the
. | |[—© landmark when this is not the case. In our experiments,
- P - B we usedk = 2. Since both first and second derivatives of
(©) (d) Equation 17 exist and are smooth, we can use it instead of

Equation 14 when defining the chase motion primitives,
Fig. 5. Tracking a trajectory for an arbitrary arrangemeriandmarks. and proceed as before

The gray line shows the desired trajectory, and the blacktlie actual . . .
trajectory followed. The black line is labeled accordingthe instant In our implementation, we decided to model the ab-

adnell/v Iagdmark is chaseg- We show four sgapsh(;nst,a;n Whilclltl;lt{uarz| stract sensor beams as linear markings in the plane that
e B o e e otk e €-puck can recognize with s ground sensors. By
the given time. the principle of separation, while no observations are
received (that is, beams crossings) our motion primitive
is defined as before, operating as an open loop controller
7/7,). The corresponding motion primitive is over an odometry estimate of the state. With respect
found in the same manner as f@®, 7). The to the e-puck camera, we found its field-of-view to be
idea here is to reduce the value of Equation 18ery limited for our purposes, and we decided to test
by inserting a motion primitive in the sequenceour ideas representing the landmarks purely by odometry
where the robot is “far” from the given trajec- (that is, the robot has a landmark “map” and “simulates”
tory. landmark chasing based on odometry). That is, in our
d) Iterate. If no switches were reduced or addedgexperiments the robot does not have a visual feedback
return (¢*, 77*). Otherwise incremenk and for ¢’. Even though this camera did not fit our current
iterate. model, it presented an interesting future direction since
A computed example is shown in Figure 5. we can model the limited field-of-view as three distinct
detection beams that move with the robot. We will explore
V. DIFFERENTIAL-DRIVE E-PUCK IMPLEMENTATION these ideas in a future paper.

Our objective in this section is to track a desired Figures 6 and 7 (with the accompanying video) show
trajectoryx,, with a robot that has imperfect information€xample runs of our implementation. In  Figure 6, the
of the state during online execution. We assume th&@Pot performs about a dozen loops around the common
the robot can orient its heading with a given landmarkoint of the beams. Without the combinatorial updates,
but its sensors cannot measure the distance towards tig odometry estimate effectively looses the robot near the
landmark, nor the angle between the robot and the lan@0d of the second loop. In Figure 7, the robot follows a
mark with respect to a global reference frame. As beforéomplicated trajectory, in which the combinatorial update
the robot has complete knowledge of the location of th@ive a correct estimate of the state even after the robot
detection beams, and we assume that it can determii@bilizes to an incorrect landmark position given the lack
which detection beam was crossed. The robot cann®f, visual feedback. Note that in Figure 7, nominally there
however, determine the location of the crossing along tifge only four beams (three horizontal and one vertical).
beam. Further, we assume that internally the robot has/éithout the combinatorial updates from the beams, the
time sensor, and noisy observations foand ¢?, useful robot is effectively lost after visiting for a second time
for rough odometry estimates. the right-middle square.

To test our preliminary ideas, we used an e-puck[14]
robot to test out ideas on a real platform. The e-puck is a
differential drive robot, thus their dynamics are nonlinea In this paper we present our results for studying
In previous sections we defined the chase motions primsbots that sense combinatorial information as switched

VI. CONCLUSIONS



B < B«

Section V, our future work considers the computation of
basins of attractions as present in [18]. This means that
not all motion primitives are available all the time.

More interesting, as mentioned in Section V as future
work, is the case when the camera is not omnidirectional.
In this case, the motion primitives have to be designed to
keep a particular landmark in sight, as in [8], [16], with
the combinatorial events provided by the field-of-view,
which can be modeled as three detection beams (the three
segments of a the boundary of a circular section).

B« Bl <

Fig. 6. Loops around the origin. On each subfigure, the orésmaller

and lighter) disc represents the estimate of the robot ¥fe dotted [
line represents the input trajectory, and the purple disggés and
darker) disc represents the desired instantaneous roldigemation. 2]
The position of the landmarks are represented by the greehkedid dots.
In this experiment, the robot performs about a dozen looparat the
common point of the beams, in which the observation of thie $tam 3]
the sensors consist only on which beam was crossed, but ndtiel
point among the beam the crossing took place. Without thategdrom [4]
the detection beams, the odometry estimate effectivelgdsdhe robot
near the second loop. [5]
- " . P - :
i N D R 5
. . Q. .
i L
o -
(a) (b) (8]
h | r |
; — id - [
I S i
E,. » T [10]
(©) (d) ”
Fig. 7.  Trajectory tracking. As in Figure 6, the orange (deral
and lighter) disc represents the estimate of the robot laft the [12]
purple disc (bigger and darker) disc represents the desistantaneous
robot configuration. Given that the desired trajectory segsitself, we
highlight configurations close to the desired instantanemnfiguration [13]
with the blue thick curve. In this experiment, the robot iseatn track
the desired instantaneous configuration even when it igdanio move
according to six motion primitives and can receive only fdifferent [14]
observations from the sensors (there are only four disbeeims, three
horizontal and one vertical). The complete run of this expent is
included in the accompanying video.
[15]

dynamical systems. We describe simple schemes tl'lfg]
incorporate combinatorial information into dynamic state
estimates. While our results are preliminary, we find them
encouraging thus far. We are particularly interested iff!
computing switching times as a function of combinatorighs)
information. Up until now combinatorial information is
only utilized to have a better estimate of the staté;lg]
however, we would like this information to play a role
in the sequence of motion primitives selected. [20]
Perhaps the biggest issue with the current results is that
the motion primitives are based on a linearization whicl21]
assumes the robot to be pointing toward the landmarks.
This linearization assumption is greatly violated wher[122]
a switch produces an overly sharp turn. In the present
paper, even though we took some provisions for this in
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