Minimal Parametric Sensitivity Trajectories for Nonlinear Systems

Alex Ansari and Todd Murphey

Abstract— Trajectory optimization techniques can be used to
minimize error norms on both state and controls with respect
to a reference. However, without sufficient control authority,
resulting controllers can be sensitive to variations in model
parameters. This paper presents a method to incorporate
parametric sensitivity in optimal control calculations to develop
optimally insensitive trajectories which can be better tracked
under open loop and limited gain feedback conditions. As
it builds on existing nonlinear optimal control theory, the
approach can be easily implemented and applies to a variety of
system types. The effectiveness of the technique is demonstrated
using a simplified vehicle model. Controllers developed are
capable of tracking highly aggressive and dynamically infeasible
paths while minimizing sensitivity to variations in modeled
friction.

I. INTRODUCTION

For linearly controllable systems, sufficiently high gain
feedback can be used to track arbitrary system trajecto-
ries. However, it is not always feasible to implement such
controllers due to limitations on control authority. While
well designed feedforward terms can improve tracking of
reference trajectories and reduce feedback requirements,
these strategies perform poorly when real world conditions
vary from those modeled. This paper introduces a sensitivity
optimization technique which addresses these concerns by
producing optimal trajectories which make minor sacrifices
in tracking a desired path in order to minimize a norm on
parametric sensitivity. By incorporating these terms into op-
timal control calculations, the approach results in alternative
trajectories which are less sensitive to fluctuations in model
parameters when tracked using feedforward control.'As a
result, better tracking can be achieved using significantly less
feedback.

The research presented in this paper builds on existing
work in sensitivity optimization and optimal control. In [2],
ensemble control is utilized to develop approximate control
strategies which steer a unicycle subject to bounded model
perturbations. [13] demonstrates the potential for improved
feedforward control to enhance disturbance rejection for
controllers with both feedback and feedforward terms. [3]
and [9] introduce methods similar to those in this paper
to optimize trajectory sensitivity for linear time invariant
systems. [4] and [5] derive H,, methods for controller
sensitivity minimization for linear and time discretized sys-
tems. While additional examples can be cited, the existing
sensitivity optimization techniques identified rely on specific
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topological or structural system properties, linear dynamics,
or are in other ways limited in generality.

A primary benefit of the parametric sensitivity optimiza-
tion approach presented in this paper is that it remains
applicable to a broad class of linear and nonlinear, time
varying systems. It applies to continuous time state and
control signals i.e. the method does not require a priori time
discretization. Additionally, it builds on existing nonlinear
optimal control techniques and theory by modifying the
form of the state space vector but otherwise leaves the
existing procedure largely unchanged. As such, the methods
discussed can be easily implemented and generally applied.

As an application of the sensitivity optimization approach,
a simple model of a vehicle is used. We show that the
techniques presented are capable of producing optimally
insensitive vehicle driving styles and associated control laws
with improved tracking performance under limited feedback
conditions. Following, Section II, provides a description of
this vehicle model. Section III presents the iterative, nonlin-
ear optimal control technique leveraged to provide feasible
solutions for trajectories and controllers at each iteration.
Section IV describes how these methods can be adapted to
minimize a norm on parametric sensitivity. Finally, Sections
V and VI discuss results obtained applying sensitivity opti-
mization to the vehicle example under conditions of varying
friction and available feedback.

To illustrate the difference between an optimal trajectory
derived using standard trajectory optimization techniques and
one that has been derived using the sensitivity optimization
methods discussed, Figures 1a and 1b are presented below. In
each case, the dotted blue curves reflect optimal trajectories
for the model vehicle’s center of geometry as it tracks the
dynamically infeasible desired trajectory represented by the
dotted gray curve. Surrounding curves represent simulated
trajectories which would result if the optimal feedforward
control laws associated with each method were applied
under levels of friction varying from 0.55 to 1.75 times
the nominal value of 0.7. As reflected in Figure 1b, less
sensitive trajectories result in tighter groupings of all these
curves because they minimize an Lo error norm between the
optimal trajectory produced under nominal conditions and
those due to varying model conditions. Further details and a
discussion of these figures are presented in Sections V and
VI

Unless otherwise noted the optimal control techniques discussed in this
paper are local methods. Therefore, optimal trajectories and controllers
discussed are locally optimal with respect to the cost functionals used.
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Fig. 1: Standard state based trajectory optimization (la) and sensitivity (1b) optimization techniques tracking a desired
trajectory using feedforward control. Orange, green, purple, red, brown, and black reflect trajectories which would result if
actual friction were 55%, 70%, 85%, 125%, 150%, and 175% of the nominal modeled value of 0.7.

II. DYNAMIC MODELING

The vehicle model used to demonstrate the optimization
and control techniques discussed in this paper is based on
the robotic variable inertial vehicle (VIV) presented in [11].
The simplified version of this robotic vehicle used in this
paper is parallel steered with four wheels modeled in point
contact with the ground subject to viscous friction. The
model includes a controllable mass which can be accelerated
between its front and back end along the vehicle’s central
axis. Adjusting the placement of this mass modifies the
vehicle’s overall inertia and the normal forces at the tire
contacts as it drives.

The vehicle controls are defined as the forward/backward
thrust developed by the tires, F'(¢), a kinematic control
for the steering angle, W(¢), and the acceleration of the
adjustable mass in one dimension between its front and rear,
v(t). These are represented by the first three elements of
the control vector U(t) respectively. The state space for
the model, reflected in Figure 2, consists of its (x(t), y(t))
location and heading angle 6(¢) provided relative to a fixed
world frame, the displacement of the mass center relative to
the vehicle’s geometry center, M.(t), and the derivatives of
these states. The state space vector, X (t), and control vector,
U(t), are

X(t) = [a(t), y(t), 6(t), Mc(t), (), §(t), 6(t), Me(t)]”

and
U(t) = [F(t), ¥(t), v(t)]".

The dynamic equations of motion are derived using a La-
grangian formulation and solving the forced Euler Lagrange
(EL) equations to incorporate the viscous friction forces.
The equations are too unwieldy to be included but can be
calculated using standard symbolic processing software. In
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Fig. 2: Dynamic vehicle model with configuration variables

the shorthand version of the dynamics vector copied below
ELjt), ELy(t), and ELj, represent the solutions for Z(t),

§i(t), and 6(t) derived from the forced EL equations.

III. THE OPTIMAL CONTROL ALGORITHM

The following section formulates a method to develop
locally optimal controllers capable of driving a dynamical
system along a desired trajectory while minimizing a norm
on the state error, and applied controls. To these ends a pro-
jection based nonlinear optimal control technique detailed in
[6], [7], and [12] is utilized to perform iterative optimization



of a cost functional of the form
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with respect to £(t) = (X(¢),U(t)), constrained by the

dynamics

X(t) = f(X(t),U(t)). )

At each iteration of optimization a local quadratic model
subject to a locally linear constraint is used to approximate
the cost functional. Where ((t) = (z(t), v(t)) represents per-
turbations to the state and control elements of the trajectory
&(t), local approximations are derived using the quadratic

model given by?
IR
96) = DI ¢+ [ lIFa ®

subject to the constraint that the perturbations locally obey
the linearized dynamics

(1) = A(t)2(t) + B(t)u(t). @)

Minimizing the quadratic model above with respect to its
argument, ¢, provides the direction of steepest descent in the
cost functional. This minimization can be calculated as the
solution to an LQR problem for which there are well known
methods of optimization (see [1]). As such, obtaining the
steepest descent direction at each iteration is straightforward.

Applying a standard iterative descent technique, at each
iteration the previous best trajectory is perturbed in the
descent direction (. However, in doing so the resulting
trajectories diverge from the manifold of feasible trajectories,
T. By using cost functional (1) one can set up and then
solve a second LQR problem in order to calculate an optimal
feedback control law K (t) (see [6]). This control law can
then be applied in the projection given by equations (2) and

U(t) = p(t) + K(t)[a(t) — X (1)) (5)

to project each infeasible perturbed trajectory, (c(t), u(t)),
back onto 7.

This approach to nonlinear optimal control returns tra-
jectories £(t) on the manifold of feasible trajectories at the
end of each iteration rather than requiring the optimization
terminate before a feasible solution is returned. Thus, the
optimization process can be halted at any time to return
the current best feasible solution, (X (t),U(t)),’necessary
for open loop control. Additionally, it provides each of the
corresponding optimal feedback control laws K (¢). For more
detail on these methods refer to [6] and [7].

2DJ(€) in equation (3) refers to the slot derivative of .J(&) with respect
to its argument. More generally Dy, F'(argi, args, . . ., argy) refers to the
slot derivative of function F with respect to its .t argument.

3After the optimal control calculations converge, U(t) represents the
locally optimal feedforward control law associated with locally optimal state
trajectory X (t).

Optimal Control Algorithm:

o Approximate cost functional using a local quadratic
model

e Minimize the local model by solving an LQR
problem to obtain ((t)

o Minimize a 2"% quadratic model to obtain optimal
feedback gain K (t)

o Perturb £(t) by ((t)

o Use K(t) to project perturbed £(¢) onto T

o Apply Armijo line search to scale ((¢) until the
perturbed and projected &(t) provides sufficient
decrease

o Return £(t) as current best solution

« Repeat until convergence

A. State Based Trajectory Optimization

These optimal control methods can be applied to the
vehicle model to produce locally optimal trajectories which
minimize applied controls and tracking errors developed in
following a desired path. To accomplish this, it is necessary
to define appropriate {(X (t),U(t)) and m(X (7)) terms in
cost functional (1).

As formulated, the term [(X (¢),U(t)) is an incremental
cost term designed to be integrated over the time horizon.
For this example, it can represent a combined norm on the
state tracking error and applied controls as illustrated in

1

LX), U(0)= H(X(0) ~ Xa®)" - Q- (X(2) ~ Xa(t)) +
(U0~ Uat) - B (U(1) ~ Ualt)) . ©)

The term m(X (7)) incorporates a terminal cost into equa-
tion (1). It can provide a norm on the state tracking error at
the terminal time in the form
(X (7)) = 5 (X(Ty) = Xu(T)) " P-(X(Ty) = Xa(Ty)
(7
Plugging these in and optimizing, one can produce optimal
controllers capable of driving the model along highly aggres-
sive and dynamically infeasible trajectories.

Through the choice of Q, R, and P matrices, this cost
functional also provides a straightforward means for de-
signers to influence trade-offs made during optimization.
Interestingly, the process allows for the selection of locally
optimal trajectories and controllers which follow distinctly
different driving styles. For the vehicle model, two main
driving styles emerge. In the first, controllers maintain higher
speed and forward orientation around sharp hair-pin turns. In
the second, controllers slow the vehicle down and back into
sharp turns to better approximate corners along the desired
path.

IV. INCORPORATING PARAMETRIC SENSITIVITY

The cost functional and optimization approach previously
described provide control laws with both feedforward and
full state feedback terms capable of optimally driving the
vehicle along a desired trajectory under modeled conditions.



However, model parameters such as the coefficient of fric-
tion, tire diameter, etc. are only approximations. There is
no guarantee that controllers calculated in this fashion will
be capable of driving a vehicle in a real environment where
significant variations in model parameters are common and
where there are limitations on the availability and magnitude
of feedback which can be applied.

To address these concerns this section derives a strategy to
incorporate and minimize a norm on parametric sensitivity
in the optimization process that can be applied to optimize
both linear and nonlinear dynamical systems. The approach
selects for optimally insensitive trajectories which can be
closely followed in spite of parametric fluctuations using
only open loop control. As these trajectories lend them-
selves to more accurate feedforward tracking, significantly
less feedback is required to achieve the same tracking
performance as optimal controllers using feedforward and
feedback terms to follow optimal trajectories derived using
the standard method previously discussed.

This approach to sensitivity optimization requires an ap-
propriate measure of sensitivity to minimize. The most natu-
ral measure of sensitivity to use in the proposed optimization
is given by d)(;()t), which is the first order change in the
system’s state with respect to a change in the parameter of
interest, p € R. Because X () is calculated as the solution to
the ODE given by (2) subject to initial condition X (Tp) =
X, one means to calculate this derivative is to set up and
solve a separate differential equation. Due to the property that
mixed partial derivatives commute, the expression % dX (1)

. dt dp
is equivalent to dX(t) Therefore, d)i(t) can be calculated by

taking the derivative of (2) with respect to the parameter and
solving the resulting ODE, given by

dX(t) dX(t)
+ D3 f(X(¢),U(t), p), (8)
subject to the initial condition d)éz()t) lt=1, = 0.

In the optimal control formulation discussed in Section III,
the incremental cost functional (6) only requires solutions to
its arguments, X (¢) and U (t), to evaluate. As derived above,
calculation of the sensitivity term depends on the forward
integration of a differential equation of the dynamics and thus
cannot be added as an additional term to the functional in
a straightforward manner. Instead, the parametric sensitivity
term can be appended to the state vector, X (t), and the
number of columns and rows of the Q matrix doubled to
accommodate and provide the desired norm on the appended
state vector. The appended state vector is denoted X (t) =
X (1), A

Appending to the state in this manner modifies the
quadratic models needed to locally approximate the tra-
jectory manifold, 7. Therefore, these changes also impact
the solutions to the LQR problems required to obtain the
feedback control law K (t) and the descent direction ((t)
during optimization. Only minor changes are required to
include the appended state vector and modified Q matrix

when calculating DJ(§) - ¢ in (3) as the form of the cost
functionals (6) and (7) remains unchanged. However, the
linearizations of the dynamics required to locally constrain
the solutions to the LQR problems require reformulation and
the calculation of two new differential equations at each
iteration.

Where the appended dynamics vector, f(X (¢),U(t), p), is
given by

dp
the linearization of the appended dynamics with respect to

the appended state vector, X (), and the control vector, U (t),
are given by

o (PIEOEOD 0
A(t) = 3 (10)
and
Biy=| _o dx@) |, (1)
oU(t) dp

respectively. The two new equations which emerge from the
linearizations, A(t) and B(t), are obtained by taking the
appropriate partial derivatives of (8). These required partial
derivatives are reflected in

T = DX (0. U0, P
+ D1 D3 f(X(t),U(t),p) (12)
and
o dX(t) dX(t)
m dp = D2D1f(X(t)a U(t)ap) ! dp
+ D2 D3 f(X (1), U(t), p). (13)

Plugging equations (12) and (13) into (10) and (11)
provides linearizations of the appended dynamical system
required to constrain the solutions to the LQR problems
through each iteration of optimization. By appending the
state vector with sensitivity terms in this manner, the existing
projection based optimization approach can therefore be
applied to sensitivity optimization without modification of
the algorithm. Mentioned previously, the optimization routine
is capable of computing trajectories which can be tracked in
a manner that simultaneously minimizes a weighted Lo norm
on the state error, applied controls, and state sensitivity for
general linear and nonlinear dynamical systems.

V. SIMULATION RESULTS

In the following section we compare the performance
of the standard state based and appended state sensitivity
optimization approaches (see Sections III-A and IV) in devel-
oping trajectories insensitive to parametric variations for the
vehicle example introduced in Section II. The two methods
will be referred to as the standard approach and the sensitiv-
ity optimization approach, respectively. Results demonstrate
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Fig. 3: Lo trajectory error versus friction as a percent of nominal design friction for controllers with feedforward and no
(left), medium-gain (middle), and high-gain (right) feedback terms. Blue curves reflect standard state based optimization
results and red curves reflect appended state sensitivity optimization results.

how well trajectories produced using each method can be
tracked by their respectively derived control laws as both
friction and the degree of available feedback vary.

All simulations and figures presented are calculated using
the matrices

. 11 1
Q = diag[15, 15, 100, 45, 33 107 1], (14)
1 5
R = diag[—. 2. 1], 15
e[ 1500" 7 1 (15)
and

. 55 5 5 1

P*dlag[§7 53 505 257 57 55 17 2} (16)

to provide norms on the state error and controls in the cost
function in equation (1) for the standard optimization. The
sensitivity optimization approach uses the same R matrix
but appends the Q matrix with an 8 x 8 identity matrix to
provide the norm on the 8 additional sensitivity terms in the
state vector. For this example, the P matrix above is also
appended with an 8 x 8 zero matrix to ignore the sensitivity
cost at the final time.

Referring to Figures 1a and 1b in Section I, under modeled
conditions each optimally derived controller tracks its respec-
tive optimal trajectory (dotted blue curves). As friction is var-
ied from the nominal value of 0.7, controllers which follow
less sensitive driving styles produce trajectories which vary
less than their more sensitive counterparts. These controllers
minimize an Ly error norm between trajectories resulting
from variations in friction and the optimal trajectory.

The plots in Figure 3 demonstrate the impact of varying
friction on Lo error for three different full state feedback
scenarios. The leftmost plot reflects the scenario illustrated in
Figure 1 in which controllers apply no feedback, using only
the optimally derived feedforward control terms to drive the
vehicle under various levels of friction. In the middle and
rightmost plots similar results are presented for controllers
using these same feedforward terms along with medium-gain
and high-gain feedback terms respectively. Viewed from left
to right, these plots demonstrate the impact of increasing
feedback on tracking error for each method.

Partial Feedback L2 Error
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Fig. 4: Lo trajectory error versus friction as a percent of
nominal design friction for controllers with feedforward and
medium-gain partial state feedback terms. The blue curve
reflect standard state based optimization results and the red
curve reflects sensitivity optimization results.

To simulate the different feedback conditions applied,
feedback control laws are derived by minimizing local
quadratic models of a cost functional similar to (1) in the
manner discussed in Section III. By modifying terms in
the R matrix used in this cost functional, the magnitude of
allowable feedback can be influenced to select for controllers
of desired gain. Applying Q and R matrices (14) and (15)
produces the feedback controllers used in the high-gain
case. Medium-gain conditions are simulated by scaling the
R matrix by a factor of 50. To control for the impact of
applied feedback gains on tracking performances between the
two methods, optimal feedback controllers were calculated
around the standard optimization trajectory only rather than
deriving separate controllers for the standard and sensitivity
derived optimal trajectories separately. The resulting con-
trollers provide feedback for both optimization approaches
in the various gain scenarios presented in Figure 3.*

Figure 4 provides Lo error norms versus friction for the
two methods when the optimal feedforward controllers are

4The Lo error norms for sensitivity optimized trajectories were not
significantly influenced when using feedback controllers derived specifically
for these trajectories.



combined with partial state, medium-gain feedback terms.
The figure presents tracking performance results under vary-
ing friction in a common scenario in which the robotic vehi-
cle has access to data for position and velocity but no means
to accurately measure heading angle for feedback control.
To simulate these conditions, the medium-gain feedback law
was modified to zero out columns associated with errors in
both the #(t) and () state variables.

VI. DISCUSSION

The locally optimal trajectories reflected in Figures la
and 1b result from feedforward controllers providing control
inputs similar in peak magnitude. These figures and the Lo
errors in the leftmost plot of Figure 3 show that while the
sensitivity optimized trajectory is slightly worse at tracking
the desired trajectory, the Lo errors between this optimal
trajectory and those produced by variations in friction are
significantly reduced. Under open loop conditions, these
findings confirm that sensitivity optimized trajectories result
in improved tracking for similar degrees of control authority.

Trends in Loy errors also indicate that increasing feedback
reduces controller tracking sensitivity in all cases. The mid-
dle plot of Figure 3 demonstrates that when medium-gain
feedback is incorporated into the optimal feedforward control
laws, the sensitivity optimized driving style continues to
outperform the one derived using the standard approach, but
less so than in the open loop case. As the level of available
feedback is further increased, the error norms between the
two approaches begin to converge. The rightmost plot shows
that when feedback of sufficient magnitude can be applied,
the difference in tracking performance between the two
methods becomes insignificant.

These findings reflect the fact that when limited in gain,
feedback can only partially compensate for trajectory errors.
Driving styles produced by the sensitivity optimization ap-
proach use feedforward control to ensure that trajectories
associated with significant variations in friction remain closer
to the optimal. As such, less feedback is required to track
these trajectories. When allowable feedback is increased
further, feedforward terms become less significant until feed-
back control dominates and dictates tracking performance.
Thus, with similar high-gain state feedback controllers, one
can expect similar tracking performance between the two
methods. In these cases sensitivity optimization is of little
to no benefit as it results in slightly decreased tracking
performance when following the gray desired trajectory and
can increase computational complexity when deriving control
laws.

The medium-gain, partial state feedback conditions sim-
ulated to produce Figure 4 demonstrate the benefits of the
sensitivity optimization approach when full state feedback
is not an option. Under all friction conditions simulated,
sensitivity optimization trajectories resulted in superior track-
ing performance when compared to counterparts derived
using the standard approach. These results are attributed
to the fact that sensitivity optimized trajectories can be
tracked more closely by their feedforward control terms. As

such, state errors associated with variables not included in
feedback remain small enough for the partial state feedback
controllers to be effective. In the example presented, errors
in heading, 6(t), and angular velocity, 6(t), are thus more
significant when tracked by the feedforward laws associated
with optimal trajectories derived by the standard approach.
Because no feedback is available to correct for these errors in
the partial feedback scenario, tracking performance is more
significantly impacted.

VII. CONCLUSIONS

This paper introduces a method to incorporate and opti-
mize a norm on parametric sensitivity in optimal control.
Compared with existing techniques for sensitivity optimiza-
tion, the method presented is more broadly applicable as
it builds on an approach to optimal control which works
for both linear and nonlinear systems and requires minimal
assumptions. To demonstrate its effectiveness, the technique
is applied to a dynamic vehicle model. Results show the
approach successfully produces locally optimal control laws
and driving styles that are less sensitive to fluctuations in
modeled friction.

While high-gain feedback controllers may be robust with
respect to parameter variations, a benefit of the sensitivity
optimization techniques presented is that they result in lo-
cally optimal trajectories which can be reliably tracked under
limited feedback conditions. Optimal trajectories developed
using these techniques result in controllers applicable to
a much wider assortment of physical systems and which
remain effective in spite of the inevitable variations and
constraints associated with real world conditions.
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