
Projection-Based Optimal Mode Scheduling

T. M. Caldwell and T. D. Murphey

Abstract— This paper develops an iterative optimization tech-

nique that can be applied to mode scheduling. The algorithm

provides both a mode schedule and timing of that mode

schedule with convergence guarantees. Moreover, the algorithm

takes advantage of a line search, and the number of iterations

in the line search is bounded. There are two key ingredients

in the algorithm. First, a projection operation is used that

takes arbitrary curves and maps them to feasible switching

controls. Second, a descent direction that incorporates the

projection is calculated using the mode insertion gradient.

Similar to derivative-based finite dimensional optimization, the

convergence guarantees and sufficient decrease criteria follow

from a local approximation of the cost in the direction of the

search direction, but this local approximation is not the stan-

dard quadratic approximation. An example demonstrates the

steps to implement the optimization algorithm and illustrates

convergence.

I. INTRODUCTION

This paper is concerned with the problem of switched sys-
tem optimal control. Switched systems evolve over distinct
dynamic modes, transitioning between the modes at discrete
times. The problem is to schedule the modes—i.e. calculate
the sequence of modes and the transition times—that opti-
mize a performance index. As is common, we parameterize
the mode schedule by a set of functions of time, u(t),
with values constrained to be either 0 or 1 [2], [3], [15].
While in general, optimization based on differentiability
is not applicable to integer constrained problems, we use
a projection-based technique so that the mode scheduling
problem shares underlying principles, particularly absolute
continuity of line search.

Projection operators are commonly employed to solve
constrained optimization problems. For example, in [14], the
gradient projection method is reviewed for finite dimensional
inequality constrained optimization. Furthermore, in [9], a
projection operator is used for optimal control of trajectory
functionals.

Optimization techniques based on differentiability locally
approximate the cost function in order to calculate a new
estimate of the optimum [14]. In finite dimensions, the
descent direction is calculated from the gradient and Hessian
which give the first- and second-order approximations of the

This material is based upon work supported by the National Science
Foundation under award IIS-1018167 as well as the Department of Energy
Office of Science Graduate Fellowship Program (DOE SCGF), made pos-
sible in part by the American Recovery and Reinvestment Act of 2009,
administered by ORISE-ORAU under contract no. DE-AC05-06OR23100

T. M. Caldwell and T. D. Murphey are with the Department of Mechanical
Engineering, Northwestern University, 2145 Sheridan Road Evanston, IL
60208, USA E-mail: caldwelt@u.northwestern.edu ;

t-murphey@northwestern.edu

cost [14]. Furthermore, tests such as descent direction and
sufficient descent depend on the gradient [1], [14].

In this paper, we continue our projection-based switched
system work in [4], [5]. In [4] we showed equivalency
between the projection-based switched system optimum with
a hybrid maximum principle. In [5] we showed that the cost
is absolutely continuous with respect to a search direction.
With such a property one may expect a line search will result
in sufficient descent guarantees for convergence. Indeed, this
paper finds this expectation to be true.

For projection-based optimal mode scheduling, the state,
x, and switching control, u, are unconstrained. In other
words, x and u need not satisfy the dynamics and the value
of u need not have integer value 0 or 1. However, unlike
embedding methods [2], [15], [19] which embed u(t) in
the interval [0, 1], the cost J is calculated on the projection
P of (x, u) onto the set of non-chattering switched system
trajectories. In comparison to insertion methods [7], [8], [18]
since u is not constrained to the integers the local variations
are curves in L2[0, T ] as opposed to necessarily being needle
variations.

While the underlying strategy presented in this paper
is fundamentally different to insertion methods, the high
level algorithm is the same—i.e. to iteratively alter the
mode schedule so that there are guarantees on convergence.
Furthermore, both strategies base update decisions using the
mode insertion gradient, defined in the insertion literature. In
[7], [8], the insertion time and inserted mode are calculated
directly from the mode insertion gradient, while in [18] the
insertion duration is also calculated using an Armijo-like line
search. In this paper, the negative mode insertion gradient is
an L2[0, T ] variation and is a search direction similar to the
negative gradient in derivative-based numerical optimization.

In this paper, we propose an iterative mode schedule
optimization algorithm. The contributions of this paper are:
(A) Approximation of the cost function in the direction of the
negative mode insertion gradient. (B) Showing the negative
mode insertion gradient is a descent direction. (C) Testing
for sufficient descent. (D) Showing that backtracking will
calculate a step size that satisfies sufficient descent in a finite
number of iterations. Similar to optimization techniques
based on differentiability, we will find that Contributions
B, C, and D follow largely from Contribution A. We show
Contributions C and D for the descent direction calculated
from the mode insertion gradient. We leave the results for
general descent directions to future work.

This paper is organized as follows: Review of the pro-
jection operator, projection-based optimal mode scheduling,
and the mode insertion gradient is in Section II. Section III



reviews the iterative optimization algorithm and discusses
the challenges of calculating a step size for convergence
guarantees. Section IV examines the derivative of the cost
with respect to the switching times. Contribution A, the
local approximation of the cost, is in Section V. Showing
the negative mode insertion gradient is a descent direction,
Contribution B, is in Section VI. Section VII presents both
the sufficient descent and backtracking, Contributions C and
D. Finally, examples are in Section VIII.

II. REVIEW

The following reviews switching control of switched sys-
tems [4], [5], the switching time gradient [3], [7], [10], [20],
the max-projection operator for switched systems [4], [5],
projection-based optimal mode scheduling [4], [5], and the
mode insertion gradient [7], [8], [18].

A. Switched Systems
A switched system evolves according to one of N modes

fi : Rn ! R, i 2 {1, . . . , N} at any time. The control
problem is to determine the schedule over the time interval
[0, T ] where final time T > 0. Note we will alternatively
label the initial time T0 := 0 and final time TM := T .
We consider three representations to parameterize a switched
system: mode schedule, switching control, and active mode
function. Each representation is equivalent in that a unique
mapping exists between each. Depending on the material,
one of the representations is often clearer for presentation
than the others. For this reason, throughout the paper, we will
switch between the representations. The three representations
are:

Definition 1: The mode schedule is composed of the pair
{⌃, T } where ⌃ = {�1, . . . ,�M} is the mode sequence
and T = {T1, . . . , TM�1} is the strictly monotonically
increasing set of switching times. Here, each mode is �i 2
{1, . . . , N}, each switching time is Ti 2 [0, T ], and the total
number of modes in the mode sequence is M 2 N.1

Definition 2: The curve u = [u1, . . . , uN ]

T composed of
N piecewise constant functions of time is a switching control
if

• for almost each t 2 [0, T ],
PN

i=1 ui(t) = 1, and for
each i 2 {1, . . . , N}, ui(t) 2 {0, 1}, and

• for each i 2 {1, . . . , N}: ui does not chatter—i.e. in
the time interval [0, T ], the number of times each ui

switches between values 0 and 1 is finite.
Denote the set of all admissible switching controls as ⌦.

Definition 3: The piecewise constant function of time � :

[0, T ] ! {1, . . . , N} is an active mode function if � does
not chatter—i.e. in the interval [0, T ], the number of times
� switches between values {1, . . . , N} is finite.

A unique mapping exists between each representation:
(mode schedule!switching control) given a mode sched-
ule, {⌃, T }, the switching control u is u(t) = e�i for
t 2 [Ti�1, Ti), i = 1, . . . ,M where e�i is the �th

i

vector of the N dimensional identity matrix; (switching

1We define the naturals N as the positive integers {1, 2, . . .}.

control!active mode function) given a switching con-
trol u 2 ⌦, the active mode function � for each
time t 2 [0, T ] is the �(t) 2 {1, . . . , N} for which
e�(t) = u(t); (active mode schedule!mode schedule)
given an active mode function �(t), the mode schedule
is (⌃, T ) = ({�1, . . . ,�M}, {T1, . . . , TM�1}) where T =

{t 2 [0, T ]|�(t+) 6= �(t�)} and �i = �(t) for t 2 [Ti�1, Ti),
i = 1, . . . ,M . We will write (⌃(u), T (u)), when it is
necessary to be explicit the switching control the mode
schedule corresponds to.

A switched system is then the state and the switching
control, (x, u)—alternatively, (x, (⌃, T )) or (x,�)—that sat-
isfies the state equations. Let X and U be sets of Lebesgue
integrable functions from the time interval [0, T ] to, respec-
tively, Rn and RN . Consider a switched system with n
states x = [x1, . . . , xn]

T 2 X , and N switching controls
u = [u1, . . . , uN ]

T 2 U . The switched system state equations
are given by

ẋ(t) = F (x(t), u(t)) :=

N
X

i=1

ui(t)fi(x(t)), x(0) = x0.

(1)
Formally, define a switched system as:

Definition 4: The pair (x, u) 2 X ⇥U is a non-chattering
switched system if

• u 2 ⌦ and
• x(t) � x(0) �

R t

0 F (x(⌧), u(⌧))d⌧ = 0 for almost all
t 2 [0, T ].2

Denote the set of all such pairs of state and switching
controls by S .

B. Switching Time Gradient

The problem of optimizing the switching times when the
mode sequence is fixed is considered in [3], [7], [10], [20].
Consider the problem

min

T
J(T ) :=

Z T

0
`(x(⌧))d⌧

constrained to the state equation Eq.(1) with fixed ⌃. Sup-
posing each mode, fi(x(t)), and the running cost, `(x(t)), is
C1, the ith switching time derivative of the cost is ([3], [7],
[11], [10], [20])

DTiJ(T ) = ⇢T (Ti)(f�i(x(Ti))� f�i+1(x(Ti))) (2)

where x is the solution to the state equations, Eq.(1), and ⇢
is the solution to the following adjoint equation

⇢̇(t) = �Df�i(x(t))
T ⇢(t)�D`(x(t))T ,

Ti�1 < t < Ti for i 2 {1 . . . ,M} (3)

where ⇢(T ) = 0.

2The integral is the Lebesgue integral.



C. Projection Operator

In [4], [5], we propose the max-projection operator. The
projection maps curves from the unconstrained set X ⇥ U
to the set of non-chattering switched systems, S . In order
to define the max-projection, we first define the mapping
Q : U ! ⌦. Suppose µ 2 U , then

Qi(µ(t)) :=

N
Y

j 6=i

1(µi(t)� µj(t)). (4)

where 1 : R ! {0, 1} is the step function—i.e. 1(µi(t) �
µj(t)) = 0 if µi(t)� µj(t) < 0 and 1(µi(t)� µj(t)) = 1 if
µi(t)� µj(t) � 0. Note Q is not well defined for all curves
in U . For example, µi and µj may have equal greatest value
for a connected interval of time. For this reason, let us only
consider a subset R ⇢ U for which Q is well defined and
maps to ⌦. We refer to this subset as the admissible subset
of U . In [5], we give a sufficient condition for a form of µ
to be an element of R.

Now, define the max-projection as:
Definition 5: Take µ 2 R. The max-projection, P : X ⇥

R ! S , at time t 2 [0, T ] is

P(↵(t), µ(t)) :=

⇢

ẋ(t) = F (x(t), u(t)), x(0) = x0

u(t) = Q(µ(t)).
(5)

Notice the max-projection does not depend on ↵. The
unconstrained state is included in the left hand side of the
definition in order for P to be a projection. Other projections
proposed in [4] do depend on ↵.

D. Projection-Based Optimal Mode Scheduling

Define the usual cost function as

J(x, u) =

Z T

0
`(x(⌧), u(⌧))d⌧

where the running cost, ` : X ⇥ U ! R is continuously
differentiable with respect to both X and U . The problem
of interest is to minimize J with respect to x and u under
the constraint that x and u constitute a feasible switched
system—i.e. (x, u) 2 S .

This paper furthers our work in [4], [5], in which we
consider an equivalent problem to the constrained problem
where the design variables are elements of an unconstrained
set (X ,U) and the cost is evaluated on the projection of
the design variables to the set of feasible switched system
trajectories:

Problem 1: Suppose P : X ⇥U ! S is a projection—i.e.
P(P(↵, µ)) = P(↵, µ). Solve

arg min

(↵,µ)2X⇥U
J(P(↵, µ)).

Notice the cost is calculated on admissible state and switch-
ing control trajectories. Furthermore, Problem 1 is equivalent
to the constrained problem argmin(x,u)2S J(x, u) [4], [5].

E. Mode Insertion Gradient
For projection-based switched system optimization, the

cost does not have a natural gradient. However, it does
have a function with a similar role in the optimization as
the gradient does for finite dimensional optimization. This
function is referred to as the mode insertion gradient [7],
[8], [18]. The mode insertion gradient calculates the change
to the cost from inserting a mode at some time t for an
infinitesimal interval. The mode insertion gradient at time
t 2 [0, T ] and mode a 2 {1, . . . , N} is

da(t) := ⇢(t)T (fa(x(t))� f�(t)(x(t))) (6)

where ⇢ is the solution to the adjoint equation Eq.(3) and
�(t) is the active mode function [7], [8], [18]. Since the
mode insertion gradient can be calculated for each t 2 [0, T ]
and mode a 2 {1, . . . , N}, define d : [0, T ] ! RN to
be the mode insertion gradient of u.3 It is the list of the
N mode insertion gradients of each mode—i.e. d(t) =

{d1(t), . . . , dN (t)}.
In Section VII-A, the proof of sufficient descent relies

on the assumption that ¨dab(t) := ¨da(t) � ¨db(t) is Lipschitz
continuous. The following Lemma gives the conditions on
fa and fb to ensure this assumption is valid.

Lemma 1 (Lipschitz condition for ¨dab(t)): Suppose
d is the mode insertion gradient for some u 2 ⌦. If there
exists K2 > 0 such that for each t 2 [0, T ], x(t) 2 Rn and
for each j 2 {1, . . . , N}, fj(x(t)) is C2 and kD2fj(x(t))k 
K2 then there is an L > 0 such that for each a 6= b 2
{1, . . . , N} and t1, t2 2 [0, T ],

| ¨dab(t2)� ¨dab(t1)|  L|t2 � t1|
Proof: First, dab = ⇢(t)T (fa(x(t)) � fb(x(t))) where

the state and adjoint equations are in Eqs.(1) and (3). Con-
sider each t 2 [0, T ], x(t) 2 Rn and j 2 {1, . . . , N}. Since
kD2fj(x(t))k < K2, there is a K0 > 0 and K1 > 0 such
that kfj(x(t))k  K0 and kDfj(x(t))k  K1. Therefore,
for all u 2 ⌦, ẋ(t) = F (x(t), u(t))  K0 and

ẍ(t) = D1F (x(t), u(t))F (x(t), u(t))  K0K1.

By the assumptions on F (x(t), u(t)), for u 2 ⌦,
F (x(t), u(t)) is piecewise continuous with respect to t and
Lipschitz with respect to x(t). Therefore, x(t;u), defined as
the solution to Eq.(1) for u 2 ⌦, is unique.

Define g(⇢(t)) := �D1F (x(t;u), u(t))T ⇢(t) �
D`(x(t;u)).
Since kD1F (x(t;u), u(t))k  K1 and D1F (x(t;u), u(t))
is piecewise continuous in t for all u 2 ⌦,

kg(⇢2(t))� g(⇢1(t))k
 kD1F (x(t;u), u(t))T kk⇢2(t)� ⇢1(t)k
= K1k⇢2(t)� ⇢1(t)k.

(7)

Therefore, ⇢(t;u), defined as the solution to Eq.(3) for u 2
⌦, is unique. Thus, there is a K 0

0 > 0 such that for all u 2 ⌦,
⇢(t;u)  K 0

0. Additionally, there is a K 0
1 > 0 such that for

3In this paper, the mode insertion gradient is defined as d, an n-
dimensional list of curves, while in [7], [8], [18], the mode insertion gradient
is da(t), the evaluation of d for the a

th mode at time t.



all u 2 ⌦, k⇢̇(t;u)k = kg(⇢(t;u))k  K 0
1. It follows that

for each t1, t2 2 [0, T ], k⇢(t2;u)� ⇢(t1;u)k < K 0
1|t2 � t1|.

From Eq.(7), there is L1 such that k⇢̇(t2;u) � ⇢̇(t1;u)k 
L1|t2 � t1|. Note,

⇢̈(t;u) = �D2
1F (x(t;u), u(t)) � (⇢(t;u), F (x(t;u), u(t)))

�D1F (x(t;u), u(t))T ⇢̇(t;u)
�D2`(x(t;u))F (x(t;u), u(t)).

By the bounds on F (·, ·), DF (·, ·), and D2F (·, ·), and that
⇢(t;u) and ⇢̇(t;u) are Lipschitz, there is L2 > 0 such that
k⇢̇(t2;u)� ⇢̇(t1;u)k  L2|t2 � t1|. Finally, by these bounds
and that ⇢(t;u), ⇢̇(t;u) and ⇢̈(t;u) are Lipschitz, ¨dab is
Lipschitz with some constant L > 0.

III. ITERATIVE OPTIMIZATION

This paper pursues the problem of calculating the switch-
ing control u and switched system state x that optimize
the performance metric J(x, u) using projection-based tech-
niques. Similar to derivative-based algorithms for optimiza-
tion, an iterative algorithm is proposed.

Iterative optimization methods compute a new estimate of
the optimum by taking a step in a search direction from the
current estimate of the optimum so a sufficient decrease in
cost is achieved. The descent must be sufficient so that the
sequence generated by the iterative optimization algorithm
converges to a stationarity point—or at least for an optimality
function to go to zero.

The problem of convergence of iterative optimization
algorithms is considered for both smooth [1], [14], [16] and
non-smooth problems [12], [13]. Polak and Wardi, in [17],
consider the case where the cost minimizing sequence is
not guaranteed—or even likely—to have an accumulation
point. In the context of this paper, the set of control inputs
is infinite-dimensional and incomplete and therefore, the se-
quence of control inputs calculated by the iterative algorithm
to minimize the cost might not have an accumulation point.
Indeed, in Wardi’s recent work with Egerstedt, [18], on
switched system optimization, Wardi and Egerstedt argue this
point when comparing their iterative algorithm and conver-
gence results to Gonzalez et al.’s similar results [8]. Wardi
and Egerstedt give their convergence result with respect to
an optimality function going to zero while Gonzalez et al.
assume an accumulation point exists. We provide a similar
result to Wardi and Egerstedt in Section VII-C.

The iterative method follows. Note, in the algorithm and
for the rest of the paper, a variable with the superscript k
implies that the variable depends directly on uk.

Algorithm 1: Choose u0 and set k = 0.4

1) Calculate �dk, Eq.(6).
2) Calculate step size �k by backtracking, Section

VII-B.
3) Update: uk+1

= Q(uk � �kdk)—Eq. (4).
4) If uk+1 satisfies a terminating condition, then exit,

else, increment k and repeat from step 1.

0

1

t

uk
1(t) uk

2(t)

0

1

t

�dk1(t)
�dk2(t)

0

1

t

uk+1
= Q(uk � �kdk)

0 T

�k = 1

uk+1
1 (t) uk+1

2 (t)

�✓k

t0

Fig. 1. Example curves u

k = [uk
1 , u

k
2 ]

T 2 ⌦ and �d

k = [�d

k
1 ,�d

k
2 ]

T

as well as the updated curve u

k+1 = Q(uk � �

k
d

k) where �

k = 1.
The value �✓

k is given in Eq.(8) where t0 is shown, the active mode is
�

k(t0) = 2 and the inserted mode is a0 = 1.

Calculating �k correctly is critical for the sequence of uk

generated by executing the algorithm to locally minimize the
cost. Remarks:

1) The negative mode insertion gradient, �dk must be
a descent direction in order to guarantee there is a
�k 2 R+ for which J(uk+1

) < J(uk
). The definition

of and proof that �dk is a descent direction are given
in Section VI.

2) The step size �k must be chosen so that a sufficient
descent is achieved—i.e. so that if the algorithm calcu-
lates an infinite sequence {uk} then limk!1 J(uk

) has
locally minimal value. The sufficient descent condition
and proof of existence of a step size achieving sufficient
descent is in Section VII-A. Furthermore, Section VII-B
considers backtracking for calculating such a step size.

An example of one iteration of Algorithm 1 is in Fig.1.
Notice in the example, the number of modes in the mode
sequence of Q(uk��kdk) increases by 4 compared with the
mode sequence of uk. Also notice if �k were much smaller
than 1 then uk+1 would equal uk. In other words, �k must
be large enough for Q(uk � �kdk) 6= uk.

Note for the rest of the paper: Since the search direction is
the negative mode insertion gradient, �dk, calculated from
uk, we assume the conditions in Lemma 1 are true. In other
words,

• the state xk—calculated as the solution to the state
equations, Eq.(1), with switching control uk—is such
that xk

(t) 2 Rn for each t 2 [0, T ],
• for each i 2 {1, . . . , N}, fi 2 C2, and
• there is K > 0 such that for each t 2 [0, T ] and i 2

{1, . . . , N}, kD2fi(x
k
(t))k  K.



A. Sufficiently Large Step Size for Differing Mode Schedules
As can be seen in Fig.1, if �k is small enough, then Q(uk�

�kdk) equals uk and the updated mode schedule does not
differ from the previous mode schedule. In other words, there
is �k0 > 0 such that for every � 2 [0, �k0 ),

uk
= Q(uk � �dk).

We wish to calculate �k0 . Define �k
(t) 2 {1, . . . , N} as the

active mode of uk at time t. By Eq.(4), for Q(uk � �dk)
to differ from uk, there must be a time t 2 [0, T ] and
mode a 2 {1, . . . , N}, a 6= �k

(t), for which uk
a�k(t)(t) �

�dka�k(t)(t) > 0. Note, uk
a�k(t)(t) := uk

a(t) � uk
�k(t)(t) =

�1 and dka�k(t)(t) = dka(t). Therefore, this � must be
greater than �1/dka(t). Consequently, there must be a a 2
{1, . . . , N} and t 2 [0, T ] for which dka(t) is negative valued
in order for the mode schedule of Q(uk � �dk) to change
for any �.

The lower bound on R+ for which uk 6= Q(uk � �dk),
labelled �k0 , is calculated from the pair (a0, t0):

(a0, t0) = arg min

a2{1,...,N},t2[0,T ]
dka(t)

Define ✓k 2 R:
✓k := dka0

(t0). (8)

This value is pictured in Fig.1. Finally,

�k0 := � 1

✓k
. (9)

Note ✓k is always non-positive since dk�k(t)(t) = 0 for
all t 2 [0, T ]. Since as ✓k ! 0, �k0 ! 1, we use ✓k

as the optimality function for testing when to terminate
Algorithm 1. Equivalent calculations to ✓k are used in the
mode insertion gradient literature, [7], [8], [18].

IV. DERIVATIVE OF THE COST WITH RESPECT TO THE
STEP SIZE

In the optimization procedure Algorithm 1, a new estimate
of the optimum is obtained by varying from the current
estimate and projecting the result to the set of feasible
switched system trajectories. Fix uk 2 ⌦. We consider the
cost as a function of only the step size �. Define

Jk
(�) := J(P(uk � �dk)),

which is only variable on � 2 R+. Recall Contribution A of
the paper. We wish to approximate Jk

(�) near �k0 . In order
to do so we must first investigate the derivative of Jk

(�).
Note, when the mode sequence is constant, only the

switching times of Q(uk � �dk) vary as � varies. Define
�

k as the � 2 R+ where the mode sequence changes.5

�

k
:= {� 2 R+|8�� > 0, 9�0 2 B��(�) \ R+,

where ⌃(Q(uk � �dk)) 6= ⌃(Q(uk � �0dk))}.
The mode sequence is constant for all � 62 �u,v and only
the switching times vary. For this reason, we use the mode
schedule representation. Define ⌃k

(�) := ⌃(Q(uk��dk)) =

5The ball B��(�) = (� � ��, � + ��).

{�1, . . . ,�M} and T k
(�) := T (Q(u��dk)) = {T1(�), . . . ,

TM�1(�)}. The cost parameterized by the mode schedule is

J(⌃k
(�), T k

(�)) := Jk
(�)

Assuming the cost is differentiable at �, the derivative of the
cost with respect to � is

DJk
(�) = D2J(⌃

k
(�), T k

(�)) ·DT k
(�) (10)

where D2J(⌃
k
(�), T k

(�)) is the switching time gradient,
Eq.(2), and DT k

(�) is the derivative of the switching times
with respect to the step size and is given in the following
lemma. The proof is in [5].

Lemma 2 (Derivative of switching times): If uk 2 ⌦ and
� /2 �u,v—i.e. ⌃k

(�) is constant—, then the ith element of
the derivative of T k

(�), DT k
(�)i = DTi(�), is given for

the following two cases:
1) If Ti(�) is not a critical time of µk

�i�i+1
:= uk

�i�i+1
�

�dk�i�i+1
, then

DTi(�) = �
uk
�i�i+1

(Ti(�))

�2 ˙dk�i�i+1
(Ti(�))

, (11)

2) or if Ti(�) is a discontinuity point of µk
�i�i+1

and 0 2
(µk

�i�i+1
(Ti(�)

�
), µk

�i�i+1
(Ti(�)

+
)), then DTi(�) = 0.

As follows from Eq.(10), the derivative of the cost,
DJk

(�) is given by the dot product of the result in Lemma 2
with the switching time gradient, Eq.(2), as long as the mode
sequence is constant and each switching time satisfies the
conditions for either case 1 or case 2. In general, the deriva-
tive will not exist everywhere. For example, DJk

(�) goes
unbounded for � where Q(uk � �dk) has a switching time
Ti(�) that approaches tcrit 2 [0, T ] where ˙dk�i�i+1

(tcrit) =
0—see Eq.(11). In fact, the derivative of the cost will likely
go unbounded at �k0 since ˙d�i�i+1(t) = 0 at maximum and
minimum points. When this is the case, the cost can not
be approximated at �k0 directly using a Taylor expansion.
However, the cost may still be approximated, as we will see
in the next section.

V. APPROXIMATION OF THE COST AND SWITCHING
TIMES

Many of the algorithms and theory in optimization is
designed from local approximations of the cost function.
Indeed, the gradient and Hessian are the solutions to local
quadratic models [21]. Also, there are derivative-free meth-
ods that make descent decisions based on local approxima-
tions [14].

For the projection-based optimal mode scheduling prob-
lem, the design variable µ is infinite dimensional and U
does not form a Hilbert space. Therefore, the gradient of
the cost is not expected to exist. However, the cost may still
be approximated (Contribution A of the paper). This approxi-
mation will be useful for testing a candidate descent direction
(Contribution B), proving sufficient descent (Contribution C)
and designing a backtracking algorithm (Contribution D) as
we will see in Sections VI and VII.



0

1

t

uk
1(t) uk

2(t)

0 t

�dk1(t)�dk2(t)

µ = uk � �k0d
k

0

uk
2(t)

uk
1(t)

�dk2(t)

�dk1(t)

0

1

t

µ1(t)
µ2(t) µ2(t)

µ1(t)

Ti(�) Ti+1(�)Ti(�)

Fig. 2. Example curves of uk , �d

k and u

k ��

k
0 d

k showing type-1 (left)
and type-2 (right) switching times. The direction in time the switching times
for � > �

k
0 vary are also shown.

A. Approximation of the Switching Times

Recall Contribution A in which we wish to locally ap-
proximate Jk

(�) in a neighborhood of �k0 for � > �k0 .
There exists some �� > 0 for which ⌃

k
(�) is constant for

� 2 (�k0 , �
k
0 + ��), which follows from Lemma 3 of [5].

Consequently, only T k
(�) varies for � 2 (�k0 , �

k
0 + ��)

and the approximation of Jk
(�) depends directly on the

approximation of T k
(�).

For the mode schedule to vary for � 2 (�k0 , �
k
0 + ��),

at least one switching time of T k
(�k

+

0 ) must vary with �.
Suppose Ti(�) is this switching time separating modes �i 2
{1, . . . , N} and �i+1 2 {1, . . . , N} in the mode schedule.
Often, a function approximation is made from its Taylor ex-
pansion. For Ti(�), however, DTi(�

k+

0 ) may be unbounded
and in which case, Ti(�) would not have a first-order Taylor
expansion. Referring to Eq.(11), DTi(�

k+

0 ) is unbounded
when ˙dk�i�i+1

(Ti(�
k+

0 )) = 0 and since ˙dk�i�i+1
(·) = 0 at

extremums, it is likely for DTi(�
k+

0 ) to be unbounded. We
will shortly present an alternative approximation for when
˙dk�i�i+1

(Ti(�
k+

0 )) = 0, but since the approximation depends
on whether ˙dk�i�i+1

(Ti(�
k+

0 )) is zero or not, we label the
switching times at �k0 with a type.

Definition 6: Suppose uk 2 ⌦, �� > 0, and Ti(�) 2
T k

(�) is the switching time between modes �i and �i+1 2
⌃

k
(�) for � 2 (�k0 , �

k
0 + ��). The type of switching time

Ti(�) is mk
(Ti(�

k
0 )) 2 N where

mk
(Ti(�

k
0 )) = min{m 2 N|dk

(m)

�i�i+1
(Ti(�

k
0 )) 6= 0}

For the purposes of this paper, we will only consider type-1
and type-2 switching times since we do not foresee a reason
to expect type-3 or greater. In both examples in Section VIII,
only type-1 and type-2 switching times were encountered.
Fig.2 shows two example sets of curves �dk for which type-
1 (pictured left) and type-2 (pictured right) switching times
occur.

Before even considering an approximation of Ti(�) for
either type, we first show Ti(�) is continuous in a neighbor-
hood of Ti(�

k+

0 ).
Lemma 3 (Continuity of switching times): Suppose uk 2

⌦ and there exists �� > 0 such that for � 2 (�k0 , �
k
0 + ��),

Ti(�) 2 T k
(�) is the switching time between modes �i

and �i+1 2 ⌃

k
(�). If mk

(Ti(�
k
0 )) = 1 or 2, then there is

�� 2 (0, ��] such that for all � 2 [�k0 , �
k
0 + ��], Ti(�) is

continuous.
Proof: The proof follows from the two facts that

¨dk�i�i+1
(·) is Lipschitz and DTi(�) exists when Ti(�) is not

a critical point of µk
(·) := uk

�i�i+1
(·) � �dk�i�i+1

(·)—see
Lemmas 1 and 2 respectively.

If mk
(Ti(�

k
0 )) = 1, then ˙dk�i�i+1

(�k0 ) 6= 0. Since
¨dk�i�i+1

(·) is Lipschitz, ˙dk�i�i+1
(·) is continuous. Therefore,

there is �t 2 R such that for all Ti(�) 2 [Ti(�
k
0 ), Ti(�

k
0 ) +

�t], ˙dk�i�i+1
(Ti(�)) 6= 0. Since DTi(�) exists when

˙dk�i�i+1
(Ti(�)) 6= 0, there is �� 2 (0, ��] such that for all

� 2 [�k0 , �
k
0 + ��], Ti(�) is continuous.

Finally, If mk
(Ti(�

k
0 )) = 2, then ˙dk�i�i+1

(�k0 ) = 0

but ¨dk�i�i+1
(�k0 ) 6= 0. Furthermore, since ¨dk�i�i+1

(·) is
Lipschitz, there is �t 2 R such that for all Ti(�) 2
[Ti(�

k
0 ), Ti(�

k
0 ) + �t], dk�i�i+1

(Ti(�)) and ˙dk�i�i+1
(Ti(�))

are strictly monotonic. Consequently, ˙dk�i�i+1
(Ti(�)) 6= 0

for Ti(�) 2 (Ti(�
k
0 ), Ti(�

k
0 ) + �t] and thus by Lemma 2,

DTi(�) exists. It follows that there is �� 2 (0, ��] such
that for all � 2 (�k0 , �

k
0 + ��], Ti(�) is continuous. All

that remains is to prove Ti(�
k
0 ) is continuous from the

right. Recall uk
�i�i+1

(Ti(�)) � �dk�i�i+1
(Ti(�)) = 0 for

Ti(�) to be a switching time. Rewriting, dk�i�i+1
(Ti(�)) =

uk
�i�i+1

(Ti(�))/�. Since dk�i�i+1
(t) is strictly monotonic for

t 2 [Ti(�
k
0 ), Ti(�

k
0 ) + Ti(�

k
0 + ��)], dk�i�i+1

is bijective in
this domain and the inverse is continuous. Thus, Ti(�) =

dk
�1

�i�i+1
(uk

�i�i+1
(Ti(�))/�) where dk

�1

�i�i+1
(·) is the inverse

function of dk�i�i+1
(·). There is ✏ > 0, such that |Ti(�

k
0 ) �

Ti(�)| < ✏. Therefore,
�

�

�

�

�

dk
�1

ab

 

uk
�i�i+1

(Ti(�
k
0 ))

�k0

!

� dk
�1

ab

 

uk
�i�i+1

(Ti(�))

�

!

�

�

�

�

�

< ✏.

By the continuity of dk
�1

ab (·), there exists some �(✏) such that
�

�

�

�

�

uk
�i�i+1

(Ti(�
k
0 ))

�k0
�

uk
�i�i+1

(Ti(�))

�

�

�

�

�

�

=

�

�

�

�

� � �k0
��k0

�

�

�

�

< �(✏).

Following,

|���k0 | <
�

��(✏)��k0
�

� < min

n

�

�

�

�(✏)(�k
2

0 + �k0 )
�

�

�

, 1
o

=: �(✏),

which proves ✏� � continuity.
The approximation of Ti(�) for � > �k0 near �k0 when
mk

(Ti(�
k
0 )) = 1 or 2 is given in the following lemma.

Lemma 4 (Approximation of switching times):
Consider uk 2 ⌦. Suppose there exists �� > 0 such that

for � 2 (�k0 , �
k
0 + ��), Ti(�) 2 T k

(�) is the switching time
between modes �i and �i+1 2 ⌃

k
(�). There is �� 2 (0, ��]



such that for all � 2 [�k0 , �
k
0 + ��), mk

(Ti(�
k
0 )) = 1 implies

Ti(�) = Ti(�
k+
0 )�

uk
�i�i+1

(Ti(�
k+

0 ))dk
�i�i+1

(Ti(�
k+

0 ))2

ḋk
�i�i+1

(Ti(�k+
0 ))

(� � �k0 ) + o(� � �k0 )

(12)
and mk

(Ti(�
k
0 )) = 2 implies

Ti(�) = Ti(�
k+
0 )

±
h

�
2uk

�i�i+1
(Ti(�

k+

0 ))dk
�i�i+1

(Ti(�
k+

0 ))2

d̈k
�i�i+1

(Ti(�k+
0 ))

(� � �k0 )

hspace10pt+ o(� � �k0 )
i

1
2

(13)

Proof: For Ti(�) to be a switching time,
uk
�i�i+1

(Ti(�)) � �dk�i�i+1
(Ti(�)) = 0. Define

⌧(�) = Ti(�) � Ti(�
k
0 ). Begin with the case where

mk
(Ti(�

k
0 )) = 1. Taylor expand dk�i�i+1

(·) around Ti(�
k+

0 )

for a neighborhood of Ti(�
k+

0 ):

�
uk
�i�i+1

(Ti(�
k+

0 ))

�
+ dk�i�i+1

(Ti(�
k+

0 ))

+

˙dk�i�i+1
(Ti(�

k+

0 ))⌧(�) + o(⌧(�)) = 0.

Since ¨dk�i�i+1
(·) is Lipschitz, there is a �t 2 R such that

this equation is valid for each Ti(�) 2 [Ti(�
k
0 ), Ti(�

k
0 )+�t).

Further, due to Lemma 3, Ti(�) is continuous and therefore
there exists a ��0 2 (0, ��] such that this equation is
valid for � 2 [�k0 , �

k
0 + ��0). Noting dk�i�i+1

(Ti(�
k+

0 )) =

uk
�i�i+1

(Ti(�
k+

0 ))/�k0 and reordering,

⌧(�) =
uk
�i�i+1

(Ti(�
k+

0 ))

˙dk�i�i+1
(Ti(�k

+

0 ))

(� � �k0 )

��k0
+ o(� � �k0 )

Taylor expanding ���k
0

��k
0

around �k0 , concludes in Eq.(12).
Now consider the case mk

(Ti(�
k
0 )) = 2 where

˙dk�i�i+1
(Ti(�

k+

0 )) = 0. Taylor expand dk�i�i+1
(·)

around Ti(�
k+

0 ) in a neighborhood of Ti(�
k
0 ) and recall

uk
�i�i+1

(Ti(�))� �dk�i�i+1
(Ti(�)) = 0:

�
uk
�i�i+1

(Ti(�
k+

0 ))

�
+ dk�i�i+1

(Ti(�
k+

0 ))

+

1
2
¨dk�i�i+1

(Ti(�
k+

0 ))⌧(�)2 + o(⌧(�)2) = 0.

Since ¨dk�i�i+1
(·) is Lipschitz, there is a �t 2 R such that

this equation is valid for each Ti(�) 2 [Ti(�
k
0 ), Ti(�

k
0 ) +

�t). Further, due to Lemma 3, Ti(�) is continuous and
therefore there is a ��0 2 (0, ��] such that this equation
is valid for � 2 [�k0 , �

k
0 + ��0). Note dk�i�i+1

(Ti(�
k+

0 )) =

uk
�i�i+1

(Ti(�
k+

0 ))/�k0 . Reordering,

1
2
¨dk�i�i+1

(Ti(�
k+

0 ))⌧(�)2 = �uk
�i�i+1

(Ti(�
k+

0 ))

���k
0

��k
0

+o(⌧(�)2).

Taylor expanding ���k
0

��k
0

around �k0 ,

1
2
¨dk�i�i+1

(Ti(�
k+

0 ))⌧(�)2 = �uk
�i�i+1

(Ti(�
k+

0 ))

���k
0

�k2
0

+o(� � �k0 ) + o(⌧(�)2),
(14)

By the Taylor expansion of dk�i�i+1
(·) around Ti(�

k+

0 ),
o(⌧(�)2) is of lesser order than 1

2
¨dk�i�i+1

(Ti(�
k+

0 ))⌧(�)2. In
order for the equality of Eq. (14) to be true, o(⌧(�)2) must
also be of lesser order than � � �k0 . Therefore, o(⌧(�)2) =
o(�� �k0 ). Recall �k0 = uk

�i�i+1
(Ti(�

k+

0 ))/dk�i�i+1
(Ti(�

k+

0 ))

and reorder:

⌧(�)2 = �uk
�i�i+1

(Ti(�
k+

0 ))

2dk
�i�i+1

(Ti(�
k+

0 ))2

d̈k
�i�i+1

(Ti(�k+
0 ))

(� � �k0 )

+o(� � �k0 ).
(15)

There is �� 2 (0, ��0] such that for each � 2 [�k0 , �
k
0 + ��),

�

�

�

�

�

2dk�i�i+1
(Ti(�

k+

0 ))

2

¨dk�i�i+1
(Ti(�k

+

0 ))

(� � �k0 )

�

�

�

�

�

> o(� � �k0 ).

Since mk
(Ti(�

k+

0 )) = 2, uk
�i�i+1

(Ti(�
k+

0 )) and
¨dk�i�i+1

(Ti(�
k+

0 )) must have opposite signs. Therefore,

�uk
�i�i+1

(Ti(�
k+

0 ))

2dk�i�i+1
(Ti(�

k+

0 ))

2

¨dk�i�i+1
(Ti(�k

+

0 ))

(� � �k0 ) > 0

As such, the right side of Eq.(15) has a single positive real
valued square root and a single negative real valued square
root for each � 2 (�k0 , �

k
0 + ��], completing the proof.

B. Approximation of the Cost

For smooth finite dimensional optimization, the first or-
der term of the approximation of the cost is the gradient
composed with the search direction. We find that similar to
the finite dimensional gradient, the mode insertion gradient,
Eq.(6), has a similar role for approximating the projection-
based switched system cost.

Let ⌃

k
(�) = {�1, . . . ,�M} and T k

(�) =

{T1(�), . . . , TM�1(�)} be the mode schedule for � > �k0
near �k0 . Let ˜Jk

(�) be the first-order Taylor expansion of
Jk

(�) := J(⌃k
(�), T k

(�)), around T k
(�k

+

0 ):

˜Jk
(�)

= Jk
(0) +D2J

k
(⌃

k
(�k

+

0 ), T k
(�k

+

0 )) · (T k
(�)� T k

(�k
+

0 ))

The term D2J(⌃
k
(�k

+

0 ), T k
(�k

+

0 )) is the switching time
gradient Eq.(2) and thus ˜Jk

(�) becomes

˜Jk
(�) = Jk

(0) +

PM�1
i=1 ⇢(Ti(�

k+

0 ))

T

·[f�i(x(Ti(�
k+

0 )))� f�i+1(x(Ti(�
k+

0 )))](Ti(�)� Ti(�
k+

0 )).

By the definition of �k0 , there is at least one Ti(�) 2 T k
(�)

that is not constant for � > �k0 near �k0 . If increasing, notice
the active mode function at time Ti(�) is �k

(Ti(�)) = �i+1.
Alternatively, if decreasing, notice �k

(Ti(�)) = �i. Thus, if
Ti(�) is increasing, then

⇢(Ti(�
k+

0 ))

T
[f�i(x(Ti(�

k+

0 )))� f�i+1(x(Ti(�
k+

0 )))]

= ⇢(Ti(�
k+

0 ))

T
[f�i(x(Ti(�

k+

0 )))� f
�k(Ti(�k+

0 ))
(x(Ti(�

k+

0 )))]

= dk�i
(Ti(�

k+

0 )) = ✓k,



which is the mode insertion gradient of �i just after Ti(�
k
0 )

and is also the optimality value, Eq.(8), of uk. Similarly, if
decreasing, then

⇢(Ti(�
k+

0 ))

T
[f�i(x(Ti(�

k+

0 )))� f�i+1(x(Ti(�
k+

0 )))]

= �dk�i+1
(Ti(�

k+

0 )) = �✓k.

Set !i = 0 if Ti(�) is increasing or constant in value with
� and !i = 1 if decreasing—i.e. !i = 0 (alt. !i = 1)
implies there is �� > 0 such that for each � 2 (�k0 , �

k
0 +��),

Ti(�) � Ti(�
k
0 ) (alt. Ti(�) < Ti(�

k
0 )). Then, ˜Jk

(�) is

˜Jk
(�) = Jk

(0)

+

PM�1
i=1 (�1)

!i✓k(Ti(�)� Ti(�
k
0 )).

(16)

Approximations of the switching times are given in Section
V-A. Recall the different types of switching times. Partition
{1, . . . ,M�1} into sets of equivalent type of switching time.
Define Ik1 as the set of indexes of the type-1 switching times
at �k0 and Ik2 as the set of indexes of type-2 switching times
at �k0 . In other words, for j = 1, 2,

Ikj = {i 2 {1, . . . ,M � 1}|mk
(Ti(�

k+

0 )) = j}.

Further, define

mk
:= max({mk

(Ti(�
k+

0 ))}M�1
i=1 ) (17)

to have the value of greatest type of switching time at �k0 . The
approximation of the switching times for mk

(Ti(�
k+

0 )) = 1

and 2 is given in Lemma 4. We see that the switching times
with the greatest type will dominate the approximation of the
cost—e.g. type-1 switching times vary linearly with � � �k0
while type-2 switching times vary with (� � �k0 )

1
2 . Label

the approximation of the cost with the approximation of the
switching times as ˆJk

(mk
; �). If mk

= 1, then

ˆJk
(1; �) = Jk

(0) +

X

i2Ik
1

(�1)

!i
(✓k)3

˙dk�i+!i
(Ti(�k

+

0 ))

(� � �k0 ),

(18)
while if mk

= 2, then

ˆJk
(2; �) = Jk

(0)�
X

i2Ik
2

p
2(✓k)2

¨dk�i+!i
(Ti(�k

+

0 ))

1
2

(���k0 )
1
2 , (19)

The following lemma states that ˆJk
(mk

; �) dominates the
remaining terms of Jk

(�) for � > �k0 near �k0 . In other
words, ˆJk

(mk
; �) is a valid approximation of Jk

(�) near
�k0 .

Lemma 5 (Approximation of the Cost): Set
Jk

(�) =

ˆJk
(mk

; �) + R(�) where R(�) is the remainder.
If mk

= 1 or 2, then there exists �� > 0 such that for all
� 2 (�k0 , �

k
0 + ��), | ˆJk

(mk
; �)� Jk

(0)| � |R(�)|.
Proof: The first order approximation of Jk

(�) with
respect to ⌧(�) := T k

(�) � T k
(�k0 ) is ˜Jk

(�), see Eq.(16).
Thus,

Jk
(�) = ˜Jk

(�) + o(|⌧(�)|).

The approximation ˆJk
(mk

; �) is a further approximation
from ˜Jk

(�), which includes the approximation of ⌧(�)i :=
Ti(�)� Ti(�

k
0 ) using Lemma 4. Consider mk

= 1 first. Set

H = (Ik1 )
c as the complement of Ik1 . By the definition of

mk, for each h 2 H , ⌧(�)h = 0. Therefore, using Eq.(12),
⌧(�) varies linearly with � � �k0 and thus,

Jk
(�) = ˆJk

(1; �) + o(� � �k0 ).

Therefore, R(�) = o(� � �k0 ) and | ˆJk
(1; �) � Jk

(0)| �
|R(�)|.

Now for the case where mk
= 2. First, the approximations

of ⌧(�)i = Ti(�) � Ti(�
k
0 ) for i 2 {1, . . . ,M � 1} are at

least of order (���k0 )
1
2 and thus o(|⌧(�)|) = o((���k0 )

1
2
).

Second, set H = (Ik2 )
c is the complement of Ik2 . For each

h 2 H , ⌧(�)h is at least order (� � �k0 ). Thus, for each
h 2 H ,

(�1)

!h✓k⌧(�)h = o(� � �k0 ).

Finally, plugging Eq.(13) in for each i 2 Ik2 ,

(�1)

!i✓k⌧(�)i =

= �
p
2(✓k)2

d̈k
�i+!i

(Ti(�k+
0 ))

1
2
(� � �k0 )

1
2
+ o((� � �k0 )

1
2
).

Therefore, the remainder term is

R(�) =
X

i2Ik(mk)

o((� � �k0 )
1
2
) +

X

h2H

o((� � �k0 ))

+o((� � �k0 )
1
2
) = o((� � �k0 )

1
2
).

Since ˆJk
(2; �) � Jk

(0) is not o((� � �k0 )
1
2
), the lemma is

proven.
As we show next, the negative mode insertion gradient is

a descent direction.

VI. DESCENT DIRECTION

In order to show sufficient descent (Contribution C) and
for backtracking to be applicable (Contribution D), �dk

must be a descent direction (Contribution B). In this section
we prove �dk is a descent direction directly from the
approximation of the cost (Contribution A).

The search direction �dk is a descent direction if there is a
�� > 0 such that for each � 2 (�k0 , �

k
0+��), Jk

(�) < Jk
(0).

The following lemma states that �dk is a descent direction.
Lemma 6 (Descent Direction): If mk

= 1 or 2 and there
exists an a 2 {1, . . . , N} and a t 2 [0, T ] for which dka(t) <
0, then there exists �� > 0 such that for each � 2 (�k0 , �

k
0 +

��), Jk
(�) < Jk

(0).
Proof: First, note ✓k  dka(t) < 0. The proof follows

from showing ˆJk
(mk

; �)�Jk
(0) < 0, mk

= 1 or 2, for � >
�k0 and invoking Lemma 5 to argue ˆJk

(mk
; �) dominates

the remainder for � near �k0 . Refer to Eqs.(12) and (13) for
ˆJk
(mk

; �) and consider mk
= 1 first. Clearly ˆJk

(1; �) �
Jk

(0) < 0 if for each i 2 Ik1 ,

(�1)

!i
(✓k)3

˙dk�i+!i
(Ti(�k

+

0 ))

< 0. (20)

Recall for Ti(�
k+

0 ) to be a switching time,
u�i�i+1(Ti(�

k+

0 )) � �k0d
k
�i�i+1

(Ti(�
k+

0 )) = 0. Using
the !i notation, u

�i+!i�
k(Ti(�k+

0 ))
(Ti(�

k+

0 )) �



�k0d
k
�i+!i

(Ti(�
k+

0 )) = �1 � �k0d
k
�i+!i

(Ti(�
k+

0 )) = 0.
The derivative with respect to �k0 must be zero:

dk�i+!i
(Ti(�

k+

0 )) + �k0
˙dk�i+!i

(Ti(�
k+

0 ))

˙Ti(�
k+

0 ) = 0

Rearranging and noting d�i+!i(Ti(�
k+

0 )) = ✓k < 0,

˙dk�i+!i
(Ti(�

k+

0 )) = � ✓k

�k0
˙Ti(�k

+

0 )

.

Recall !i = 0 implies ˙Ti(�
k+

0 ) > 0 and thus ˙dk�i
(Ti(�

k+

0 )) >

0. Similarly, !i = 1 implies ˙Ti(�
k+

0 ) < 0 and thus
˙dk�i+1

(Ti(�
k+

0 )) < 0. Therefore, Eq.(20) is true.
Now for mk

= 2. Since ¨dk�i+!i
(Ti(�

k+

0 )) > 0,

�
X

i2Ik
2

p
2(✓k)2

¨dk�i+!i
(Ti(�k

+

0 ))

1
2

(� � �k0 )
1
2 < 0

and thus ˆJk
(2; �)�Jk

(0) < 0. Since ˆJk
(mk

; �)�Jk
(0) < 0,

mk
= 1 or 2, for all � > �k0 and by Lemma 5, ˆJk

(mk
; �)�

Jk
(0) dominates the remainder for � near �k0 , the Lemma is

proved.
The following section gives a condition on the step size for
sufficient descent.

VII. SUFFICIENT DESCENT

Since �dk is a descent direction, there is a �k > �k0 in the
neighborhood of �k0 such that Jk

(�k) < Jk
(0). Therefore,

by choosing such a �k, each execution of the loop in
Algorithm 1 will result in a cost decrease from the previous
iteration. Supposing J(·) is bounded below by J 2 R, the
algorithm will converge to a cost H � J . However, it is
unclear whether H is the cost at a local minimum unless each
�k satisfies a sufficient descent condition and is calculated
from backtracking.

It can be unclear, though, what it means for H to be a local
minimum. In finite dimensional derivative-based optimiza-
tion, the optimization algorithm converges to a stationarity
point where the gradient of the cost is zero. Since the set U
is infinite dimensional and not a Hilbert space, there is no
reason to expect a gradient of J(P(·)) to exist. Instead of the
normed gradient, we choose a different optimality function
on U and give conditions for which it goes to zero. This
optimality function is ✓k, which is calculated from Eq.(8).6
If ✓k = 0, then �k0 = �1/✓k = 1 which implies that �dk

has zero utility to reduce J(P(uk
)) further. In that respect,

uk is a stationarity point for the descent direction �dk.
In this section, we give the sufficient descent condition

(Contribution C), show that a step size �k that satisfies
the sufficient descent condition can be calculated in a fi-
nite number of backtracking iterations (Contribution D) and
finally that executing Algorithm 1 for such a �k results in
limk!1 ✓k = 0. Each of these contributions follows from
the approximation of the cost (Contribution A).

6The optimality function ✓

k has the same role in [16], [8], [18].

A. Type 2 Sufficient Descent Condition
The sufficient descent condition (Contribution C) follows

directly from the approximation of the cost ˆJk
(mk

; �),
Eqs.(18) and (19) (Contribution A). Set ↵ 2 (0, 1). The type-
mk sufficient descent condition is

Jk
(�)� Jk

(0) < ↵( ˆJk
(mk

; �)� Jk
(0)).

We study the type 2 sufficient descent condition since the
greatest type of switching time at �k0 is usually mk

= 2.
In fact, in the example in Section VIII, each of the 50
iterations of Algorithm 1 inserted type-2 switching times.
Except by design, mk is rarely greater than 2. However,
mk

= 1 is common. At �k0 , type-1 switching times occur
at switching times of uk or at the boundary times. Since
the approximation of type-1 switching times is linear in
(���k0 ), for mk

= 1, sufficient descent and backtracking for
projection-based switched system optimization and switching
time optimization are equivalent—see [3], [7], [11], [20] for
switching time optimization. For these reasons, only the type-
2 sufficient descent is considered in this paper.

Definition 7: Set

sk2 = �
X

i2Ik
2

p
2(✓k)2

¨dk�i+!i
(Ti(�k

+

0 ))

1
2

(21)

The type 2 sufficient descent condition is

Jk
(�)� Jk

(0) < ↵sk2(� � �k0 )
1
2 (22)

The following Lemma finds that there exists a �̂ > �k0
for which each � 2 (�k0 , �̂] satisfies the type-2 sufficient
descent condition. The step size �̂ is the minimum of �k1 , �k2
and �k3 , each given in the lemma. The first, �k1 , is the step
size where for each � 2 (�k0 , �

k
1 ), Jk

(�) is differentiable. In
other words, �k1 is an upper bound on where the derivative-
based approximation is valid. The second, �k2 , depends on the
constant L that satisfies the Lipschitz condition on the second
time derivative of dk, which exists based on the assumptions
made in Section III and due to Lemma 1. The third, �k3 ,
is a constant scaling away from �k0—i.e. �k3 = �k0 where

depending on ↵ 2 (0, 1),  is between 2�
3
q

↵ 3
p

2
2

3 ⇡ 1.5717
and 2.

In the following Lemma, set ⌫ :=

mini2Ik
2

¨dk�i+!i
(Ti(�

k+

0 )).
Lemma 7: Suppose mk

= 2 and there exists �k1 > �k0
such that for each i 2 Ik2 and � 2 (�k0 , �

k
1 ), Ti(�) exists. Set

�k2 = �k0

✓

1� ⌫3

✓k16L2

◆

.

and

�k3 := �k0

0

@

2�
3

q

↵ 3
p
2

2

3

1

A .

Then, defining �̂k := min{�k1 , �k2 , �k3}, the type-2 sufficient
descent condition, Eq.(22), is true for each � 2 (�k0 , �̂

k
].

Proof: Recall from Eqs.(8) and (9), ✓k = �1/�k0 =

dk�i+!i
(Ti(�

k+

0 )) < 0 for each i 2 Ik2 . Also, since ¨dk(·) is



Lipschitz and �1 � �dk�i+!i
(Ti(�)) = 0, for each i 2 Ik2 ,

there is a neighborhood of �k0 for which dk�i+!i
(Ti(�)) > 0,

(�1)

!i ˙dk�i+!i
(Ti(�)) > 0 and ¨dk�i+!i

(Ti(�)) > 0. Set

H(�) := �↵
p
2card(Ik2 )

(✓k)2

⌫
1
2

(� � �k0 )
1
2

Notice the right hand side of the type-2 sufficient descent
condition, Eq.(22), is greater than H(�) for all � > �k0 . The
proof follows by finding the � 2 (�k0 , �

k
1 ) for which the

derivative of left hand side of Eq.(22) is more negative than
the derivative of the right hand side. The derivative of the
left hand side is

DJk
(�) =

X

i2Ik
2

(�1)

!i
dk�i+!i

(Ti(�))
3

˙dk�i+!i
(Ti(�))

which is negative valued. The derivative of the right hand
side is bounded below by DH(�):

DH(�) := �↵
p
2

2

card(Ik2 )
(✓k)2

⌫
1
2

(� � �k0 )
� 1

2 (23)

The rest of the proof shows DJk
(�) < DH(�) for all � 2

(�k0 , �̂
k
).

Set ⌧i(�) = Ti(�) � Ti(�
k
0 ). Since ¨dk�i+!i

(Ti(�)) is
Lipschitz, by the mean value theorem,

(�1)

!i
˙dk�i+!i

(Ti(�))  ¨dk�i+!i
(Ti(�

k
0 ))⌧(�)� L⌧(�)2.

Therefore, for ⌧i(�)  ⌧i,max :=

d̈k
�i+!i

(Ti(�
k
0 ))

2L

(�1)

!i
˙dk�i+!i

(Ti(�)) 
3

2

¨dk�i+!i
(Ti(�

k
0 ))⌧i(�). (24)

By Lipschitz, a lower bound of ¨dk�i+!i
(Ti(�)) for ⌧i(�) 

⌧i,max is

¨dk�i+!i
(Ti(�)) � ¨dk�i+!i

(Ti(�
k+

0 )) + L⌧i(�)

� 1
2
¨dk�i+!i

(Ti(�
k+

0 )).

By the Taylor expansion of �1 � �dk�i+!i
(Ti(�)) around

Ti(�), with remainder r(Ti(�)),
�1

�
+

1

�k0
+

1

2

r(Ti(�))⌧i(�)
2
= 0.

For ⌧(�) < ⌧i,max the lower bound of ¨dk�i+!i
(Ti(�)) is

also the lower bound of the remainder term. In other words,
r(Ti(�)) >

1
2
¨dk�i+!i

(Ti(�
k+

0 )) and thus for ⌧i(�) < ⌧i,max,

⌧i(�) �
�2✓k

¨dk�i+!i
(Ti(�k

+

0 ))

1
2

(� � �k0 )
1
2 . (25)

Indeed, for each i 2 Ik2 and � 2 (�k0 ,min{�k1 , �k2}], the right
hand side of Eq.(25) is less than or equal to ⌧i,max. Plugging
�k2 into the right hand side of Eq.(25) reduces to,

⌫
3
2

2L ¨dk�i+!i
(Ti(�k

+

0 ))

1
2

 ⌫

2L
 ⌧i,max.

Therefore, Eqs (24) and (25) are true for every � 2
(�k0 ,min{�k1 , �k2}]. For these �, an upper bound on
(�1)

!i ˙dk�i+!i
(Ti(�)) is

(�1)

!i
˙dk�i+!i

(Ti(�))  �3✓k ¨dk�i+!i
(Ti(�

k+

0 ))

1
2
(� � �k0 )

1
2 .

Let ⌫ = maxi2Ik
2

¨dk�i+!i
(Ti(�

k+

0 )) and  = ⌫/⌫ > 1. Thus,
for each i 2 Ik2 ,

(�1)

!i
˙dk�i+!i

(Ti(�))  �3✓k(⌫ )
1
2
(� � �k0 )

1
2 . (26)

To find a upper bound on dk�i+!i
(Ti(�)), integrate Eq.(24)

with respect to ⌧i(�).

dk�i+!i
(Ti(�)) < ✓k +

R ⌧i(�)
0

3
2
¨dk�i+!i

(Ti(�
k
0 ))s ds

= ✓k +

3
4
¨dk�i+!i

(Ti(�
k
0 ))⌧i(�)

2

Using the bound in Eq.(25) and by setting �(�) = 1 +

3✓k(� � �k0 ),

dk�i+!i
(Ti(�))  ✓k�(�) (27)

With the bounds on dk�i+!i
(Ti(�)), Eq.(27), and

(�1)

!i ˙dk�i+!i
(Ti(�)), Eq.(26), DJk

(�) is bounded
above by

DJk
(�)  �card(Ik2 )

�(�)3

3

(✓k)2

(⌫ )
1
2

(� � �k0 )
� 1

2 . (28)

Comparing Eqs. (23) and (28),

�(�)3 � ↵
3

p
2

2

 
1
2 � ↵

3

p
2

2

,

implies DJk
(�) < DH(�), which is valid for every � 2

min{�k1 , �k2 , �k3} = �̂k. It follows that each � 2 (�k0 , �̂
k
]

satisfies the sufficient descent condition.

B. Backtracking
Calculating �̂k = min{�k1 , �k2 , �k3} directly is computa-

tionally inefficient due to �k2 . Calculating �k1 and �k3 is
possible though: �k1 is the nearest � > �k0 to �k0 for
which Jk

(�) is not differentiable and therefore, �k1 can
be calculated from knowledge of the critical times of uk

and dk; �k3 is a constant scaling from �k0 . Conversely, �2k
requires calculating the Lipschitz constant L a priori. Similar
to smooth finite dimensional optimization [1], [12], it is more
efficient to calculate a step size that satisfies the sufficient
descent criteria using a backtracking method than it is to
calculate �k2 and thus �̂k directly. Define �k(j) as

�k(j) = (�k3 � �k0 )�
j
+ �k0 .

Now, define jk 2 {0, 1, . . .} for � 2 (0, 1) as

jk := min{j = N|Jk
(�k(j))�Jk

(0) < ↵sk2(�
k
(j)��k0 )

1
2 }.

(29)
Then, �k := �k(jk) satisfies the sufficient descent condition.
Note, if jk = 0, then �k = �k3 , which is a constant
scaling from �k0 . Depending on ↵, �k3 = �k0 where  is a
number between approximately 1.5717 and 2. The following
algorithm calculates �k using backtracking. It should be
implemented as an inner loop of Algorithm 1 at step 2.

Algorithm 2: Set j = 0 and calculate sk2 from
Eq.(21).

1) If Jk
(�k(j)) � Jk

(0) < ↵sk2(�
k
(j) � �k0 )

1
2 then

return �k = �k(j) and terminate.
2) Increment j and repeat from Step 1.



Lemma 8 (Backtracking): If there exists b1 > 0 and
b2 > 0 such that ✓k < �b1 and for each of the i 2 Ik2 ,
¨dk�i+!i

(Ti(�)) > b2, then jk is finite.
Proof: The proof follows from Lemmas 3 and 7.

According to Lemma 7, �̂k = min{�k1 , �k2 , �k3} satisfies
the sufficient descent condition. From Lemma 3, �k1 is
bounded from �k0 . Furthermore, by the bounds on ✓k and
v̈k�i+!i

(Ti(�)), �k2 and �k3 are bounded from �k0 . Let b3 > 0

bound �̂k from �k0—i.e. �̂k � �k0 > b3. Then,

jk = ceil
✓

log�

b3
�k3 � �k0

◆

which is finite.7

C. Locally Minimizing Sequence

For the type-2 sufficient descent condition, we have shown
backtracking will find a �k for which the condition is
satisfied. In the following lemma, we find that if {uk} is
the sequence calculated using Algorithm 1 from u0 where
there is an infinite subsequence of {uk} for which mk

= 2,
then the optimality function ✓k goes to zero.

Lemma 9: Suppose u0 2 ⌦ and S = {uk} is an infinite
sequence where

1) J(u0
) = J < 1,

2) J(u) is bounded below for all u 2 ⌦,
3) J(uk+1

) < J(uk
), and

4) S2 ⇢ S is an infinite subsequence where each uk+1 2
S2 is calculated from uk+1

= Q(uk � �kdk) and
a) mk

= 2 (see Eq.(17)),
b) �k2 < �k1 or �k3 < �k1 (see Lemma 7),
c) there is K2 > 0 such that for each i 2 Ik2 ,

¨dk�i+!i
(Ti(�

k
0 )) � K2, and

d) �k = (�k3 � �k0 )�
jk

+ �k0 (see Eq.(29)).
then, limk!1 ✓k = 0.

Proof: Since each J(uk
) is strictly monotonically

decreasing and bounded below, limk!1 J(uk
)�J(uk+1

) =

0. Consider uk+1 2 S2 which was calculated from uk

using backtracking so that uk � �kdk satisfies the type
2 sufficient descent condition, Eq.(22) and set ⌫k :=

mini2Ik
2

¨dk�i+!i
(Ti(�

k+

0 )). The cost difference between uk+1

and uk is

J(uk
)� J(uk+1

) > ↵
p
2card(Ik2 )

(✓k)2

(⌫k)
1
2

(�k � �k0 )
1
2 . (30)

Since S2 has infinite cardinality, it is the case that as
k ! 0, the right hand side of Eq.(30) goes to zero. By
Lemma 7 and the assumption on �k1 , �k2 , and �k3 , any � 2
(�k0 ,min{�k2 , �k3}], defined in Lemma 7, satisfies the type-2
sufficient descent condition. Let L be the Lipschitz constant
of ¨dka(·) for each a 2 {1, . . . , N} and every uk 2 S2. This
constant exists due to the assumptions made in Section III.
Recall �k = (�k3 ��k0 )�jk

+�k0 is calculated by backtracking
and therefore, if �k3  �k2 , then �jk

= 0 and �k = �k3 .

7The function ceil(·) : R ! Z rounds to the nearest integer of greater
value.

Conversely, suppose �k2 < �k3 . Due to backtracking, it is
possible for �k = (�k3 � �k0 )�

jk
+ �k0 < �k2 . If this is the

case, then (�k3 � �k0 )�
jk�1

+ �k0 > �k2 . Therefore, �k is in
the interval

�k 2 [(�k2 � �k0 )� + �k0 , �
k
2 ]

and thus
�k = �k0 +  k (⌫k)3

(✓k)216L2
(31)

where  k 2 [�, 1].
By assumptions, it must be the case that there are an

infinite number of uk+1 calculated from uk where either 1)
�k = �k3 or 2) �k is given by Eq.(31). Since limk!1 J(uk

)�
J(uk+1

) = 0, the limit of the right hand side of Eq.(30) goes
to zero. If case 1), then

lim

k!1
↵
p
2card(Ik2 )

0

@

1�
3

q

↵ 3
p
2

2

3

1

A

1
2

(✓k)
3
2

(⌫k)
1
2

= 0.

Since ⌫k  LT , limk!1 ✓k = 0. Now, if 2), then

lim

k!1

↵
p

2 kcard(Ik2 )
4L

✓k⌫k = 0.

Since ⌫k � K2 and  k � � > 0, once again, limk!1 ✓k =

0 and the proof is complete.
The restrictive assumption in Lemma 9 is assumption 4b. If

the greatest � for which the derivative-based approximation
of the cost is valid goes to zero at a faster rate than ✓k goes
to zero, then the minimizing sequence is not be guaranteed
to converge to ✓k = 0.

VIII. EXAMPLE

We consider two examples. The first is an instructive
example from the literature. The switched system is com-
posed of two linear modes. The second example considers a
simple aircraft model with three flight modes. The airplane
will either fly straight, bank right, or bank left, all at fixed
velocities and at a fixed altitude. The goal is to schedule the
flight pattern that best approximates an infeasible desired
turning maneuver.

A. Scheduling a Linear Two-Mode Switched System
Consider the linear time-invariant switched system exam-

ple in [6] and [7]. Suppose x0 = (1, 1)T and f1(x(t)) =

A1x(t) and f2(x(t)) = A2x(t) where

A1 =

✓

�1 0

1 2

◆

and A2 =

✓

1 1

1 �2

◆

.

We wish to solve Problem 1—i.e. to find the switching
control inputs that minimize J(x, u) =

R 1
0

1
2x(⌧)

TQx(⌧)d⌧
where Q is the identity matrix. We executed Algorithm 1
for 50 iterations starting with mode sequence ⌃

0
= {1} and

switching time T 0
= {}. This initial mode schedule is the

switching control u0
= (1, 0)T (t).

The procedure for one iteration of Algorithm 1 follows.
The initial state, x0, is calculated from Eq.(1). With u0



J(uk
)� J(uk+1

)

Iteration #
10 20 30 40 50

104

0.001

0.01

0.1

1

10

-

Fig. 3. Plot of J(uk)� J(uk+1) for 50 iterations. Notice the difference
between successive costs decreases with iteration.

and x0, the adjoint for the first iterate, ⇢0, is calculated
from Eq.(3). The negative mode insertion gradient, �d0 is
calculated next from Eq.(6), which is guaranteed to be a
descent direction due to Lemma 6. Now, for any � > 0 the
update, Q(u0 � �d0) is calculated from Eq.(4) and thus the
projection, (x0, u0

) = P(u0��d0), is calculated from Eq.(5).
Notice the cost of the update at �, J0

(�), is integrated from
`(x0, u0

). The optimality function, ✓0, and the smallest step
size for which there is change to the cost, �k0 , are calculated
from Eqs.(8) and (9) respectively. The greatest switching
time type at �k0 , m0, is calculated next from Eq.(17). If
m0

= 1, then backtracking using the type-1 sufficient descent
condition may be done to calculate u1. In this example,
however, m0

= 2 and thus type-2 backtracking, Algorithm
2, is executed to calculate �0. We used ↵ = 10

�4 and
� = 10

�1. The new estimate of the optimum is found from
u1

= Q(u0 � �0d0).
We repeated this process for 50 iterations. In accordance

with Lemma 8, each jk was finite and in fact the greatest
number of back stepping iterations needed was 3. Note we
did not optimize the switching times between each iteration.

After the 50

th iteration, the cost reduced from 11.8372
down to 2.2122. See Fig.(3) for the difference of current and
previous cost at each iteration. The switching control calcu-
lated at the 50

th iterations is given in Fig.(4). Even though
u0 has zero mode transitions, u10 has 16 mode transitions
and u50 has 98. Finally, Fig.(5) shows that the optimality
condition, ✓k, trends toward 0 where ✓50 = �0.04854.

B. Scheduling Flight Pattern for Simple Aircraft Model

For the second example, consider an aircraft with three
modes of flight at a fixed altitude. The plane’s state is given
by its position in R2, (X,Y ) and its orientation ⇥—i.e.
x(t) = (X,Y,⇥)(t). It flies straight, banks right, or banks
left at fixed velocities. The three modes are

fi(x(t)) = (4 cos(⇥(t)), 4 sin(⇥(t)),!i)
T

where !1 = 0, !2 = 1, and !3 = �1. The goal is to schedule
the flight pattern that best approximates the turning maneuver

u50
(t)

0

1

✓

1

0

◆

✓

0

1

◆

t

u10
(t)

✓

1

0

◆

✓

0

1

◆

Fig. 4. Results of u10 and u

50.

10 20 30 40 50

-0.05
-0.10

-0.50
-1.00

-5.00
-10.00

✓k

Iteration #

Fig. 5. Plot of optimality condition ✓

k on a log scale for 50 iterations.
Notice the optimality condition decreases with iteration.

pictured by the dashed lines in Fig.(6). This desired trajectory
is

xdes(t) =

0

@

Xdes

Ydes

⇥des

1

A

(t)

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0

@

2

p
3t

2t
�⇡/3

1

A t < 10

0

@

20

p
3� 20 + 2t

20

p
3 + 20� 2

p
3t

⇡/6

1

A t � 10

.

The desired flight trajectory is to fly along a straight path
for 10s, conduct an infeasible ⇡/2 radian point turn, and fly
straight once again. At best, the aircraft can approximate the
turn. Furthermore, the aircraft is not initially positioned or
oriented with the desired trajectory. The initial condition is
x0 = (5, 2, 5⇡/18)T .

The objective is to calculate the flight schedule that best
approximates the desired trajectory. In other words, the goal
is to calculate the switching control that minimizes

J(u) =
1

2

Z 15

0
(x(⌧)� xdes(⌧))

T
(x(⌧)� xdes(⌧))d⌧.

Starting with an initial guess of u0
(t) = (1, 0, 0)T (t), we

executed Algorithm 1 for 70 iterations. We choose sufficient
descent parameter ↵ = 0.4 and backtracking parameter
� = 0.4. Note, switching time optimization is not conducted
between each iteration. The switching control and state



J(uk
)� J(uk+1

)

Iteration #
10 20 30 40 50 60 70

1

10

100

1000

Fig. 7. Plot of J(uk)� J(uk+1) for 70 iterations.

0 10 20 30 40 50 60 70

-100

-200

-500

-1000

-2000

-5000

-1 104

Iteration #

✓k

x

Fig. 8. Plot of optimality function, ✓k , on a log scale for 70 iterations.

of iterations 5, 20 and 70 are pictured in Fig.(6). The
desired trajectory is also pictured for comparison. Notice,
that despite a poor initial guess—i.e. fly straight for the time
interval—by the 70

th execution of the algorithm loop, the
aircraft approximates the desired trajectory. The difference
of the cost between successive iterations is given in Fig.(7).
Furthermore, the value of the optimality function for each
iteration is given in Fig.(8).

IX. CONCLUSION

An algorithm for optimal mode scheduling of switched
systems is given. The algorithm has guarantees on con-
vergence such as sufficient descent and backtracking for
the search direction given by calculating the negative mode
insertion gradient. The mode insertion gradient is a single
example of a descent direction. In future work, we will
study sufficient descent and backtracking for general descent
directions.

X. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under award IIS-1018167 as well
as the Department of Energy Office of Science Graduate

Fellowship Program (DOE SCGF), made possible in part by
the American Recovery and Reinvestment Act of 2009, ad-
ministered by ORISE-ORAU under contract no. DE-AC05-
06OR23100.

REFERENCES

[1] L. Armijo. Minimization of functions having lipschitz continuous first-
partial derivatives. Pacific Journal of Mathematics, 16:1–3, 1966.

[2] S. C. Bengea and R. A. DeCarlo. Optimal control of switching
systems. Automatica, 41:11–27, 2005.

[3] T. M. Caldwell and T. D. Murphey. Switching mode generation
and optimal estimation with application to skid-steering. Automatica,
47:50–64, 2011.

[4] T. M. Caldwell and T. D. Murphey. Projection-based switched system
optimization. American Control Conference, 2012.

[5] T. M. Caldwell and T. D. Murphey. Projection-based switched system
optimization: Absolute continuity of the line search. IEEE Conference
on Decision and Control, 2012.

[6] T. M. Caldwell and T. D. Murphey. Single integration optimization
of linear time-varying switched systems. IEEE Transactions on
Automatic Control, 57:1592–1597, 2012.

[7] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time optimiza-
tion for switched-mode dynamical systems. IEEE Transactions on
Automatic Control, 51:110–115, 2006.

[8] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy,
and C. J. Tomlin. A descent algorithm for the optimal control of
constrained nonlinear switched dynamical systems. Hybrid Systems:
Computation and Control, 13:51–60, 2010.

[9] J. Hauser. A projection operator approach to the optimization of
trajectory functionals. IFAC World Congress, 2002.

[10] E. R. Johnson and T. D. Murphey. Second-order switching time
optimization for non-linear time-varying dynamic systems. IEEE
Transactions on Automatic Control, 56(8):1953–1957, 2011.

[11] K. Flaßkamp, T. D. Murphey, and S. Ober-Blöbaum. Switching
time optimization in discretized hybrid dynamical systems. IEEE
Conference on Decision and Control, pages 707–712, 2012.

[12] C. Lemarechal. A view of line-searches. Optimization and Optimal
Control, 30:59–78, 1981.

[13] A. S. Lewis and M. L. Overton. Nonsmooth optimization via BFGS.
SIAM Journal of Optimization, 2009.

[14] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.
[15] J. Le Ny, E. Feron, and G. J. Pappas. Resource constrained LQR

control under fast sampling. Hybrid Systems: Computation and
Control, 14:271–279, 2011.

[16] E. Polak. Optimization: Algorithms and Consistent Approximations.
Springer, 1997.

[17] E. Polak and Y. Wardi. A study of minimizing sequences. SIAM
Journal on Control and Optimization, pages 599–609, 1984.

[18] Y. Wardi and M. Egerstedt. Algorithm for optimal mode scheduling in
switched systems. American Control Conference, pages 4546–4551,
2012.

[19] S. Wei, K. Uthaichana, M. Zefran, R. DeCarlo, and S. Bengea.
Applications of numerical optimal control to nonlinear hybrid systems.
Nonlinear Analysis: Hybrid Systems, 1:264–279, 2007.

[20] X. Xu and P. J. Antsaklis. Optimal control of switched systems
via non-linear optimization based on direct differentiations of value
functions. International Journal of Control, 75:1406 – 1426, 2002.

[21] E. Zeidler. Applied Functional Analysis: Applications to Mathematical
Physics. Springer, 1995.



(1 0 0)T

(0 1 0)T

(0 0 1)T

(1 0 0)T

(0 1 0)T

(0 0 1)T

u0
(t)

u5
(t)

u20
(t)

u70
(t)

X

Y

X

Y

(Xdes, Ydes)

(X0, Y 0
)

(X5, Y 5
)

(X20, Y 20
)

(X70, Y 70
)

X0
(t)

t

t

t

t

Y 0
(t)

Y 70
(t)

(1 0 0)T

(0 1 0)T

(0 0 1)T

(1 0 0)T

(0 1 0)T

(0 0 1)T

Xdes(t)

Ydes(t)

⇥

0
(t)

⇥des(t)

X70
(t)

⇥

70
(t)

Fig. 6. Results for iterations 0, 5, 20 and 70. The calculated switching control is shown left, the (X,Y ) trajectory is shown middle, and the state
x = (X,Y,⇥) versus time is shown right. The desired trajectories are shown with dashed lines.


