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Abstract— An algorithm is presented for generating tra-

jectories for efficient exploration that takes into account a

probabilistic representation of information density over a

sampling region. The problem is cast as a continuous-time

trajectory optimization problem, where the objective function

directly involves the difference between the probability density

functions representing the spatial distribution and the statistical

representation of the time-averaged trajectory. The difference

is expressed using the concept of ergodicity. It is shown that

the trajectory optimization problem can be posed in such a

way that the descent direction at each step of the optimization

can be solved using linear quadratic regulator techniques. The

proposed method generates continuous-time optimal feedback

controllers, demonstrated in simulation for a general nonlinear

sensor model.

I. INTRODUCTION

Dynamic exploration is particularly important in the area
of automated tactile sensing. In exploration tasks, there is a
tradeoff between completeness of coverage and exploration
time or energetic cost. Intuitively, an efficient exploration
strategy should spend more time exploring regions of space
with a higher information density or likelihood of feature
localization. Sensing strategies that are observed to depend
on sensory goals and maximize expected information gain
have been widely observed in biological systems [1]. For
example, observations of human subjects during feature
localization tasks imply that sensing strategies reflect the
sensing goal [2] and a subject’s internal expectation of the
feature location [3]. Similar observations have been made
during exploration experiments featuring the rat vibrissal
system [4].

Motivated by observations of exploratory behavior in
biological systems, the objective of this paper is to define
a strategy for planning exploratory motion to sample a given
region in an efficient manner with respect to the spatial
sensory information density over that region. The planning
problem is posed as an infinite-dimensional trajectory op-
timization, where the objective function involves a metric
on the difference between the time-averaged behavior of the
sensor trajectory and a spatial probability density function
(PDF) representing the information density. The metric relies
on the measure of ergodicity proposed by Mathew and Mezic
[5], discussed in Section III. We show that iterative first
order optimization can be used to minimize the ergodic
metric, using the projection-based trajectory optimization
method derived in [6], which allows the descent direction
at each iteration to be calculated using linear quadratic
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regulator (LQR) techniques. Using trajectory optimization
allows calculation of an optimally ergodic trajectory over
a continuous exploration time horizon, which can be applied
to receding horizon or fixed-time control scenarios.

II. RELATED WORK

General research in planning for mobile sensors has re-
ceived much attention in the context of nonuniform coverage
for distributed control. For example, optimal placement of
stationary sensors [7], [8] and positioning of mobile sensors
[9] have been analyzed in the context of distributed sensor
networks. The focus of these strategies are efficient algo-
rithms for distributed control and generally do not directly
take into account nonlinear sensor dynamics.

In the context of tactile sensing and object recognition,
several strategies have been derived for choosing between
sensing strategies or movements based on the sensing goal
or likelihood of information gain [10]–[13]. In [10], for
example, a method is presented to determine the best straight
sensor path that is guaranteed to produce data unique to only
one possible object. While these techniques present different
methods of selecting sensing strategies or choosing from
a set of parameterized movements, the trajectory planning
problem for continuous exploration is not addressed.

The optimal control problem we develop depends on a
metric defined in [5] that relates the statistical properties of
a spatial distribution with those of a time-averaged trajectory.
In addition to defining the metric, the authors of [5] use the
metric to develop an optimization-based feedback controller
for uniform sampling of irregular domains for first- and
second-order linear systems. While our objective function
involves the same metric derived in [5], the optimal control
problem and applications are fundamentally different. The
strategy in [5] involves discretizing the exploration time
and solving for the optimal control input at each time-
step which maximizes the rate of decrease of the ergodic
metric at that time. The method we derive calculates the
optimal control for minimizing the metric itself over the
entire exploration time horizon. Additionally, the feedback
controllers derived in [5] are specific to linear first- or
second-order systems, whereas our method is derived for
general nonlinear dynamic systems. While the continuous-
time optimization is more computationally expensive than
the discrete time approach in [5], the LQR formulation has
the advantage that each iteration of the optimization involves
a calculation with known complexity, and all computational
cost happens offline.

In prior work, we derived a method for determining
contact transition times [14] which also uses the ergodic



metric presented in [5]. Although the metric is the same, the
control problem in [14] is a finite dimensional switching-time
problem.

The contributions of this paper are threefold. Using the
ergodicity metric derived in [5] as the objective function
for a receding horizon control problem, an iterative de-
scent algorithm is provided. The algorithm is formulated
for general nonlinear dynamics, and provides a continuous-
time optimal feedback control solution. Although the ergodic
optimization problem is both nonlinear and not a Bolza
problem, it is shown that the descent direction at every step
of the optimization can be calculated as the solution to an
LQR problem. This approach has the benefit of providing a
state feedback law, and each iteration involves the solution to
an LQR problem that has known computational complexity.

In Section III, the concept of ergodicity is introduced, and
the metric derived in [5] is defined. Section IV summarizes
trajectory optimization methods and describes the optimal
control problem formulation. A quadratic model is presented
for a steepest descent algorithm, involving derivation of
first-order optimality condition for the objective function
in Section IV-E. Section V demonstrates the use of the
algorithm to generate optimally ergodic trajectories over two-
dimensional PDFs in simulation.

III. ERGODICITY

As mentioned in Section I, the aggregate motion of
a sensor should result in more samples from the most
information-dense areas of a distribution. This concept is
quantified using the measure of ergodicity presented in [5].
In order for a system to be ergodic, the fraction of time spent
sampling an area should be equal to some metric quantifying
the density of information in that area. For a given task,
the spatial distribution used for calculating ergodicity will

Fig. 1: Conceptual illustration of what it means for the trajectory x(t) to
be ergodic with respect to the distribution φ(x), represented by the level
sets shown. Equations representing the condition for ergodicity for the two
subsets, N1 and N2 are shown [14]

vary. For example, the distribution might be the variance
of some surface parameter over the surface manifold or the
probability that some feature is located at any point in the
domain.

This concept is expressed in Fig. 1, where the distribution
φ(x), depicted as level sets over the domain X , is sampled
by a sensor following the trajectory x(t) from t = 0 to
t = T . The trajectory x(t) is ergodic with respect to the
PDF φ(x) if the percentage of time spent in any subset N
of X from t = 0 to t = T is equal to the measure of N .
The equations in Fig. 1 represent the condition for ergodicity
for the two subsets shown; this condition must hold for all
possible subsets.

A. Metric for Ergodicity
The metric presented in [5] will be used to calculate

how far a trajectory is from being ergodic with respect to
a distribution. The distance is quantified by sum of the
weighted norm of the coefficients of the Fourier series
decomposition of the multidimensional spatial and time-
averaged distributions. For a more formal discussion, see [5].

In this work, calculation of the optimal control solution
is done over a fixed time horizon (0, T ). It is assumed that
there is a probability distribution function φ(x) represent-
ing information density over an n-dimensional exploration
domain X ⊂ Rn defined as [0, L1]× [0, L2]...× [0, Ln].

The ergodicity of a trajectory x(t) with respect to a
distribution φ can be quantified by the sum of the weighted
squared distance between the Fourier coefficients of the
spatial distribution Φk and the distribution representing the
time-averaged trajectory ck. The ergodic metric will be
defined as E , as follows:

E =
K�

k=0

Λk|ck − φk|2 (1)

where K is the number of basis functions used in each
dimension. Following [5], Λk = 1

(1+||k||2)s and s = n+1
2 ,

which places larger weight of on lower frequency informa-
tion.

The Fourier coefficients φk of a spatial distribution φ(x)
are computed using an inner product as follows

φk =

�

X
φ(x)Fk(x)dx,

and the Fourier coefficients of the basis functions along a
trajectory x(t), averaged over time, are calculated as

ck =
1

T

� T

0
Fk(x(t))dt,

where T is the final time and Fk is a Fourier basis function,
as derived in [5].

The Fourier basis functions for x̄ ∈ Rn used to ap-
proximate a distribution defined over n dimensions, with
appropriate boundary conditions, are:

Fk(x̄) =
1

hk

n�

i=1

cos
�
kπ

Li
x̄i

�
, for k = 0, 1, 2...K



where hk is a normalizing factor [5].
The following sections present a novel use of Eq. (1),

defined in [5], in a continuous-time trajectory optimization
framework, used to solve general, nonlinear optimal control
problems.

IV. TRAJECTORY OPTIMIZATION

The problem of generating a continuous-time optimally
ergodic trajectory is formulated using the projection-based
trajectory optimization method presented in [6]. Using the
projection-based method allows us to define a local quadratic
model of the ergodic objective function, which can then
be used to calculate the steepest descent direction for use
in iterative first-order optimization methods, using linear
quadratic regulator (LQR) techniques [6].

The following sections define the equations for the system
dynamics and the ergodic objective function which will
be minimized, as well as a summary of projection-based
trajectory optimization.

A. Dynamics
The dynamics of a general nonlinear dynamic sensor can

be expressed as follows:

ẋ(t) = f(x(t), u(t)) x(t0) = x0, (2)

where x(t) ∈ Rn represents the state and u(t) ∈ Rm the
control inputs. For notational convenience, define η(t) =
(x(t), u(t)), as in [6], as a feasible curve which lives in the
trajectory manifold T , which is are curves satisfying Eq. (2).

B. Objective Function
The objective function J(·) will be defined as a function

of the metric for ergodicity in Eq. (1) and the integrated
magnitude of the control, which takes as an argument any
(feasible or infeasible) curve ξ(t) = (α(t), µ(t)),

J(ξ(t)) =q
K�

k=0

Λk

�
1

T

� T

0
Fk(α(τ))dτ − φk

�2

+

� T

0

1

2
µ(τ)R(τ)µ(τ)dτ, (3)

where q ∈ R and R(τ) ∈ Rm×m are arbitrary design pa-
rameters which affect the relative importance of minimizing
ergodicity vs. control effort in the optimization problem.

The goal is to solve for a feasible continuous time trajec-
tory which minimizes the objective function, i.e.

arg min
ξ(t)∈T

J(ξ(t)). (4)

The optimization problem in Eq. (4) is subject to a nonlinear
constraint, and is not written in the form of a Bolza problem,
both factors which make the optimization problem as written
nontrivial. However, we use the projection operator defined
in Section IV-C to allow calculations at each iteration of the
optimization to occur in the tangent space of the constraint,
and define a quadratic model for Eq. (3) in Section IV-
D which is a Bolza problem and quadratic in the descent
direction.

C. Projection-based Trajectory Optimization
The optimization in Eq. (4) can be reformulated as an

unconstrained trajectory optimization problem using a pro-
jection operator following [6]. A projection operator takes
the form of a stabilizing feedback control law which maps
any (feasible or infeasible) trajectory ξ(t) = (α(t), µ(t)) to a
feasible trajectory. The projection operator used in this paper
is

P (ξ(t)) :

�
u(t) = µ(t) +K(t) (α(t)− x(t))

ẋ(t) = f(x(t), u(t)) x(0) = x0
(5)

The optimal feedback gain K(t) can be calculated by solving
an additional LQR problem. For more information, see [6].

Using the projection operator allows the optimization
problem to be reformulated as an equivalent, unconstrained
optimization problem, where the goal is to minimize
J(P (ξ(t))), i.e.

arg min
ξ(t)

J(P (ξ(t))). (6)

Use of the projection operator has the advantage of removing
the nonlinear constraint imposed by the dynamics during the
descent direction search at each iteration.

D. Optimization Algorithm
In order to use standard, first-order iterative optimization

methods such as steepest descent, a descent direction ζi(t)
must be calculated at every iteration i of the optimization
algorithm. The steepest descent direction is obtained by
minimizing a quadratic model of the form

ζi(t) = arg min
ζi(t)∈Tξi

T
DJ(P(ξi(t))) ◦ ζi(t) + 1

2 �ζi(t), ζi(t)�

(7)

where TξiT is the tangent space of the trajectory manifold.
It is proven in [6] that solving Eq. (7), where ζi(t) is
constrained to lie on the tangent space of the trajectory
manifold, is a more convenient, equivalent, way of solving
the unconstrained problem due to properties of the projection
operator.

The basic algorithm is outlined in Algorithm 1. The
descent direction search occurs in the tangent space of the

Algorithm 1 Steepest Descent for Ergodic Trajectory Opti-
mization

Calc. φk

Init. ξ0 ∈ T , tolerance �
while DJ(ξi) ◦ ζi > � do

Calculate descent direction:
ζi = arg min

ζi∈Tξi
T

DJ(ξi) ◦ ζi + 1
2 �ζi, ζi�

Calculate step size γi using Armijo linesearch [15]
Project the update:

ξi+1 = P(ξi + γiζi)
i=i+1

end while



trajectory manifold at the current iteration. As shown in the
next section, the optimization in Eq. (7) involves only linear
and quadratic terms in ζi, which can be solved using LQR
techniques [6]. An Armijo linesearch is used to calculate
the step size for each descent direction, ensuring sufficient
decrease in the objective function [15]. After direction and
step size have been calculated, the update step projects the
new iterate onto the trajectory manifold.

E. Defining the LQR Problem
In this section, we will assume that the objective function

can be written as a function of a feasible trajectory η(t), as
follows

J(η(t)) =q
K�

k=0

Λk

�
1

T

� T

0
Fk(x(τ))dτ − φk

�2

+

� T

0

1
2u(τ)R(τ)u(τ). (8)

This is assumption can be made because each update is
projected onto the feasible space, therefore each iteration
begins on the trajectory manifold.

First, we show that directional derivative in the first term
of Eq. (7) is linear in the descent direction ζ(t). Second,
we define the inner product in the second term of Eq. 7,
and show that the resulting expression can be rearranged
as a Bolza problem. Third, the linearization of the dynamic
constraint is provided. These three definitions result in an a
model that is linear and quadratic in the descent direction,
which can be solved using LQ techniques [6].

1) Linearization of DJ(η(t)) ◦ ζ(t): Equation (8) is
linearized by taking the directional derivative of J(η(t)) in
the direction ζ(t), where ζ(t) = (z(t), v(t)), resulting in

DJ(η(t)) ◦ ζ(t) =q
K�

k=0

Λk

�
2

�� T

0

1

T
Fk(x(σ))dσ − φk

�

◦
� T

0

1

T
DFk(x(τ)) ◦ z(τ)dτ

�

+

� T

0
R(τ)u(τ) ◦ v(τ)dτ.

This expression can be rearranged, pulling the expression
in parentheses into the second integral over τ , and switching
the order of the integral and summation, to the following:

DJ(η(t)) ◦ ζ(t) =
� T

0
q

K�

k=0

Λk

�
2

�� T

0

1

T
Fk(x(σ))dσ − φk

�

◦ 1
T
DFk(x(τ))

�
◦ z(τ) +R(τ)u(τ) ◦ v(τ)dτ.

Defining

aT (τ) =q
K�

k=0

Λk

�
2

�� T

0

1

T
Fk(x(σ))dσ − φk

�

◦ 1
T
DFk(x(τ))

�
,

and bT (τ) = R(τ)u(τ), DJ(η(t)) ◦ ζ(t) can be written

DJ(η(t)) ◦ ζ(t) =
� T

0
aT (τ) ◦ z(τ) + bT (τ) ◦ v(τ)dτ,

which is linear in ζ(t) = (z(t), v(t)).
2) Definition of 1

2 �ζ, ζ�: The second term in Eq. (8) can
be defined as

1
2 �ζ, ζ� =

� T

0

�
1
2z(τ)

TQn(τ)z(τ) +
1
2v(τ)Rn(τ)v(τ)

�
dτ

+ 1
2z(T )

TP1nz(T )

Where Qn and P1n are arbitrary positive semi-definite matri-
ces and Rn is positive definite. See [6] for more information.

3) Linearization of the Constraint: Because the descent
direction ζi(t) is constrained to lie in the tangent space of the
trajectory manifold, it must satisfy the differential equation

żi(t) = A(t)zi(t) +B(t)vi(t),

where A(t) = D1f(xi(t), ui(t)) and B(t) =
D2f(xi(t), ui(t)), a linear equation in ζi(t).

The LQR formulation of Eq. (7) is therefore

arg min
ξ

� T

0
aT z + bT v + 1

2z(τ)
TQn(τ)z(τ)

+ 1
2v(τ)Rn(τ)v(τ)dτ + 1

2z(T )
TP1nz(T ),

subject to

ż(t) = A(t)z(t) +B(t)v(t) z(0) = z0.

The problem reduces to solving a linear quadratic optimal
control problem for the descent direction at each iteration.
This solution is found using the standard Ricatti differential
equations [6], [16].

V. SIMULATED EXAMPLE

In order to demonstrate the proposed ergodic trajectory
optimization for a nonlinear, dynamic system, a simula-
tion was carried out for a sensor traversing two different
PDFs in two dimensional space, using a simple kinematic
model for the sensor dynamics. The state for this model is
x(t) = (X(t), Y (t), θ(t)) where X(t) and Y (t) are cartesian
coordinates and θ(t) is the heading angle. The control is
u(t) = (v(t),ω(t)) where v(t) is forward velocity and ω(t)
is the angular velocity. The dynamics of the model are

f(x) =




cos (x3(t)) 0
sin (x3(t)) 0

0 1



 · u(t). (9)

Figure 2 shows an optimally ergodic trajectory for the
dynamics in Eq. 9 with respect to a bimodal Gaussian PDF,
shown as level sets in Fig. 2. For the trajectory shown in
Figure 2, the optimization was initialized to a figure-eight-
like pattern, chosen as an initialization which approximates
uniform coverage. The trajectory used as the initialization
is shown as a dotted black line. The optimized trajectory is
plotted in white, using the termination criteria that ||DJ(·)◦
ζ|| converge to zero within a tolerance of 10−3.



Fig. 2: Initial and optimal trajectories for a bimodal PDF and the dynamics
of Eq. 9. Grayscale contours represent the spatial distribution; the initial
trajectory is plotted in black, the optimized trajectory in white.

Qualitatively, whereas the initial trajectory explores the
domain approximately uniformly, the optimized trajectory
spends more time near the peaks of the PDF. Figure 3
compares the PDF representing the spatial distribution, and
the PDFs representing the time-averaged trajectories for the
initial trajectory in Fig. 3(b), and the optimized trajectory in
Fig. 3(c). After applying the optimization, the PDF in Fig.
3(c) closely matches the spatial PDF in Fig. 3(a).

The optimization was applied over the same distribution

(a) 3D Plot of the spatial PDF shown
in Fig. 2

(b) PDF representing time-
averaged initial trajectory (dotted
black line in Fig. 2)

(c) PDF representing time-
averaged optimized trajectory
(white line in Fig. 2)

Fig. 3

(a) (b)

Fig. 4: Initial (black) and optimal (white) trajectories over the same PDF
as an Fig. 2, for two different initial trajectories.

(a) (b)

Fig. 5: Initial (black) and optimal (white) trajectories (white) shown over
an alternate PDF for two initializations.

for two additional initial trajectories. Figure 4 shows two
alternate locally optimally ergodic trajectories (plotted in
white) over the same PDF. The optimizations in Fig. 4 were
initialized with different initial conditions for the dynamic
equations and different initial trajectories for the optimiza-
tion, once again plotted in black. The objective function
derived only requires that the time averaged statistics of the
trajectory converge towards the spatial statistics; depending
on what initialization is used for the optimization, the tra-
jectory may therefore look very different, although the time-
averaged statistics are similar.

The algorithm was also applied over a different spatial
distribution using two different initializations, shown in
Fig 5. Once again, the optimized trajectories are different
for different initializations, although both spend a greater
percentage of time in areas of the PDF where the density is
highest.

Sensitivity of the optimization method to the initialization
is likely the result of several factors. Because a finite
number of basis functions were used to represent spatial
and time-averaged PDFs, some inherent smoothing of the
time-averaged data occurs. The loss of resolution results in
similar approximation of different trajectories for a finite
number of basis functions. This could be remedied by using
larger numbers of basis functions, however an increasing
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Fig. 6: Plot of the decay of the ergodic metric from Eq. 1. The legend cor-
responds to which figure shows the optimal trajectory the line corresponds
to; Fig. 2, Fig. 4(a),(b) or Fig. 5(a),(b).

the number of basis functions increases computational cost.
Analysis of the tradeoff between computational cost and ben-
efits of finer resolution will be left to future work, however
Fig. 6 demonstrates that for number of basis functions used
here, the trajectories all provide similarly optimally ergodic
solutions.

As mentioned, the optimal trajectories for all five initial-
izations over both PDFs satisfy the necessary conditions of
optimality, i.e. ||DJ(·) ◦ ζ|| converges to zero within the
chosen tolerance; the trajectories are all local minima of the
objective function in neighborhoods around the initial trajec-
tories. The decay of the ergodic metric E with each iteration
of the optimization is shown in Fig. 6 for all five trajectories.
The value of the metric decays very quickly, with 99% of the
benefit of the continuous time algorithm realized after fewer
than 10 iterations of the. Therefore, while this approach is
more computationally expensive per iteration compared to
greedy approaches, such as the controller designed in [5], a
small number of iterations results in significant improvement
of the ergodicity.

VI. CONCLUSION

In this paper, a method is presented for determining
optimal exploration trajectories with respect to a given
information density. The problem is cast as an infinite-
dimensional trajectory optimization, where the objective
function is defined by the distance from ergodicity between
a spatial PDF, representative of the information density over
the exploration region and the time-averaged behavior of the
continuous trajectory. The ergodic metric presented in [5] is
used to formulate an iterative descent algorithm is derived for
calculating a receding horizon control strategy. The algorithm
is formulated for general nonlinear dynamics, and provides
a continuous-time optimal control solution. The method is
demonstrated for a kinematic model of sensor dynamics, over
two different spatial PDFs from different initial conditions.
Simulations demonstrate that a small number of iterations
result in dramatic decrease in the objective function.

Ultimately, this method has potential applications in a
multi-scan exploration or detection algorithm for general
exploration problems. Future work will involve applying
this method to experimental sensor models. Additionally,
second-order optimality conditions will be derived in order
to increase convergence rates. One of the limitations of this
approach is that the sampling time-horizon is fixed. Analysis
of the effects of the length of the time horizon and the
properties of the resulting trajectory is planned for future
work.
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