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Abstract— We study a trajectory tracking problem for
a mobile robot moving in the plane using combinatorial
observations from the state. These combinatorial observa-
tions come from crossing binary detection beams. A binary
detection beam is a sensing abstraction arising from physical
sensor beams or virtual beams that are derived from several
sensing modalities, such as actual detection beams in the
environment, changes in the angular order of landmarks
around the robot, or recognizable markings in the plane.
We solve the filtering problem from a geometric perspective
and present its relation to linear recursive filters in control
theory. Subsequently, we develop the acceleration control
of the robot to track a given input trajectory, with a finite
control set consisting on moving toward landmarks naturally
modeling the robot as a switched dynamical system. We
present experiments using an e-puck differential-drive robot,
in which a useful estimate of the state for tracking is
produced regardless of nontrivial uncertainty.

I. I NTRODUCTION

We adapt techniques developed for switched dynami-
cal systems [3], [9], [10] to robots whose main source
of information consists of combinatorial aspects of the
environment, and whose control is limited to a finite set
of primitives. In particular, we study a robot in the plane
with control limited to moving toward landmarks, and
whose observations of the state come from abstract binary
detection beams [19], [20]. We naturally describe this
robot as a switched dynamical system, in which each of
the modes moves the robot closer to a particular landmark.
We aim to design each of the modes to behave well
over periods of open-loop operation, and to provide state
feedback only when there is a combinatorial change in
the observation of the sensor (see Figure 1). Our work is
inspired by chaining a sequence of motion primitives such
as in [6], [7]. Note that in our case, however, observations
do not provide a perfect knowledge of the state, as it
was assumed in [13] for computing navigation among
landmarks.

Combinatorial observations decompose the environ-
ment into a countable number of cells; the robot obtains
the same observation for any points inside a cell [4],
[11]. This means that we somehow must convert the
combinatorial information into metric information that a
stabilizing control law may require. Moreover, the met-
ric information generated when crossing a beam cannot
depend on where the particular beam was crossed, since
this information is not available during execution. In this
regard, the key insight is that the decomposition of the
plane is given by thelinear segments supporting the
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Fig. 1. Trajectory tracking by moving toward landmarks. Thegray
(thick) curve indicates the desired trajectory, and the black curve indicate
the trajectory followed by the robot. Even in the presence ofcontrol
uncertainty, and sensor observations consisting on combinatorial infor-
mation, the robot is able to approximately track the desiredtrajectory.
In this example, the combinatorial information comes from achange of
the cyclic ordering of landmarks around the robot.

abstract beams. Such linear segments appear naturally in
several sensing modalities, such as a landmark entering
the field-of-view of the robot, changes in the landmark’s
cyclic order around a robot [21], crossing inflection rays
and bi-tangent complements of the boundary when new
regions become visible [22], or crossing actual markings
in the plane. As it will be developed in Section III, the
update to state estimate is a function of the intercept of
the line segment crossed. Given the limitations in sensing
during online execution, we need to compute the sequence
and time periods in which the landmarks should be chased
in order to minimize a given cost for being away of
the desired trajectory. Treating the robot as a switched
dynamical system, our problem reduces to computing
optimal switching times [5], [10] for the system.

The paper is conceptually divided in two parts. In the
first part we study the filtering problem: we show by
geometric means that the configuration of the robot can be
uniquely determined by crossing three non-parallel beams,
and we make the connection to linear recursive filters in
control theory. In the second part, we first assume that
the robot has a perfect knowledge of the state, linear
dynamics, and no uncertainty in control, and in this
idealized setting, we compute the sequence of landmarks
and switching times to track a given desired trajectory.
Later, we assume an imperfect knowledge of the state,
with the inclusion of combinatorial observations coming
from the detection beams, and in Section V we adapt
the previous ideas to a differential-drive robot with non-
linear dynamics, and present experiments with ane-puck
robot[14].

II. M ODEL

The robot is modeled as a point with configurationq =
(qx, qy, qθ) ∈ Q ⊂ SE(2), statex = (q, q̇) ∈ TQ, and



Fig. 2. Example of a detection beam through landmark crossings.
Crossing a half-line swaps the order of the respective landmarks in the
reading of the landmark order detector. Such half-lines arecalled swap
lines.

state transition equatioṅx = f(x, u) given by:

ẋ = f c(x, u) =









q̇x

q̇y

v̇
q̈θ









=









v cos qθ

v sin qθ

uv

uθ









(1)

with control signalu = (uv, uθ), and initial condition
x(t0) = x0. With f c, we havev =

√

(q̇x)2 + (q̇y)2 and
we can write the state asx = (q, v, q̇θ). We assume that
the robot can only measure its statelocally, meaning that
the robot cannot immediately sense its configurationq

with regard to a global reference frame, but that it can
measureq̇ with regards to a local reference frame.

For this purpose, we further assume that the robot has
an on-board clock. Between the global and local reference
frames we only assume that they have the same “right-
handedness”.

The robot moves among a set of binary detection
beamsB, in which each beamb ∈ B is assumed to
be supported by a straight line. A binary detection beam
detects whether the robot has crossed it, and it establishes
a sensing abstraction that encapsulates several physical
sensing modalities, such as actual detection beams in
the environment (e.g., a sensor that indicates a customer
enters a store), linear markings in the plane (see Figure 6),
or swap-linesindicating the change of angular order of
landmarks around a robot [21] (see Figure 2).

To facilitate the exposition, in the further developments
we consider onlyproper crossings of beams, in which the
robot cannot cross two beams at the same time (i.e., at the
intersection of the beams), the robot cannot travel along a
beam, the trajectory of the robot projected toR2 cannot
have an inflection point along a beam, and no two beams
in B have the same label (that is, the robot knows exactly
which beam has been crossed).

III. T HE FILTERING PROBLEM

In this the section we study the problem of determin-
ing the configurationq of the robot when the state is
unknown, and the robot moves among a known set of
beamsB. To facilitate the discussion, we first proceed by
assuming that the robot has a compass and show that two
beams crossings are needed and sufficient to localize the
robot as long as such beams are not supported by parallel
lines. Our argument will be purely geometric, but we

will draw connections to the well-known case of Kalman-
filtering. We will drop the compass assumption and show
that three beams crossings are sufficient to localize the
robot, as long as such beams are not parallel.

A. Robot with a compass

When the robot has a compass, the rotation of its
local reference frame with respect to the beams’ reference
frame is known (i.e.,qθ is known). Therefore, we only
need to determineqx and qy. Assume that the robot
crossed the beamsβ1, and β2 ∈ B, in that order, and
that the lines supportingβ1 and β2 are not parallel.
Further, assume that the line supportingβi is given by
aiq

x + biq
y + ci = 0.

Lemma 1:When the robot has a compass, after cross-
ing βi, there is a uniquedi(q) ∈ R such thataiqx +
biq

y + ci + di(q) = 0.
Proof: Let qi = (qxi , q

y
i , q

θ
i ) be the unknown

configuration of the robot when it crossed beamβi, and
let q = (qx, qy, qθ) be its current unknown configuration.
When the robot crossesβi, the lineaiqxi + biq

y
i + ci = 0

represents the set of its possible configurations. As the
robot moves, the slope of this linear set representing the
possible configurations does not change, but the intercept
does. Withqx = qxi + ∆x and qy = qyi + ∆y, we can
write:

aiq
x + biq

y + ci + di(q) = 0

ai(q
x
i +∆x) + bi(q

y
i +∆y) + ci + di(q) = 0

ai∆x+ bi∆y + di = 0

−ai∆x− bi∆y = di(q)

(2)

Since we assumed that the robot can measureq̇ with
respect to a local reference frame, the value of∆x and∆y
is completely determined by integratingq̇ for any initial
condition on the line supportingβi.

Corollary 1: When the robot has a compass, after the
robot crosses the beamsβ1 andβ2 ∈ B, in that order, and
if they are supported by non-parallel straight lines, the
robot lies on the intersection of the linesa1qx + b1q

y +
c1 + d1(q) = 0 anda2qx + b2q

y + c2 + d2(q) = 0.
Proof: At the moment of the second crossing,

d1(q) = −a1∆x − b1∆y and d2(q) = 0. We have two
equations forqx, andqy, which values are computed as:

qx =
b1c2 − b2(c1 + d1)

a1b2 − a2b1

qy =
a2(c1 + d1)− a1c2

a1b2 − a2b1
.

(3)

Note thata1b2 − a2b1 = 0 implies that the supporting
lines are parallel.



B. Robot without a compass

When the robot does not have a compass, we will show
that after crossing two beams supported by non-parallel
lines, there are only two configurations in which the robot
might be, and the configuration is completely determined
by crossing a third, non-parallel beam.

Lemma 2:After crossing two distinct non-parallel
beams,β1 andβ2, there are at most two configurations in
which the robot might be.

Proof: Consider the norm of the vector(∆x,∆y),
l = ||(∆x,∆y)||, and consider all the circles with center
at a1qx + b1q

y + c1 = 0 and radiusl. There are exactly
two such circles that are tangent toa2qx+ b2q

y + c2 = 0.
Since the robot can only move in the direction given by
its heading, this also determines two possible values for
qθ.

Corollary 2: After crossing three distinct beams, sup-
ported by non-parallel lines without a common point of
intersection, the configuration of the robot is uniquely
determined.

Proof: The proof consist of two applications of
the previous Lemma, between beamsβ1 and β2, with
the center of the circles on the line supportingβ1, and
between beamsβ3 andβ2, with the center of the circles
on the line supportingβ3. Since the supporting lines are
not parallel, and do not have any point of intersection,
only two of the circles will be tangent at the same point
alongβ2, which determines the configuration of the robot.

C. Relations to Kalman Filtering

We now draw parallels between the state filtering pre-
sented above and the popular Kalman filtering approach.
This is particularly insightful in the case of the robot
with a compass. To start our discussion, suppose that
the robot has previous knowledge of its configuration,
say q̃0 = (q̃x0 , q̃

y
0 , q

θ
0), and after crossing someβ1 ∈ B,

we find thatq̃1, which is obtained by integratingf c(x)
from q̃0 does not lie on the supporting line ofβ1. By
Lemma 1, we know the actual configurationq1 to be
somewhere along the line supportingβ1. Now (without
any indication that this is the correct manner to proceed)
we projectq̃1 into the line supportingβ1 by finding the
closest point(q̃x1+, q̃

y
1+) in the Euclidean sense between

(q̃x1 , q̃
y
1 ) and the supporting line. Such point, easily found

with a geometric argument, is given in matrix form by:

[

q̃x1+
q̃x1+

]

=
1

a2i + b2i

([

b2i −aibi
−aibi a2i

] [

qyi
qyi

]

−

[

aici
bici

])

(4)
In the case of the Kalman filter, we need to convert the

combinatorial information into metric information that we
can use to update the state. As in the previous discussions,
the major constraint is that the robot obtains the same
sensor reading regardless of where it crossed a beam. We
can write the equations of the lines supporting the beams
as:

[

ai bi
]

[

qx

qy

]

= −ci. (5)

Further, writing

zi =
[

ai bi
]

[

qx

qy

]

= Hi

[

qx

qy

]

, (6)

we can interpretzi = ci as the unique metric value
assigned to the combinatorial observation of crossing a
particular beam regardless of where the beam was crossed,
and [a b 0 · · · ]x as the expected value of such obser-
vation. When a beamβi is crossed, we can identify its
supporting line and we writeHi = [ai bi ] andzi for the
corresponding matrix and observation. Due to uncertainty

on the initial position, we expect the quantityci−Hi

[

qx

qy

]

to be different from zero. Using the standard Kalman

filter, assuming prediction covarianceP =

[

σ2
P 0
0 σ2

P

]

,

and observation covarianceR = [σ2
Pσ

2
R], (written in such

a way for convenience), we find that the Kalman gain is:

Ki = PHi[HPHT +R]−1

=

[

σ2
P 0
0 σ2

P

] [

ai
bi

] [

[

ai bi
]

[

σ2
P 0
0 σ2

P

] [

ai
bi

]

+ σ2
Pσ

2
R

]

−1

=
1

a2i + b2i + σ2
R

[

ai
bi

]

.

This gain is used to update the state as:

qi+ = qi +Ki(zi −Hiqi)

=

[

qxi
qyi

]

+
1

a2i + b2i + σ2
R

[

ai
bi

](

−ci −
[

ai bi
]

[

qxi
qyi

])

=
1

a2i + b2i + σ2
R

([

b2i −aibi
−aibi a2i

] [

qxi
qyi

]

−

[

aici
bici

])

,(7)

which asσ2
R → 0, gives the same update rule as Equa-

tion 4, but certainly does not quite look like Equation 3.
In particular, Equation 7 depends explicitly on the initial
position. To remove this dependency, without errors in the
observations we can write:

c1 = −a1(x0 +∆x0,1)− b1(y0 +∆y0,2)

c2 = −a2(x0 +∆x0,1 +∆x1,2)− b2(y0 +∆y0,1 +∆y1,2),

in which ∆xi,j and ∆yi,j are the net changes on the
respective coordinates between crossings. These give two
linear equations for(x0, y0), for which the value can
be substituted into Equation 7 to give the same update
rule as in Equation 3, which was obtained by geometric
arguments.



IV. T HE TRAJECTORYTRACKING PROBLEM

In this section we study the problem of trajectory
tracking among a given setB of beams, using the fil-
ters developed in the previous section. Given a desired
trajectoryxd, the tracking problem consists of finding the
control input signalu such that the followingcostfunction
is minimized:

J(u) =

∫ tf

t0

l(x(t), u(t),xd)dt, (8)

subject to ẋ = f(x, u), with initial time t0 and final
time tf . In Equation 8,l is a real-valued, non-negative
function. A switched robotic system is a dynamic system
governed by a sequence ofN dynamic models [10]:

ẋ = fi(x), τi ≤ t < τi+1, (9)

with boundary conditionx(t0) = x0. For u : [t0, tf ] →
{1, . . . , N}, and f(x, u, t) = fi=u(t)(x) by minimizing
Equation 8 we optimize the sequence of modes and
switching times of the system in Equation 9 to track the
desired trajectoryxd. The minimization of Equation 8
depends on the particular dynamical system we are inter-
ested in. In the rest of this section we present the setting of
landmarks in which we focus on, and how it is naturally
expressed as a switched dynamical system.

A. Landmark Motion Primitives

The movements of the robot are described bychasing
landmarks. By this we mean that the robot chooses a par-
ticular landmark, and moves towards it. Following [21],
let L be a finite set ofn indexed points inR2. A point
pi ∈ L is referred to as alandmark, with landmark label
i. We assume that the landmarks are labeled from 1 ton.
For each landmarkpi = (pxi , p

y
i ) ∈ L we define amotion

primitive, denoted byẋ = chaseL(i,x). The motion
primitive chaseL(i,x) is constructed such thatf(x, u, t)
stabilizes atpi. In other words, chaseL(i,x) takes the
robot to (px, py, θ, 0, 0), with some free orientationθ.

Our motion primitives are based on the linearization
of Equation 1 assuming that the heading of the robot
is oriented with the landmark. Further, it is easier to
design the motion primitives for a landmark at the origin,
asuming that the robot is somewhere along the positive
x−axis, to then transform this solution to the correspond-
ing location of the landmarks in the plane. With this, the
linear approximation of Equation 1 consists of two double
integrators, one modeling the change of distanced to the
landmark, and the other the change of the robot’s heading
orientationφ with respect to the landmark:

ẋ =









ḋ
v̇

φ̇

φ̈









= Ax+Bu, (10)

with

A =









0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 −1









, andB =









0 0
1 0
0 0
0 1









. (11)

A motion primitive is based on the solution of a
Linear Quadratic Regulator(LQR)[1], which generates
the control inputul = (ux, uy) such that

JLQR(ul) =

∫ t2

t1

(xTQx+ uT
l Rul)dt+ x(t2)

TP2x(t2)

(12)
is minimized, subject to Equation 10. InJLQR, P2 is
a positive-semi-definite matrix that encodes the cost of
x(t2) being different from the origin, and bothQ andR
are positive-definite parameter matrices. The solution that
minimizesJLQR(ul) is given byul = −R−1BTP (t)x(t),
with P (t) found by integrating fromt2 to t1 the Riccati
equation

ATP (t) + P (t)A+ P (t)BR−1BTP (t) +Q = −Ṗ (t),
(13)

subject to the final costP (t2) = P2. Sinceul is a feedback
law, Equation 10 can be written now as:

ẋ = ALQR(t)x (14)

with ALQR(t) = A−BR−1BTP (t).
Now we introduce some notation to describe sequences

of motion primitives. For a sequence ofm motion primi-
tives the order in which they are applied is encoded by a
function σ : {1, 2, . . . ,m} → {1, 2, . . . , |L|}, in which
the ith motion primitive in the sequence is given byσ(i).
The times at which a motion primitive is applied are
specified by the sequenceτ = [τ1, τ2, . . . , τm+1]. Given
τ , σ(i) is applied forτi ≤ t < τi+1, with τ1 and τm+1

being the initial and final times, respectively. A motion
primitive sequence is therefore completely specified given
σ andτ .

Before going further, we note that the minimal sensing
requirements for detecting beams and chasing landmarks
may seem incompatible, since it is possible to perform a
full metric SLAM using bearing only sensors [2]. How-
ever, we are not interested in building a map, but tracking
a dynamic trajectory. In this regard, the “landmarks” are
considered as part of the description of a switched system,
rather than environment’s features for the robot to be
localized.

B. Tracking Trajectories with Perfect Control and Sensing

In this section we assume that the robot is perfectly
localized, and can sense the precise position of the
landmarks. To start our discussion, we solve an easier
problem: we assume that the desired trajectoryxd is
produced by following the motion primitive sequence
(σ, τ∗). Suppose we are givenσ (that is, the order in
which the primitives appear), the initial and final times,
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Fig. 3. Trajectory tracking when the desired trajectory is generated by
moving toward landmarks. The figures show the initial and final iteration
of the optimization, with the gray curve showing the desiredtrajectory
and the black curve the actual trajectory followed. We labelthe black
curve at the instant a new landmark is chased. In this case, the sequence
of landmarks chased is[C,A,B, C].

and assume that the initial state of the robot coincides
with xd(0), but we are not givenτ∗. How do we compute
switching timesτ so that the difference between the actual
trajectory of the robotx, and the desired trajectoryxd is
minimized?

Following Equation 9 for switched dynamical systems,
we write:

ẋ(t, σ, τ) = chaseL(σ(i),x), τi ≤ t < τi+1. (15)

Therefore, we have thatx(t, σ, τ∗) = xd(t). We encode
the difference betweenx andxd as a function ofτ with
the following cost function:

J(τ) =

∫ τm+1

τ1

||x(t, σ, τ) − xd(t)||dt, (16)

subject to Equation 15. We minimize Equation 16 using
the method presented in [10], in which first and second
derivatives of a cost functional subject to a switched
dynamical systems are computed, and then are used in
a gradient descent optimization. Since each motion prim-
itive is a linear system, both first and second derivatives of
Equation 16 exist and are continuous [10]. This allowed
us to minimize Equation 16 with quadratic convergence
using the Newton method with trust region [15] (see
Figure 3).

C. Switching between motion primitives: General Case

In the previous example, we restrictedxd to be gener-
ated by a sequence of motion primitives. However, this is
unusual, as we cannot expect the landmarks to coincide
with the desired trajectories for the robot. We found that
good approximations can be found by a heuristic proce-
dure, in which the robot switches several times between
two motion primitives to generate motion directions not
originally available by tracking landmarks. This simple
idea is reminiscent of procedures in motion planning
such as in [12], or bang-bang control [17]. Consider for
example Figure 4, in whichxd is a vertical line, with the

A B

B

A

B

A

B

A

B

A

B
A

Fig. 4. Tracking a line with two landmarks. Switching back and forth
between the landmarks tracked might provide an acceptable tracking
performance, as it is shown in the figure. However, the figure also shows
a potential drawback: note that as the robot gets closer to the landmarks,
the number of switches increases.

corresponding trajectory approximation by chasing two
landmarks.

The advantage to this scheme is that we can apply the
optimization procedure presented earlier in the section
with some minor modifications. We have to be careful:
the optimal sequence of motion primitives will consider
infinitely many switches [3] (that is, the optimal sequence
chatters). To avoid this, minimization of Equation 16 is
stopped once its value reaches a prescribed, small number
ǫ > 0.

In order to apply the optimization earlier in the section,
there are three issues we need to solve: 1) we need
to compute an initial motion primitive sequence; 2) we
should specify when an additional motion primitive should
be added to the sequence; and 3) we should specify when
a motion primitive should be removed from the sequence.

The initial motion primitive sequence is found by
partitioning xd according to the pairs of landmarks its
tangent falls between. For this, letxd(t) = (qd(t), vd, q̇

θ
d),

with qd(t) = (qxd (t), q
y
d(t), q

θ
d(t)). Consider an infinite ray

starting at(qxd (t), q
y
d(t)) with angleqθd(t). As t varies, the

ray sweeps over the landmarks, and the corresponding
pairs are computed. Once the pairs of landmarks are
found, we heuristically add four equidistant time switches
per segment ofxd, which gives the motion primitive
sequence(σ0, τ0). This sequence is refined with the
following iteration:

1) For k = 0, 1, . . .

a) Optimization. Minimize Equation 16 subject
to ẋ(t, σk, τk), to obtain optimal switching
timesτk∗.

b) Reduce switches.If for some i, τk∗i = τk∗i+1,
(σk+1, τk+1) are constructed so thatσk(i) is
not included.

c) Switches insertion.If no switches were elim-
inated, then we compute the value of Equa-
tion 16 for each time segment[τk∗i , τk∗i+1]. If it
exceeds a prescribed performance parameter,
(σk+1, τk+1) is constructed from(σk, τk∗),
with an additional motion primitive inserted
between(1/3)(τk∗i + τk∗i+1) and (2/3)(τk∗i +
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Fig. 5. Tracking a trajectory for an arbitrary arrangement of landmarks.
The gray line shows the desired trajectory, and the black line the actual
trajectory followed. The black line is labeled according tothe instant
a new landmark is chased. We show four snapshots, in which theblue
(darker) disc represents the instantaneous desired state,and the labeled
disc the actual state. The label indicates the landmark being followed at
the given time.

τk∗i+1). The corresponding motion primitive is
found in the same manner as for(σ0, τ0). The
idea here is to reduce the value of Equation 16
by inserting a motion primitive in the sequence
where the robot is “far” from the given trajec-
tory.

d) Iterate. If no switches were reduced or added,
return (σk, τk∗). Otherwise incrementk and
iterate.

A computed example is shown in Figure 5.

V. D IFFERENTIAL-DRIVE E-PUCK IMPLEMENTATION

Our objective in this section is to track a desired
trajectoryxd, with a robot that has imperfect information
of the state during online execution. We assume that
the robot can orient its heading with a given landmark,
but its sensors cannot measure the distance towards the
landmark, nor the angle between the robot and the land-
mark with respect to a global reference frame. As before,
the robot has complete knowledge of the location of the
detection beams, and we assume that it can determine
which detection beam was crossed. The robot cannot,
however, determine the location of the crossing along the
beam. Further, we assume that internally the robot has a
time sensor, and noisy observations forv and qθ, useful
for rough odometry estimates.

To test our preliminary ideas, we used an e-puck[14]
robot to test out ideas on a real platform. The e-puck is a
differential drive robot, thus their dynamics are nonlinear.
In previous sections we defined the chase motions prim-

itives by linearizing 1, but given that the linear model
is not a good approximation when the robot’s heading
is not pointing near the location of a landmark (e.g.,
when the wheels’ axis is collinear with the landmark), we
must specify how the different motion primitives must be
smoothly chained together. This is achieved by replacing
Equation 14 with

ẋ = ALQR(t)









d| cosφ|k

v
φ

φ̇









. (17)

for somek ≥ 1. This straightforward change ensures that
the robot moves towards the landmark at full speed only
when the linear model is a good approximation, and make
the robot to tend to rotate in place to point towards the
landmark when this is not the case. In our experiments,
we usedk = 2. Since both first and second derivatives of
Equation 17 exist and are smooth, we can use it instead of
Equation 14 when defining the chase motion primitives,
and proceed as before.

In our implementation, we decided to model the ab-
stract sensor beams as linear markings in the plane that
the e-puck can recognize with its ground sensors. By
the principle of separation, while no observations are
received (that is, beams crossings) our motion primitive
is defined as before, operating as an open loop controller
over an odometry estimate of the state. With respect
to the e-puck camera, we found its field-of-view to be
very limited for our purposes, and we decided to test
our ideas representing the landmarks purely by odometry
(that is, the robot has a landmark “map” and “simulates”
landmark chasing based on odometry). That is, in our
experiments the robot does not have a visual feedback
for qθ. Even though this camera did not fit our current
model, it presented an interesting future direction since
we can model the limited field-of-view as three distinct
detection beams that move with the robot. We will explore
these ideas in a future paper.

Figures 6 and 7 (with the accompanying video) show
example runs of our implementation. In Figure 6, the
robot performs about a dozen loops around the common
point of the beams. Without the combinatorial updates,
the odometry estimate effectively looses the robot near the
end of the second loop. In Figure 7, the robot follows a
complicated trajectory, in which the combinatorial updates
give a correct estimate of the state even after the robot
stabilizes to an incorrect landmark position given the lack
of visual feedback. Note that in Figure 7, nominally there
are only four beams (three horizontal and one vertical).
Without the combinatorial updates from the beams, the
robot is effectively lost after visiting for a second time
the right-middle square.

VI. CONCLUSIONS

In this paper we present our results for studying
robots that sense combinatorial information as switched



(a) (b)

(c) (d)

Fig. 6. Loops around the origin. On each subfigure, the orange(smaller
and lighter) disc represents the estimate of the robot left.The dotted
line represents the input trajectory, and the purple disc (bigger and
darker) disc represents the desired instantaneous robot configuration.
The position of the landmarks are represented by the green (darker) dots.
In this experiment, the robot performs about a dozen loops around the
common point of the beams, in which the observation of the state from
the sensors consist only on which beam was crossed, but not atwhich
point among the beam the crossing took place. Without the updates from
the detection beams, the odometry estimate effectively looses the robot
near the second loop.

(a) (b)

(c) (d)

Fig. 7. Trajectory tracking. As in Figure 6, the orange (smaller
and lighter) disc represents the estimate of the robot left and the
purple disc (bigger and darker) disc represents the desiredinstantaneous
robot configuration. Given that the desired trajectory crosses itself, we
highlight configurations close to the desired instantaneous configuration
with the blue thick curve. In this experiment, the robot is able to track
the desired instantaneous configuration even when it is limited to move
according to six motion primitives and can receive only fourdifferent
observations from the sensors (there are only four distinctbeams, three
horizontal and one vertical). The complete run of this experiment is
included in the accompanying video.

dynamical systems. We describe simple schemes that
incorporate combinatorial information into dynamic state
estimates. While our results are preliminary, we find them
encouraging thus far. We are particularly interested in
computing switching times as a function of combinatorial
information. Up until now combinatorial information is
only utilized to have a better estimate of the state;
however, we would like this information to play a role
in the sequence of motion primitives selected.

Perhaps the biggest issue with the current results is that
the motion primitives are based on a linearization which
assumes the robot to be pointing toward the landmarks.
This linearization assumption is greatly violated when
a switch produces an overly sharp turn. In the present
paper, even though we took some provisions for this in

Section V, our future work considers the computation of
basins of attractions as present in [18]. This means that
not all motion primitives are available all the time.

More interesting, as mentioned in Section V as future
work, is the case when the camera is not omnidirectional.
In this case, the motion primitives have to be designed to
keep a particular landmark in sight, as in [8], [16], with
the combinatorial events provided by the field-of-view,
which can be modeled as three detection beams (the three
segments of a the boundary of a circular section).
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