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Abstract— This paper presents a method to perform second-
order impulsive hybrid system optimization that optimizes
a cost functional over mode transition times and impulse
magnitudes simultaneously. The derivation of the first-order
and second-order derivatives of the cost functional with respect
to switching times and impulse magnitudes is presented. An
adjoint formulation is utilized to compute the derivatives for a
faster convergence at a lower computational cost. An example
in robotics illustrates the effectiveness of this optimization
technique when measurement noise is present.

I. INTRODUCTION

Switched system optimization is of interest to numerous
recent works [1]–[12]. Most work [1]–[3], [5] focuses on
optimizing a cost functional with respect to a finite num-
ber of times at which the dynamics of a hybrid system
switches. They assume that the dynamical mode sequence
and the number of switches are known. Other works [9]–
[12] study a switching time optimization that also focuses on
mode sequence generation. [6]–[8] consider switching time
optimization for impulsive switched systems.

This paper extends results in [7] which study an optimiza-
tion over both impulse times (switching times) and impulse
magnitudes of an impulsive non-hybrid system. We develop
a second-order optimization technique that simultaneously
computes the optimal impulse times and magnitudes of
an impulsive hybrid system assuming a finite number of
impulses and a known dynamical mode sequence.

In this paper, the first-order and second-order adjoint
formulations for the derivatives of a cost functional with
respect to hybrid transition times and impulse magnitudes
are derived. We show that the derivatives with respect to
impulse times, the derivatives with respect to impulse mag-
nitudes and the cross derivatives between impulse times and
impulse magnitudes share the same first-order and second-
order adjoint operators. Hence, to calculate the gradient
and the Hessian required at every second-order optimization
step, only two backward integrations of adjoint operators
are necessary, independent of the total number of impulses.
This result facilitates the implementation of a second-order
optimization method (e.g., Newton’s method) which has the
advantage of quadratic convergence [13]. Convergence plots
in Fig. 3 in Section VI show that this technique is effective
even when noisy measurement data are present.
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The rest of this paper is organized as follows: Section II
explains the notation used in this paper. The optimization
problem is defined in Section III. Optimization methods
are discussed in Section IV. Section V computes the first-
order, second-order and cross derivatives of a cost func-
tional. An example is presented in Section VI illustrating
the optimization technique and its performance. Section VII
summarizes the findings of this work and discusses future
research directions beyond this paper.

II. NOTATION

A trajectory x(x0, τ1, τ2, ..., τN , δ1, δ2, ..., δN , t) is abbre-
viated as x(t), and xi(t) refers to a segment in x(t) when
t ∈ [τi, τi+1].

To represent derivatives, Df(·) is used. The derivative of
a function f(·) with respect to the n-th argument is written
as Dnf(arg1, arg2, ...), and the derivative of a function f(·)
with respect to arg is written as Dargf(·).

An operator M applied to U is written as M ◦ U .

III. PROBLEM DEFINITION

Consider a n-dimensional nonlinear impulsive hybrid sys-
tem governed by a sequence of N dynamical modes:

ẋ(t) = fi(x(t), t) for τi < t < τi+1 (1)

where i ∈ {1, 2, 3, ..., N} and x(τ+i ) = xi,0. Each fi(·)
is at least C2 in x and C1 in t. These dynamical modes
are separated by N − 1 distinct impulses for the total time
horizon from τ1 = t0 to τN+1 = tf . The i-th impulse time
is τi, and the impulse magnitude at τi is δi. At each impulse
time, M out of a total of n states experience impulses, and
thus, δi is a M -length vector. Note that δi is not a function
of time, t, and δ and τ are independent of each other. The
dynamical mode sequence and the number of impulses are
assumed known.

The goal is to simultaneously solve for the N−1 unknown
impulse times and the M unknown impulse magnitudes at
each τi by minimizing a cost function which is defined as

J(·) =

∫ tf

t0

l(x(s), s)ds (2)

where l(·) is an incremental error metric that is C2 in x and
integrable in s. For the example in Section VI, we assume
l(·) = 1

2 (x(s) − xr(s))T(x(s) − xr(s)) which corresponds
to performing a least-squares estimation [14]. The model
trajectory is represented by x(·), and the reference trajectory,
xr(·), is a smoothed continuous measurement signal that is
C1 in s.



IV. OPTIMIZATION METHOD

The optimization methods considered in this paper start
with first-order iterations (i.e., steepest descent) and then
transition to Newton’s method. Newton’s method, which is
second order, converges quadratically [13]. At each iteration,
we choose a descent direction zk = −[H]−1[DJ(·)]T . H is
a positive definite matrix and DJ(·) is the gradient defined
as follows:

DJ(·) = (Dτ1J(·), ..., DτiJ(·), Dδ1J(·), ..., DδiJ(·)).

In steepest descent, H = I where I is the identity matrix.
In Newton’s method, H is the Hessian of the form

H = D2J(·) =

(
D2
τJ(·) DτDδJ(·)

DδDτJ(·) D2
δJ(·)

)
.

When D2J(·) is not positive definite, a quasi-Newton’s
method, which follows [13], is implemented. The Hessian is
decomposed into a matrix containing eigenvalues, λ, and a
matrix with corresponding eigenvectors, P . The eigenvalues
which are close to zero or negative are replaced with one.
Then, the Hessian is reconstructed using the original matrix
of eigenvectors, P , and the modified matrix of eigenvalues,
λ∗, such that H = Pλ∗P−1. This modification results in
using steepest descent in eigenvector directions with negative
eigenvalues and Newton’s method in eigenvector directions
with positive eigenvalues.

After a descent direction is calculated, the largest value
of εk ∈ (0, 1] is chosen such that the updated impulse time,
τi,k+1 = τi,k + εkzk, will maintain the specified ordering
of modes in time. The Armijo line search algorithm is then
performed to further reduce the step size as needed without
changing the impulse times’ order [15]. This algorithm uses
a backtracking line search to ensure a sufficient decrease for
convergence.

V. DERIVATIVES OF COST FUNCTION

In this section, first-order, second-order and cross deriva-
tives of a cost functional, J(·), with respect to impulse times
and magnitudes are derived using an adjoint formulation.
These derivatives are required in DJ(·) and D2J(·). The
results are stated below and brief sketches of the proofs are
provided. The full proofs may be found in [16].

A. First-Order Derivatives of Cost Function

Lemma 1: The first-order derivative of a cost function,
J(·), with respect to an impulse time, τi, is

DτiJ(·) = ψ(tf , τi) ◦Xi + l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i )

Xi = (fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i )) (3)

where the first-order adjoint operator, ψ(·), is found by
integrating the following differential equation backwards
along τ from tf :

∂

∂τ
ψ(t, τ) = −D1l(x(τ), τ)− ψ(t, τ) ◦D1f(x(τ), τ)

ψ(t, t) = 0. (4)

Proof: Rewrite (1) in integral form and differentiate the
equation with respect to τi:

Dτix(t) =fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i )

+

∫ t

τ+
i

D1fi(x(s), s) ◦Dτix(s) ds. (5)

Rewrite (5) in differential form:

∂

∂t
Dτix(t) = D1fi(x(t), t) ◦Dτix(t)

Dτix(τi) = fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i ). (6)

This is a linear differential equation of the form:

ż(t) = (D1fi(x(t), t)) ◦ z(t)
z(t0) = z0 (7)

where z0 is the initial condition. Equation (6) can be rep-
resented as a state transition matrix operating on an initial
condition:

Dτix(t) = Φ(t, τi) ◦Dτix(τi) (8)

where Φ(·) is the state transition matrix for the linearization.
When t ≥ τi, (8) is the result. When t < τi, changes in τi
will not affect x(t) because x(t) is in the past relative to τi.
Therefore,

Dτix(t) =

{
0, t < τi

Φ(t, τi) ◦Xi, t ≥ τi
Xi = (fi−1(x(τ−i ), τ−i )− fi(x(τ+i ), τ+i )). (9)

Next, take the derivative of (2) with respect to τi and
substitute (9) into the equation:

DτiJ(·) =

∫ tf

τi

D1l(x(s), s) ◦Dτix(s) ds

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ) (10a)

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ◦Xi ds

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i )

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ds ◦Xi

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ). (10b)

The last two terms in (10a) come from applying Leibniz’s
rule. The integrand is integrated from τi to tf because
Dτix(t) = 0 up until t = τi as stated in (9). In (10b), Xi

can be taken out of the integral because it does not depend
on s. Define

ψ(t, τ) =

∫ t

τ

D1l(x(s), s) ◦ Φ(s, τ) ds. (11)

Take the derivative of (11) with respect to τ and evaluate
(11) at τ result in (4). Substitute (11) into (10b):

DτiJ(·) = ψ(tf , t) ◦Xi + l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ).



Lemma 2: The first-order derivative of a cost function,
J(·), with respect to an impulse magnitude, δi, is

DδiJ(·) = ψ(tf , τi) ◦∆i

∆i = Dδix(τ+). (12)
Proof: Rewrite (1) in integral form, and differentiate

the equation with respect to δi to obtain

Dδix(t) = Dδix(τ+i ) +

∫ t

τ+
i

D1fi(x(s), s) ◦Dδix(s) ds.

(13)
Rewrite (13) in differential form:

∂

∂t
Dδix(t) = D1fi(x(t), t) ◦Dδix(t) (14)

where the initial condition is Dδix(τ+i ). Again, (14) is a
linear differential equation in the form of (7). Rewrite (14)
as a state transition matrix operating on an initial condition:

Dδix(t) = Φ(t, τi) ◦Dδix(τ+).

Dδix(·) is found for the case when t ≥ τi. When t < τi,
changes in δi will not affect x(t) because x(t) is in the past
relative to δi at τi. Hence,

Dδix(t) =

{
0, t < τi

Φ(t, τi) ◦∆i, t ≥ τi
∆i = Dδix(τ+). (15)

Next, take the derivative of (2) with respect to δi, and
substitute (11) and (15) into the equation:

DτiJ(·) =

∫ tf

τi

D1l(x(s), s) ◦Dδix(s) ds (16)

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ◦∆i ds

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ds ◦∆i

= ψ(tf , τi) ◦∆i.

As shown, only a single integration is required to compute
the first-order derivatives of a cost function with respect to
all impulse times and magnitudes. At this point, impulse
times and magnitudes can be estimated using first-order op-
timization methods such as steepest descent. To implement a
second-order method for quadratic convergence, the second-
order and cross derivatives of a cost function with respect to
impulse times and magnitudes are useful, discussed next.

B. Second-Order Derivatives of Cost Function

Theorem 1: The second-order derivative of a cost func-
tion, J(·), with respect to an impulse time, τi, is

DτjDτiJ(·)
= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ

−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Xi δji + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

where δji is the Kronecker delta, and Xi,j has the form

Xi,j =

D1fi(x(τ+i ), τ+i ) ◦ fi(x(τ+i ), τ+i )

+D1fi−1(x(τ−i ), τ−i ) ◦ fi−1(x(τ−i ), τ−i )

−2D1fi(x(τ+i ), τ+i ) ◦ fi−1(x(τ−i ), τ−i )

+D2fi(x(τ+i ), τ+i )−D2fi−1(x(τ−i ), τ−i ), i = j

(D1fi−1(x(τ−i ), τ−i )−D1fi(x(τ+i ), τ+i ))◦
Φ(τi, τj) ◦Xj , i > j.

The second-order adjoint operator, Ω(·), is found by inte-
grating (17) backwards along τ from tf :

∂

∂τ
Ω(t, τ) = −D2

1l(x(τ), τ)− ψ(t, τ) ◦D2
1fi(x(τ), τ)

−D1fi(x(τ), τ)T ◦ Ω(t, τ)− Ω(t, τ) ◦D1fi(x(τ), τ)

Ω(t, t) = 0. (17)

Note that different from (9), the derivative of x(τi) with
respect to τj is

Dτjx(τi) =


0, i < j

f(x(τi), τi), i = j

Φ(τi, τj) ◦Xj , i > j.

When i = j, the derivative of x(τi) is taken with respect to
its argument τi, resulting in f(x(τi), τi).

Proof: Take the derivative of (9) with respect to τj
and apply fundamental theorem of calculus. The derivation
is similar to Dτix(·)’s, and thus, only the result is stated:

DτjDτix(t)

= Φ(t, τi) ◦Xi,j + φ(t, τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

φ(t, τ) =

∫ t

τi

Φ(t, s)D2
1fi(x(s), s) ◦ (Φ(s, τ),Φ(s, τ)) ds.

(18)

Next, take the derivative of (10a) with respect to τj , and
substitute (9) and (18) into the equation:

DτjDτiJ(·)

=
∂

∂τj
(

∫ tf

τ+
i

D1l(x(s), s) ◦Dτix(s) ds

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ))

= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ
−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Dτjx(τ+i ) δji

+

∫ tf

τ+
i

D1l(x(s), s) ◦DτjDτix(s)

+D2
1l(x(s), s) ◦ (Dτjx(s), Dτix(s)) ds

= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ
−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Dτjx(τ+i ) δji



+

∫ tf

τ+
i

D1l(x(s), s) ◦ Φ(s, τi) ◦Xi,j ds

+

∫ tf

τ+
i

D1l(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦Xj , Xi)

+D2
1l(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦Xj ,

Φ(s, τi) ◦Xi) ds

= D1l(x(τ−i ), τ−i ) ◦ (Dτjx(τ−i )−Dτjxr(τ
−
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦ (Dτjx(τ+i )−Dτjxr(τ
+
i ) δji )

−D1l(x(τ+i ), τ+i ) ◦Xi δji + ψ(tf , τi) ◦Xi,j

+ Ω(tf , τi) ◦ (Φ(τi, τj) ◦Xj , Xi) (19)

where Ω(·) is defined as

Ω(t, τ) =

∫ t

τ

D1l(x(s), s) ◦ φ(s, τ))

+D2
1l(x(s), s) ◦ (Φ(s, τ),Φ(s, τ)) ds. (20)

Take the derivative of (20) with respect to τ and evaluate
(20) at τ result in (17).

First two terms in (19) are the derivatives of l(x(τ−i ), τ−i )
and l(x(τ+i ), τ+i ) from (10a) with respect to τi. Because
l(x(τ−i ), τ−i ) and l(x(τ+i ), τ+i ) are evaluated at τ+i and
τ−i , the reference trajectory, xr(·), and the model trajectory,
x(·), explicitly depend on τi. Therefore, both the derivatives
of xr(·) and x(·) present when taking the derivatives of
l(x(τ−i ), τ−i ) and l(x(τ+i ), τ+i ) with respect to τi.

Theorem 2: The second-order derivative of a cost func-
tion, J(·), with respect to an impulse magnitude, δi, is

DδjDδiJ(·) = ψ(tf , τi) ◦∆i,j + Φ(τi, τj)
T ◦ Ω(tf , τi)

∆i,j = DδjDδix(τ+i ).
Proof: Take the derivative of (15) with respect to δj

and apply fundamental theorem of calculus. The derivation
is omitted because it is straightforward, and the result is

DδjDδix(t) = Φ(t, τi)◦∆i,j+φ(t, τi)◦(Φ(τi, τj)◦∆j ,∆i).
(21)

Take the derivative of (16) with respect to δj and substitute
(15) and (21) into the equation:

DδjDδiJ(·)

=
∂

∂δj

(∫ tf

τi

D1l(x(s), s) ◦Dδix(s) ds

)
=

∫ tf

τi

D1l(x(s), s) ◦DδjDδix(s)

+D2
1l(x(s), s) ◦ (Dδjx(s), Dδix(s)) ds

=

∫ tf

τi

D1l(x(s), s) ◦ Φ(s, τi) ◦∆i,j ds

+

∫ tf

τi

D1l(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦∆j ,∆i)

+D2
1l(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦∆j ,

Φ(s, τi) ◦∆i) ds

= ψ(tf , τi) ◦∆i,j + Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j ,∆i).

C. Cross Derivatives of Cost Function
Theorem 3: The cross derivative of J(·) with respect to

an impulse time and an impulse magnitude is

DδjDτiJ(·) =



Ω(tf , τj) ◦ (∆j ,Φ(τj , τi) ◦Xi), τi < τj

D1l(x(τ−i ), τ−i ) ◦Dδjx(τ−i )

−D1l(x(τ+i ), τ+i ) ◦Dδjx(τ+i )

+ψ(tf , τi) ◦∆Xi,j

+Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j , Xi), τi ≥ τj

∆Xi,j =


0, τi < τj

−D1fi(x(τ+i ), τ+i ) ◦∆j , τi = τj

(D1fi−1(x(τ−i ), τ−i )

−D1fi(x(τ+i ), τ+i )) ◦ Φ(τi, τj) ◦∆j , τi > τj .
Proof: Take the derivative of (5) with respect to δj :

DδjDτix(t)

=


Φ(t, τj) ◦∆Xi,j

+φ(t, τj) ◦ (∆j ,Φ(τj , τi) ◦Xi), τi < τj

Φ(t, τi) ◦∆Xi,j

+φ(t, τi) ◦ (Φ(τi, τj) ◦∆j , Xi), τi ≥ τj .
(22)

Take the derivative of (10a) with respect to δj , and
substitute (9), (15), and (22) into the equation:

DδjDτiJ(·)

=
∂

∂δj
(

∫ tf

τ+
i

D1l(x(s), s) ◦Dτix(s) ds

+ l(x(τ−i ), τ−i )− l(x(τ+i ), τ+i ))

= D1l(x(τ−i ), τ−i ) ◦Dδjx(τ−i )

−D1l(x(τ+i ), τ+i ) ◦Dδjx(τ+i )

+

∫ tf

τ+
i

D1l(x(s), s) ◦DδjDτix(s)

+D2
1l(x(s), s) ◦ (Dδjx(s), Dτix(s)) ds

= D1l(x(τ−i ), τ−i ) ◦Dδjx(τ−i )

−D1l(x(τ+i ), τ+i ) ◦Dδjx(τ+i )

+

∫ tf

τ+
i

D1l(x(s), s) ◦ Φ(s, τi) ◦∆Xi,j ds

+

∫ tf

τ+
i

D1l(x(s), s) ◦ φ(s, τi) ◦ (Φ(τi, τj) ◦∆j , Xi))

+D2
1l(x(s), s) ◦ (Φ(s, τi) ◦ Φ(τi, τj) ◦∆j ,

Φ(s, τi) ◦Xi) ds

= D1l(x(τ−i ), τ−i ) ◦Dδjx(τ−i ) ◦ ∂δj
−D1l(x(τ+i ), τ+i ) ◦Dδjx(τ+i ) ◦ ∂δj
+ ψ(tf , τi) ◦∆Xi,j + Ω(tf , τi) ◦ (Φ(τi, τj) ◦∆j , Xi).

This is the proof when τi ≥ τj . Follow similar steps for the
case when τi < τj .

Note that the full form of ∆Xi,j is

∆Xi,j = D1fi−1(x(τ−i ), τ−i ) ◦Dδjx(τ−i )

−D1fi(x(τ+i ), τ+i ) ◦Dδjx(τ+i ).



When τi < τj , both Dδjx(τ+i ) = 0 and Dδjx(τ−i ) = 0
because x(·) at time τi does not depend on δj at time τj (a
future time relative to τi). When τi = τj , only Dδjx(τ−i ) =
0 because x(·) right before τi does not depend on δj .
Considering different cases of Dδjx(τ−i ) and Dδjx(τ+i ),
each case of DδjDτiJ(·) and ∆Xi,j is derived.

To compute the second-order derivatives of a cost function
with respect to any number of impulse times and magnitudes,
only two integrations (for Φ(·) and Ω(·)) are required in
addition to an integration for ψ(·) which is computed when
calculating the gradient of the cost function.

As shown, all elements of the gradient and the Hessian of
the cost function are computed independent of the total num-
ber of impulses. Accordingly, this optimization method has
the benefit of zero increase in the computational complexity
when the number of impulses are increased.

VI. EXAMPLE

In this section, the second-order impulsive hybrid system
optimization is implemented to localize geometrical surface
features on a surface traced by a three-revolute-joint robotic
finger (Fig. 1). This surface has three segments whereby
each segment corresponds to a dynamical mode, fi. The
trajectory, x(t), includes joint angles (θ1(t), θ2(t), θ3(t)) and
joint angular velocities (ω1(t), ω2(t), ω3(t)). Impulses are
observed in the velocity trajectories when the finger reaches
the boundary of each surface segment. The hybrid opti-
mization was implemented to localize the surface segments
by identifying the transition times and impulse magnitudes
assuming that the segment sequence and the total number of
segments are known.

Two types of measurement trajectories were considered:
without noise and with noise (Fig. 2). To generate a noisy
trajectory, a measurement trajectory is simulated and sampled
at 0.001 second intervals. Random noise sampled from a
Gaussian distribution with mean, µ = 0, and standard
deviation, σ, is added at each time step. Then, the noisy
trajectory is smoothed using a Gaussian filter (with standard
deviation, σG = 5) before a spline is used to generate the
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Fig. 1. Configuration of the robotic finger model used in
simulation.
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Fig. 2. Comparison of a measurement trajectory without
noise, a measurement trajectory with noise (σ = 0.1 rad
(5.73◦)), and a smoothed measurement trajectory with noise
for the first joint.

continuous measurement trajectory required by the optimiza-
tion formulation.

Both type of simulated measurement trajectories have
impulse times, τ = (0.247, 0.329), impulse magnitudes δ1 =
(0.249,−0.058, 4.074) (in the velocity) at the first impulse
time, and impulse magnitudes δ2 = (−1.100, 0.102, 0.378)
at second impulse time. The total time horizon is from τ1 = 0
to τ4 = tf = 0.380 seconds. Both algorithms for measure-
ment trajectories with noise and without noise are initialized
to τ = (0.270, 0.350), δ1 = (0.230,−0.030, 4.070), and
δ2 = (−0.900, 0.200, 0.410). The optimization algorithm is
terminated when the norm of the gradient, ||DJ(·)|| < 10−5.

A. Convergence

The optimization algorithm took sixteen iterations to con-
verge when using measurement trajectories without noise.
The convergence plots for the logarithm of the norm of
cost gradient (Fig. 3) show a quadratic convergence when
the Newton’s method was applied after ten initial first-order
iterations. Fig. 3 also shows that varying the noise level
did not drastically change the total number of iterations
for convergence. The average number of iterations taken is
seventeen when σ of the added noise is 0.1 rad (5.73◦).

B. Measurement Noise

The effect of measurement noise on the standard deviation
of the estimates was investigated using the Monte Carlo
method. For each noise level, thirty random simulations are
computed. The noise level is quantified by the standard
deviation of the noise added, σ. The largest σ considered
is 0.1 rad (5.73◦). A noise level above σ = 0.1 rad results
in frequent instability during optimization.

The optimization algorithm shows a linear increase in the
standard deviation of estimates when the standard deviation
of noise is increased (Fig. 4). Note that in Fig. 4, the
trend lines go through the origin, and thus reflect that the
estimates are unbiased. Also, note that the estimates at the
second impulse time are more sensitive to the noise than
the estimate at the first impulse time. This is expected



Fig. 3. Convergence plots for the logarithm of the norm
of cost gradient of a finger model when the measurement
trajectories are (a) without noise and (b) with noise. First ten
iterations use steepest descent, and the remaining iterations
use Newton’s method.

because the derivatives in the gradient and the Hessian are
calculated using backward integration. The estimate at the
second impulse time includes fewer points, and thus are more
prone to be affected by outliers in the noise. On the other
hand, the estimate at the first impulse time include more
points, and hence the effect of outliers in the noise is reduced.
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Fig. 4. Effect of the standard deviation (SD) of measurement
noise on the SD of the estimated impulse times.

VII. CONCLUSION
This paper introduces a second-order adjoint-based im-

pulsive hybrid system optimization to optimize the transition
times and impulse magnitudes of an impulsive hybrid system.
This is an extension of the results in [7] to a different
class of impulsive systems. The adjoint formulation allows
the efficient computation of the first-order, second-order and
cross derivatives of a cost functional with respect to impulse
times and impulse magnitudes as shown in Section V. In
Section VI, an application of this optimization technique
in surface feature localization shows that this technique is
effective even when measurement noise is present.

In this paper, the number of impulses and the dynamical
mode sequence are assumed to be known a priori. When

this assumption does not hold, a relaxation of the hybrid
optimization, a similar technique to the one in [9], can
be implemented to compute the number of impulses and
mode sequence before performing the optimization. Another
approach that does not rely on relaxation is to extend the
result in [10] to allow for impulses in the system. This is an
area of future research.
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