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Abstract— This paper presents a method of simultaneous
mode transition time and parameter estimation for hybrid sys-
tems based on switching time optimization techniques. A concise
derivation of first- and second-order optimality conditions with
respect to both mode transition times and parameter values
is presented, including cross-derivative terms between the
switching times and the parameters. The estimation algorithm
is shown to be effective for estimating transition times as well
as unknown parameter values from coarsely sampled data for
a skid-steered vehicle, which traverses unknown or changing
terrain and transitions between discrete dynamic modes. It is
shown that second-order optimization methods using the exact
Hessian provide far superior convergence, compared to first-
or approximate second-order methods, to correct values in
simulated and experimental scenarios.

I. INTRODUCTION

There are many systems in robotics that experience dis-
crete transitions between continuous modes. A method for
robustly estimating when transitions occur based on poten-
tially coarse data is necessary due to modeling and paramet-
ric uncertainty in real-world systems. Operation in unknown
environments presents the additional need for terrain param-
eter identification. This paper focuses on estimating mode
transition time and parameter values using optimization
techniques. It will be shown that these two problems are
nontrivially coupled.

A method is presented that utilizes second-order optimality
conditions for nonlinear time-varying systems to achieve fast
convergence. The gradient and the Hessian of an objective
function representing a measure of the error from the es-
timated trajectory to the measured data (e.g. least-squares)
are derived, with respect to both mode switching times and
parameters. Although similar calculations with respect to
switching times [1] and parameters [2] independently have
been derived in previous work, the derivations presented here
are based on introductory calculus techniques. The proof is
extended to hybrid systems, and the techniques generalize
to cross-derivative terms which are critical in achieving fast
convergence and provide sufficient conditions for optimality.

Simulated and experimental results demonstrate that this
method is efficient for estimating the mode transition times
and parameter values that generate a trajectory that optimally
fits coarse GPS data obtained for a skid-steered vehicle. First-
and second-order optimization algorithms were compared
in simulation, using both the exact and block-diagonal ap-
proximated Hessian. The importance of the cross-derivative
terms of the exact Hessian in achieving fast convergence,
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only possible to define when estimating mode switches and
unknown parameters simultaneously, is demonstrated.

A. Motivating Example: The Skid-Steered Vehicle

Skid-steered vehicles (SSVs) present a challenge from
modeling, trajectory-tracking, and control design perspec-
tives. SSVs can turn only by skidding laterally, which
introduces dynamics that are distinct from forward rolling
and dependent on typically uncertain environmental factors,
such as friction. This uncertainty generally necessitates either
robust control techniques or accurate models of the vehicle
dynamics and environmental parameters, the latter of which
will be addressed in this paper.

The SSV in this paper is modeled as a switched system,
with modes dependent on whether or not the wheels are
slipping with respect to the ground. The vehicle used in
experiments is shown in Fig. 1. It is assumed that the number
and order of mode transitions are known in advance, a
reasonable assumption as mode order is often predictable
if the driver inputs to the vehicle are known. Uncertainty
in environmental parameters, however, results in variations
in the transition times and the vehicle path. It is therefore
desirable, given the control inputs, system model, and po-
tentially coarse positional tracking data, to have a method
of estimating transition times and parameters in order to
represent the continuous path of the vehicle for localization
and planning.

B. Related Work

A great deal of research exists on modeling and control of
vehicles, as well as mode estimation and online parameter
estimation. Localization for vehicles subject to slip often

Fig. 1. Skid-Steered vehicle used in experiments



involves complex sensor fusion techniques [3], [4]. Much
of the literature regarding vehicle dynamics in general ei-
ther limits the scope of the analysis or makes assumptions
regarding the operating mode or environment ahead of time,
allowing for continuous analysis. In many cases, dynamics
modes for vehicles, e.g driving, braking, or turning are
analyzed independently [5]–[7]. Terrain is also assumed to
be known in advance in many cases and to be consistent over
the entire trajectory of interest, requiring offline calibration
[7]–[13].

There are several mathematical approaches to estimating
both switching times and parameters online. Multiple hy-
pothesis testing is one way in which the class of switching
time and parameter identification problems has been solved
[14], however these approaches are subject to combinatorial
complexity. Numerical optimization is presented in [15] for
parameter estimation in impulsive systems with unknown
parameters. The results we present, however, provide an effi-
cient way of using exact second-order optimization methods.
Our approach extends the results derived in [2] to hybrid
systems and to the cross-derivative terms.

II. PROBLEM DEFINITION

The goal is to identify, given a set of sampled data, when
a switch between modes occurs, as well as the value of a
given set of parameters which may differ between modes,
or be present in only a subset of them. In the following
calculations, it is assumed that the number of switches as
well as the mode order are known. Since the control inputs
to the vehicle are known, the order and number of transitions
from sticking to slipping is predictable.

A general hybrid system with n dimensions, N transitions,
and M parameters of interest can be described by a sequence
of dynamic equations of the form

ẋ = fi(x(t), t) τi < t < τi+1 , x(t0) = x0 (1)

for transition times τ = τ1, . . . , τN and parameters
p = p1, . . . , pM , where τ0 = t0 is the initial time
and τN+1 = tf is the final time. Note that throughout
this paper, x(t) is written when it should explicitly be
x(τ1, . . . , τN , p1, . . . , pM , t), and f(x(t), t) should explicitly
be f(x(t), τ1, . . . , τN , p1, . . . , pM , t).

Unknown switching times and parameters can be esti-
mated simultaneously by minimizing an objective function
of the form

J(τ1, . . . , τN , p1, . . . , pM ) =

∫ tf

t0

`(x(t), t)dt, (2)

where `(x(t), t) is an arbitrary incremental cost function,
such as (x(t)− xref (t))

T
(x(t)− xref (t)). It is assumed

that `(x(t)) does not depend explicitly on the switching times
or parameters.

Although not addressed here, there are scenarios where the
order in which mode changes occur is not known. A method
for determining mode order is provided in [1]. Additionally,
while in this paper the trajectory x(t) is assumed to be a
continuous signal, impulsive optimization techniques [15]

would allow the extension of this method to non-continuous
state variables.

A. Optimization Methods

First- and second-order iterative optimization algorithms
are compared. Steepest descent is a first-order algorithm
which takes a step at each iteration in the direction of the
negative gradient. Steepest descent is a global method and
depends only on first-order information, but results in linear
convergence which is typically slow and impractical for real-
time implementation.

Sequential Quadratic Programming (SQP) is used as a
constrained, second-order optimization method, providing
drastically reduced convergence time in convex regions [16].
SQP involves solving a quadratic program at each iteration,
subject to a set of constraints on the order of the switching
times, requiring calculation of both the gradient and the Hes-
sian. The exact Hessian, which involves the cross-derivative
terms between the switching times and parameters, i.e.

exact Hessian :

(
D2
τJ DpDτJ

DτDpJ D2
pJ

)
(3)

is derived in Section IV. The effects of using an approximate,
block-diagonal Hessian, which does not include the cross-
derivative terms,

block-diagonal Hessian :

(
D2
τJ 0
0 D2

pJ

)
(4)

are also examined. Both the SQP and steepest descent
algorithms are well-established. For more information, see
[16].

For the skid-steered vehicle example in Section V, a
combination of steepest descent and SQP was used. While
second-order optimization methods (SQP) result in fast con-
vergence, they are only viable in locally convex regions of
the cost function. It is therefore useful to iterate initially
using steepest descent, switching to SQP when the Hessian
is determined to be positive definite.

B. Notation

The hybrid system model and notation used throughout
this paper follow [17]. As in [17], slot derivative notation
is used; i.e. Dnf(arg1, arg2, ...) is the derivative of the
function f(·) with respect to the argument at position n.
Darg(...) is the derivative with respect to arg. The ◦ operator
is used to represent linear mappings, for example M ◦ v =
M · v, and M ◦ (v, u) = vT [M ]u.

III. FIRST DERIVATIVE OF J(·)

DJ(·) involves the derivatives of J(·) with respect to
switching times and parameters. DJ(·) is the N +M length
vector

DJ(·) = (Dτ1J, . . . ,DτNJ,Dp1J, . . . ,DpMJ). (5)

Derivations of DτiJ and DpiJ follow.



A. Calculating DτiJ(·)
Complete derivations of first-order partial derivatives of

a cost function J(·) with respect to a switching time τi
are derived in [1], [17]. Those results are presented here,
as they are used directly in the second-order and parameter
calculations.

Lemma 1: The first partial derivative of the cost function
in Eq. (2) with respect to each switching time τi ∀ i =
1, ..., N is calculated as

DτiJ(·) = ψ(τi) ◦Xi, (6)

where ψ(t) is the n-length first-order adjoint found by
solving the following backwards differential equation:

ψ̇(t) = −D`(x(t))− ψ(t) ◦D1f(x(t), t) (7)

ψ(tf ) = 0.

Xi ∈ Rn is defined as shown below for compactness,
following [17].

Xi = fi−1(x(τi), τi)− fi(x(τi), τi) (8)
A proof of Lemma 1 can be found in [17].

B. Calculating DpiJ(·)
Lemma 2: The first partial derivative of the objective

function with respect to a parameter pi is calculated as

DpiJ(·) =

∫ tf

t0

ψ(t) ◦Dpif(x(t), t)dt, (9)

where ψ(t) is the same adjoint use in Lemma 1 calculated,
using Eq. (7). Note that Eq. (9) is simply an inner product.

Proof: The derivation of Lemma 2 is similar to that of
Lemma 1. The cost function from Eq. (2) is differentiated
with respect to a parameter pi, applying the chain rule as
follows:

DpiJ(·) =

∫ tf

t0

D`(x(s)) ◦Dpix(s)ds.

This expression depends on the partial derivative of x(t) with
respect to a parameter pi. Dpix(s) is obtained by writing
segments of the trajectory in integral form,

x(t0) = x0 xk(t) = xk−1(τk) +

∫ t

τk

fk(xk(s), s)ds,

and taking partial derivative of each segment xk(t) of the tra-
jectory to obtain a linear differential equation for Dpixk(t).

Dpixk(t) =Dpixk−1(τk) +

∫ t

t0

D1fk(x(s), s) ◦Dpixk(s)

+Dpifk(x(s), s)ds

Using the fundamental theorem of calculus, the above equa-
tion can be expressed in differential form:

Dpixk(τk) =Dpixk−1(τk)

∂

∂t
Dpixk(t) =D1fk(x(t), t) ◦Dpixk(t) +Dpifk(x(t), t).

The equation above is of the form ż(t) = A(t)z(t) + B(t),
which has the solution

Dpixk(t) =Φ(t, τk)Dpixk−1(τk)

+

∫ t

τk

Φ(t, σ) ◦Dpifk(x(σ), σ)dσ,

where the state transition matrix Φ(t, τk) is the solution to
ż(t) = D1fk(x(t), t)◦z(t) [17]. For more information on the
state transition matrix, see [18]. Because the initial condition
Dpixk−1(τk) depends recursively on the same expression
for the previous segment of the trajectory and Dpix(t0) =
0, Dpix(t) can be expressed as a continuous trajectory as
follows:

Dpix(t) =

∫ t

t0

Φ(t, σ) ◦Dpif(x(σ), σ)dσ. (10)

Plugging the expression for Dpix(t) from Eq. (10) into
the expression for DpiJ yields

DpiJ(·) =

∫ tf

t0

D`(x(s))

∫ s

t0

Φ(s, σ) ◦Dpif(x(σ), σ)dσds.

Switching the order of integration and pulling Dpif(x(σ), σ)
outside the inner integral, the following equation is obtained:

DpiJ(·) =

∫ tf

t0

(∫ tf

σ

D`(x(s)) ◦ Φ(s, σ)ds

)
◦Dpif(x(σ), σ)dσ.

The operator ψ(t) can thus be defined as the inner integral∫ tf
t
D`(x(s)) ◦ Φ(s, t)ds, which when differentiated with

respect to t results in Eq. (7), the same backwards adjoint
equation as used in the derivative with respect to a switching
time.

The use of a backwards differential is advantageous when
a trajectory is being analyzed over a finite time horizon. A
single integration of ψ(t) is used to calculate the values of
the gradient with respect to switching times and with respect
to all parameters, and can be calculated and stored once per
iteration.

IV. SECOND DERIVATIVE OF J(·)
As mentioned, second-order derivative information pro-

vides sufficient conditions for optimality and can lead to
much faster convergence rates. The Hessian with respect to
switching times and parameters, D2

τJ(·), is an (N +M)×
(N +M) matrix, shown in block form in Eq. (3).

A. Calculating D2
τJ(·)

The second derivative of the cost function with respect to
switching times is derived in [1], [17]. The notation once
again follows that of [17] for compactness.

Theorem 1: The second derivative of the cost function
with respect to two switching times τi and τj is calculated
as follows:

DτjDτiJ(·) =−D`(x(τi)) ◦Xiδji + ψ(τi) ◦Xi,j+

Ω(τi) ◦ (Φ(τi, τj) ◦Xj , Xi), (11)



where δ is the Kronecker delta. This equation involves the
n× n second-order adjoint Ω(t), which is found by solving
the following backwards differential equation:

Ω(tf ) =0(n×n) (12)

Ω̇(t) =−D2`(x(t))− ψ(t) ◦D2
1f(x(t), t)−

[D1f(x(t), t)]T ◦ Ω(t)− Ω(t) ◦D1f(x(t), t).

The terms in Xi,j are defined as

Xi,j =



D1fi(x(τi), τi) ◦ fi(x(τi), τi)
+D1fi−1(x(τi), τi) ◦ fi−1(x(τi), τi)
−2D1fi(x(τi), τi) ◦ fi−1(x(τi), τi)
+D2fi−1(x(τi), τi)−D2fi(x(τi), τi)

[D1fi−1(x(τi), τj)−D1fi(x(τi), τi)]
◦Φ(τi, τj) ◦Xj

i = j

i > j.
(13)

A proof of Theorem 1 can be found in [17].

B. Calculating D2
pJ(·)

Theorem 2: The derivative of J(·) with respect to two
parameters pi and pj can be calculated as follows:

DpjDpiJ(·) =

∫ tf

t0

Dpif(x(t), t)T ◦ Ωpj (t)

+ ψ(t) ◦ [DpjDpif(x(t), t)

+D1Dpif(x(t), t) ◦Dpjx(t)]dt, (14)

where Ωpj (t) is an n-length vector second-order adjoint
equation, unique to each parameter, calculated by solving
the differential equation below:

Ωpj (tf ) =0(n)

Ω̇pj (t) =−D2`(x(t), t) ◦Dpjx(t)−
[D1f(x(t), t)]T ◦ Ωpj (t)−
ψ(t) ◦ [D2

1f(x(t), t) ◦Dpjx(t)+

DpjD1f(x(t), t)]. (15)
Proof: Differentiating DpiJ(·) with respect to the

parameter pj yields

DpjDpiJ(·) =

∫ tf

t0

∂

∂pj
[ψ(t)] ◦Dpif(x(t), t)

+ ψ(t) ◦ ∂

∂pj
[Dpif(x(t), t)] dt

A second-order adjoint, Ωpj (t) = ∂
∂pj

[ψ(t)], is defined for
the second derivative with respect to the parameters. Ωpj (t)
is obtained by differentiating the expression for first-order
adjoint, ψ̇(t), with respect to a parameter pj (the initial
condition remains zero), and integrating backwards in time
as in the first-order derivation.

∂
∂pj

[Dpif(x(t), t)] is calculated by differentiating
Dpif(x(t), t) with respect to a parameter pj :

∂

∂pj
[Dpif(x(t), t)] =

∫ tf

t0

DpjDpif(x(s), s)

+D1Dpif(x(s), s) ◦Dpjx(s)ds.

At this point, Ωpj (t) and DpjDpiJ(·) can be substituted into
the expression above to obtain Eq. (14).

C. Calculating DτDpJ(·)
In order to simultaneously optimize over switching times

and parameters, the complete Hessian involves the derivative
with respect to both a switching time and a parameter.

Theorem 3: The derivative of the cost function with re-
spect to both a switching time τi and a parameter pj is
calculated as follows,

DτiDpjJ(·) = ψ(τi) ◦Xτ,p + [Xi]T ◦ Ωpj (τi) (16)

where ψ(τi), Xi, Ωpj (τi), are defined by Eqs. (7), (8), and
(15), respectively. Xτ,p is defined as

Xτ,p = [D1fi−1(x(τi), τi)−D1fi(x(τi), τi)] ◦Dpx(τ)

+ [Dpfi−1(x(τi), τi)−Dpfi(x(τi), τi)] . (17)
Proof: Differentiating DτiJ(·) in Eq. (6) with respect

to the parameter pj yields

DpjDτiJ(·) = ψ(τi) ◦Xτ,p +
∂

∂pj
ψ(τi) ◦Xi.

Xτ,p represents ∂
∂pj

Xi, the derivative of the initial con-
ditions Xi with respect to a parameter. Equation (17) is
obtained by differentiating and applying the chain rule to
Eq. (8).

The second term involves ∂
∂pj

ψ(τi), which is the same
second-order adjoint Ωpj (t) derived previously, evaluated at
the switching time τi.

The adjoint equations (7) and (15), derived in the context
of hybrid systems, are derived in [2] for continuous systems
using multiplier methods. The derivation of the second order
derivative with respect to parameters presented in this paper,
in addition to applying to hybrid scenarios, is generalized to
the cross-derivative terms between switching times and pa-
rameters, which is shown to be critical for fast convergence.

V. EXAMPLE: THE SKID-STEERED VEHICLE

In the following sections, the proposed estimation al-
gorithms are applied to the skid-steered vehicle, for both

Fig. 2. Skid-Steered vehicle model used in simulation



simulated and experimental data. A diagram of the SSV
model used is shown in Fig. 2. The vehicle is made up of four
wheels connected to a rigid body. The vehicle turns if the
applied differential torque is large enough to cause slipping
between the tires and the ground, resulting in skidding.
The coefficient of friction for the SSV example is treated
as an unknown parameter. The wheel-ground interaction is
modeled as viscous friction.

The vehicle configuration is x = (X, Ẋ, Y, Ẏ , θ, θ̇),where
X and Y are Cartesian coordinates with respect to the vehicle
center of mass, and θ represents the heading of the vehicle
in the global frame. Only the modes in which all wheels are
slipping (turning) or all wheels are sticking (driving straight)
are considered. The equations of motion are adopted from [1]
and are shown below for a vehicle that turns once, switching
from sticking to slipping, and back to sticking.

In stick mode:


Ẍ = (F1+F2) cos θ(t)−c1Ẋ(t)

(4mw+mb)

Ÿ = (F1+F2) sin θ(t)−c1Ẏ (t)
(4mw+mb)

θ̈ = 0

In slip mode:



Ẍ = (F1+F2) cos θ(t)−c2Ẋ(t)
(4mw+mb)

+

gµk sin θ(t)
(
− sin θ(t)Ẋ(t) + cos θ(t)Ẏ (t)

)
Ÿ = (F1+F2) sin θ(t)−c2Ẏ (t)

(4mw+mb)
−

gµk cos θ(t)
(
− sin θ(t)Ẋ(t) + cos θ(t)Ẏ (t)

)
θ̈ = 12b(F1−F2)−12a2gµk(4mw+mb)θ̇(t)

4mw(12a2+12b2)+mb(B
2
l
+B2

w)

ẋ(t) = f(x(t), t) =


sticking
slipping
sticking

0 ≤ t < τ1
τ1 ≤ t < τ2
τ1 ≤ t < 1

In these equations F1 and F2 are the transformed wheel
torques sent to the wheel pairs on each side of the vehicle, µk
is the coefficient of friction, g is the gravitational constant,
and mw and mb are the masses of the wheel and car body,
respectively. Bl and Bw are the length and width of the
vehicle body, a and b are the distances from the wheels
to the center of mass in each dimension. The incremental
cost function used in the simulations and experiments was
`(x(t), t) = 1

2 (x(t)− xref (t))
T

(x(t)− xref (t)).

A. Simulation

The system was simulated using Mathematica. The equa-
tions of motion were used to simulate measured data, which
was sampled at one second intervals, interpolated and low-
pass filtered to simulate coarsely sampled GPS measure-
ments. Interpolation is necessary as the algorithm assumes
continuous state variables, and filtering accounts for some
process noise and improves robustness. The reference trajec-
tory was generated using µk = 0.8, τ1 = 5, τ2 = 10.5. The
estimation algorithm was initialized to µ = 0.77, τ1 = 4.7,
τ2 = 9.7.

Figure 3 shows logarithmic plots of the norm of the
gradient at each iteration using three different optimization

æ
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Fig. 3. The logarithm of the norm of the gradient of the cost function,
shown at every iteration for first-order and approximate and exact second-
order methods.

techniques to obtain the transition-time and parameter esti-
mates from simulated data: steepest descent using only first-
order derivative information, SQP using a block-diagonal
Hessian and SQP using the complete Hessian in simula-
tion. Using steepest descent, the algorithm converged to the
correct values after about 700 iterations. Using SQP with
the full Hessian, the correct values were determined after
only 7 iterations. When SQP was performed using a block
diagonal approximation of the Hessian, the convergence does
not exhibit the fast quadratic performance of the full Hessian
including the cross-derivative terms.

B. Experiment

The vehicle shown in Fig. 1 was used to demonstrate the
estimation technique developed in an experimental system.
The vehicle position was recorded using an on-board GPS,
sampled at 1 Hz.

Figure 4 shows a representative plot of the raw GPS data
collected during the experiment, as well as the interpolated
and filtered curve used as the reference trajectory xref in
the optimization algorithm (dashed gray line). The trajectory

Measured Data

Interpolated�Filtered Data

Estimated Trajectory HslippingL

Estimated Trajectory HstickingL

-8 -6 -4 -2 0
0

1

2

3

4

5

X

Y

Fig. 4. Plot of the measured position data as well as the interpolated and
filtered curve used as a reference for the estimation. The simulated trajectory
generated using the values that the algorithm converged to is shown in black.



that corresponds to the optimal estimate of the values of
the switching times and parameters is plotted in black,
and follows the smoothed interpolation almost exactly. The
algorithm converges to µ = 0.85, τ1 = 4.93, τ2 = 10.52
in six iterations, starting from initial values of µ = 0.75,
τ1 = 5, τ2 = 11. Although the algorithm is initialized to
values that are relatively close to the correct values, choosing
initial conditions further away would still result in the same
estimate, but would require initial iteration using steepest
descent before reaching a locally convex region second-order
methods are viable.

The torques, sent to the vehicle as PWM signals, were
programmed to transition at 5 and 10 seconds. Battery
discharge, lag due to the motors and transitioning from stick
to slip likely resulted in variation in actual transition times.
Values for the coefficient of friction of rubber on asphalt
range from 0.6-0.85 [19]. The estimate calculated using
the derived algorithm is within this range. The generated
trajectory fits the interpolation of the data quite well, and
improvements to the experimental system as well as data
filtering would likely provide even better results.

VI. CONCLUSION

An algorithm for estimating both mode transition times
and parameters using first- and second-order optimization
methods for a hybrid system operating in uncertain con-
ditions is presented. The main contributions are analyti-
cal derivations of the Hessian and gradient with respect
to mode transition times and parameters. The results are
proven concisely, relying on standard calculus techniques
that generalize to hybrid systems and cross-derivative terms
between the switching times and parameters. Simulation
results demonstrate dramatic increase in convergence rates
using second-order methods within the SQP framework using
the exact Hessian. Fast convergence is critical for real-time
applications. Simulations and experimental results demon-
strate the ability of the algorithm to perform well given
coarsely sampled experimental data.

Future work will involve formally characterizing the ro-
bustness with respect to measurement noise and initial con-
ditions, and extending the method to optimize for mode
order as well as transition time. Experimentation in different
environmental conditions and vehicle maneuvers is also
planned.
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